
1

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 16, 2015 SSA and DFA 1

Static Single Assignment Form

Last Time

– Introduction to SSA

– Inserting  functions

Today

– Csmith paper

– Renaming variables for SSA form

– SSA and DFA

Next Time

– Reuse optimizations

LLVM Questions

Are you confused by LLVM?

February 16, 2015 SSA and DFA 2

2

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 16, 2015 SSA and DFA 3

Transformation to SSA Form

Two steps

– Insert -functions

– Rename variables

February 16, 2015 SSA and DFA 4

Variable Renaming

Basic idea

– When we see a variable on the LHS, create a new name for it

– When we see a variable on the RHS, use appropriate subscript

Harder when there’s control flow

– For each use of x, find the definition of x that dominates it

x = x0 =

= x = x0

Will such a definition exist?

x =

= x

x =

= x

Easy for straightline code

x0 =

= x0

x1 =

= x1

How can we find it?

3

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 16, 2015 SSA and DFA 5

13

4 12

Dominance Tree Example

2

3 6 7

8

9

1110

The dominance tree shows the dominance relation

5

CFG

12

1

52

3 8 76

9

10 11

4 13

Dominance Tree

1

– At any point in the dominance tree,

look up the tree, searching for the first

definition that you find

– Make a depth-first traversal of the

Dominance Tree to assign version

numbers

1 idom 12

February 16, 2015 SSA and DFA 6

Data Structures

– Stacks[v] v

Holds the subscript of most recent definition of variable v, initially empty

– Counters[v] v

Holds the current number of assignments to variable v; initially 0

Auxiliary Routine

procedure GenName(variable v)

i := Counters[v]

push i onto Stacks[v]

Counters[v] := i + 1

Variable Renaming (cont)

Use the Dominance Tree to remember the most

recent definition of each variable

13

1

52

3 8 76

9

10 11

4 13

4

Calvin Lin

The University of Texas at Austin

CS380C Compilers

February 16, 2015 SSA and DFA 7

Variable Renaming Algorithm

procedure Rename(block b)

if b previously visited return

for each -function p in b

GenName(LHS(p)) and replace v with vi, where i=Top(Stack[v])

for each statement s in b (in order)

for each variable v  RHS(s)

replace v by vi, where i = Top(Stacks[v])

for each variable v  LHS(s)

GenName(v) and replace v with vi, where i=Top(Stack[v])

for each s  succ(b) (in CFG)

j  position in s’s -function corresponding to block b

for each -function p in s

replace the jth operand of RHS(p) by vi, where i = Top(Stack[v])

for each s  child(b) (in DT)

Rename(s)

for each -function or statement t in b

for each vi  LHS(t)

Pop(Stack[v])

Call Rename(entry-node)

Recurse using Depth First Search

Unwind stack when done with this node

Φ(, ,)

