Calvin Lin
The University of Texas at Austin

Static Single Assignment Form

Last Time
— Introduction to SSA
— Inserting ¢ functions

Today
— Csmith paper
— Renaming variables for SSA form
— SSA and DFA

Next Time
— Reuse optimizations

February 16, 2015 SSA and DFA

LLVM Questions

Are you confused by LLVM?

February 16, 2015 SSA and DFA

CS380C Compilers



Calvin Lin
The University of Texas at Austin

Transformation to SSA Form
Two steps

— Insert ¢-functions
— Rename variables

February 16, 2015 SSA and DFA

Variable Renaming

Basic idea
— When we see a variable on the LHS, create a new name for it
— When we see a variable on the RHS, use appropriate subscript

Easy for straightline code

Bl

Harder when there’s control flow
— For each use of x, find the definition of x that dominates it

_ ' m Will such a definition exist?
H m How can we find it?

February 16, 2015 SSA and DFA

CS380C Compilers



Calvin Lin
The University of Texas at Austin

Dominance Tree Example

The dominance tree shows the dominance relation

1 idom 12

Dominance Tree

— At any point in the dominance tree,
look up the tree, searching for the first
definition that you find

— Make a depth-first traversal of the
Dominance Tree to assign version
numbers
February 16, 2015 SSA and DFA

Variable Renaming (cont)

Data Structures
— Stacks[v] Vv
Holds the subscript of most recent definition of variable v, initially empty

— Counters[v] Vv
Holds the current number of assignments to variable v; initially O

Auxiliary Routine
procedure GenName(variable v)
i := Counters[v]
push i onto Stacks[v]
Counters[v] :=i+1

Use the Dominance Tree to remember the most
recent definition of each variable

February 16, 2015 SSA and DFA

CS380C Compilers



Calvin Lin
The University of Texas at Austin

Variable Renaming Algorithm

procedure Rename(block b)
if b previously visited return
for each ¢-function pin b
GenName(LHS(p)) and replace v with v;, where i=Top(Stack[v])
for each statement s in b (in order)
for each variable v.e RHS(s)
replace v by v;, where i = Top(Stacks[v])
for each variable v e LHS(s)
GenName(v) and replace v with v;, where i=Top(Stack[v])
for each s e succ(b) (in CFG)
J < position in s’s ¢-function corresponding to block b
for each ¢-function pin s
replace the jth operand of RHS(p) by v;, where i = Top(Stack[v]) o(,, )
for each s e child(b) (in DT) i Recurse using Depth First Search
Rename(s)
fOIfiarcgai)hf%?ilOLLg(ts)tatemem tn b} Unwind stack when done with this node

Pop(Stack[Vv])

February 16, 2015 SSA and DFA 7

CS380C Compilers



