Calvin Lin
The University of Texas at Austin

Csmith Paper

February 18, 2015 SSA and DFA

Transformation from SSA Form

Proposal
— Restore original variable names (i.e., drop subscripts)
— Delete all ¢-functions

Complications

—What if versions get out of order?
(simultaneously live ranges)

Alternative
—Perform dead code elimination (to prune ¢-functions)
—Replace ¢-functions with copies in predecessors
—Rely on register allocation coalescing to remove unnecessary copies

February 18, 2015 SSA and DFA

CS380C Compilers

Calvin Lin
The University of Texas at Austin

Revisiting Data-flow Analyses in SSA Form

How do our various data-flow analyses change, if at all?
— Liveness
— Available expressions
— Common sub-expression elimination
— Reaching definitions

February 18, 2015 SSA and DFA

LLVM
Partial SSA form
— Top-level variables are in SSA from

— Address-taken variables are not

Why does LLVM do this?
— Pointers are difficult in SSA form

February 18, 2015 SSA and DFA

CS380C Compilers

Calvin Lin
The University of Texas at Austin

SSAin LLVM

SSA form
— Everything that starts with % or @ is in SSA
— Once initialized, they become immutable
— Every definition has to dominate all of its uses
— “Virtual register” or “top-level variable”
— Use fresh names %1, %2 rather than subscripts to rename variables

int f£(int a)
{
a=af*
a=a+
return a;

}

define i32 @f(i32 %a) {
2. %1 = mul nsw i32 %a, 2
12 %$2 = add nsw i32 %a, 1
! ret i32 %2

February 18, 2015 SSA and DFA

LLVM (cont)

¢-function in LLVM
— Both the incoming value and the incoming block have to be specified

Example
; <label>: bbl

; <label>: bb2 ; <label>: bb3
2

; <label>: bb4
%3 = phi 132 [%1, %bb2], [%2, %bb3]
..%3...

February 18, 2015 SSA and DFA

CS380C Compilers

Calvin Lin
The University of Texas at Austin

LLVM (cont)

Mutable variables
— Partial SSA
— Values that reside in memory are “address-taken variables”
— These variables are mutable
Memory operations
— Alloca for stack allocation
— Load & store for memory read/write

February 18, 2015 SSA and DFA

LLVM (cont)

Example ; .
define i32 Qf () {

%a = alloca i32

$b = alloca i32

store i32 5, %i32* %a
%1 = load i32* %a

%$2 = sub nsw i32 %1, 3
store i32 %2, %i32* %b
store i32 42 i32* %b
%$3 = load i32* %b

ret i32 %3

int £()

{
int a = 5;
int b = a - 3;
b = 42;
return b;

In the IR, what do variable a and b in the source language get
translated to?

February 18, 2015 SSA and DFA

CS380C Compilers

Calvin Lin
The University of Texas at Austin

LLVM (cont)

In C/C++, every variable is mutable
— By default, clang will generate one memory allocation for every single C
variable
— But this is wasteful!

Memz2reg to the rescue
— LLVM has a highly-tuned optimization pass called “mem2reg”
— promotes allocas into virtual registers
— inserts ¢-node as appropriate
— This pass is essentially a dominance-frontier finder already written for you

February 18, 2015 SSA and DFA

LLVM (cont)

Mem2reg example

Before

il na EE define i32 Qf() {
%a = alloca i32 $1 = sub nsw i32 5, 3
$b = alloca i32 ret i32 42
store i32 5, %i32* %a
%1 = load i32* %a
%$2 = sub nsw i32 %1, 3
store i32 %2, %i32* %b
store i32 42 i32* %b
%3 = load i32* %b
ret i32 %3

February 18, 2015 SSA and DFA

CS380C Compilers

Calvin Lin
The University of Texas at Austin

LLVM (cont)

Summary
— In LLVM, values can be stored in virtual registers or memory
— Virtual register values are required to be in SSA form
— Memory values can be mutable
— Use —memz2reg to eliminate unnecessary allocations

February 18, 2015 SSA and DFA

Concepts

Data dependences
— Three kinds of data dependences
— du-chains
Alternate representations
SSA form
Conversion to SSA form
— ¢-function placement
— Dominance frontiers
— Variable renaming
— Dominance trees
Conversion from SSA form
LLVM and partial SSA form

February 18, 2015 SSA and DFA

CS380C Compilers

Calvin Lin
The University of Texas at Austin

Next Time

Lecture
— Reuse optimizations

Reading
— Wegman and Zadeck paper due Tuesday February 24t at 5:00pm

February 18, 2015 SSA and DFA

CS380C Compilers

