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Transformation from SSA Form

Proposal
— Restore original variable names (i.e., drop subscripts)
— Delete all ¢-functions

Complications

—What if versions get out of order?
(simultaneously live ranges)

Alternative
—Perform dead code elimination (to prune ¢-functions)
—Replace ¢-functions with copies in predecessors
—Rely on register allocation coalescing to remove unnecessary copies
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Revisiting Data-flow Analyses in SSA Form

How do our various data-flow analyses change, if at all?
— Liveness
— Available expressions
— Common sub-expression elimination
— Reaching definitions
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LLVM
Partial SSA form
— Top-level variables are in SSA from

— Address-taken variables are not

Why does LLVM do this?
— Pointers are difficult in SSA form
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SSAin LLVM

SSA form
— Everything that starts with % or @ is in SSA
— Once initialized, they become immutable
— Every definition has to dominate all of its uses
— “Virtual register” or “top-level variable”
— Use fresh names %1, %2 rather than subscripts to rename variables

int f£(int a)
{
a=af*
a=a+
return a;

}

define i32 @f(i32 %a) {
2. %1 = mul nsw i32 %a, 2
12 %$2 = add nsw i32 %a, 1
! ret i32 %2
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LLVM (cont)

¢-function in LLVM
— Both the incoming value and the incoming block have to be specified

Example
; <label>: bbl

; <label>: bb2 ; <label>: bb3
2

; <label>: bb4
%3 = phi 132 [ %1, %bb2], [%2, %bb3]
..%3...
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LLVM (cont)

Mutable variables
— Partial SSA
— Values that reside in memory are “address-taken variables”
— These variables are mutable
Memory operations
— Alloca for stack allocation
— Load & store for memory read/write
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LLVM (cont)

Example ; .
define i32 Qf () {

%a = alloca i32

$b = alloca i32

store i32 5, %i32* %a
%1 = load i32* %a

%$2 = sub nsw i32 %1, 3
store i32 %2, %i32* %b
store i32 42 i32* %b
%$3 = load i32* %b

ret i32 %3

int £()

{
int a = 5;
int b = a - 3;
b = 42;
return b;

In the IR, what do variable a and b in the source language get
translated to?

February 18, 2015 SSA and DFA

CS380C Compilers



Calvin Lin
The University of Texas at Austin

LLVM (cont)

In C/C++, every variable is mutable
— By default, clang will generate one memory allocation for every single C
variable
— But this is wasteful!

Memz2reg to the rescue
— LLVM has a highly-tuned optimization pass called “mem2reg”
— promotes allocas into virtual registers
— inserts ¢-node as appropriate
— This pass is essentially a dominance-frontier finder already written for you
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LLVM (cont)

Mem2reg example

Before

il na EE define i32 Qf() {
%a = alloca i32 $1 = sub nsw i32 5, 3
$b = alloca i32 ret i32 42
store i32 5, %i32* %a
%1 = load i32* %a
%$2 = sub nsw i32 %1, 3
store i32 %2, %i32* %b
store i32 42 i32* %b
%3 = load i32* %b
ret i32 %3
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LLVM (cont)

Summary
— In LLVM, values can be stored in virtual registers or memory
— Virtual register values are required to be in SSA form
— Memory values can be mutable
— Use —memz2reg to eliminate unnecessary allocations
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Concepts

Data dependences
— Three kinds of data dependences
— du-chains
Alternate representations
SSA form
Conversion to SSA form
— ¢-function placement
— Dominance frontiers
— Variable renaming
— Dominance trees
Conversion from SSA form
LLVM and partial SSA form
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Next Time

Lecture
— Reuse optimizations

Reading
— Wegman and Zadeck paper due Tuesday February 24t at 5:00pm
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