
Calvin Lin

The University of Texas at Austin

CS380 C Compilers 1

February 23, 2015 Reuse Optimization I 1

Loop Invariant Code Motion

Last Time

SSA

Today

Loop invariant code motion

Reuse optimization

Next Time

More reuse optimization

Common subexpression elimination

Partial redundancy elimination

February 23, 2015 Reuse Optimization I 2

Identifying Loop Invariant Code

Motivation

Avoid redundant computations

Example

w = . . .

y = . . .

z = . . .

L1: x = y + z

L1: v = w + x

. . .

if . . . goto L1

Everything that x depends upon is

computed outside the loop, i.e., all

defs of y and z are outside of the

loop, so we can move x = y + z

outside the loop

What happens once we move that

statement outside the loop?

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 2

February 23, 2015 Reuse Optimization I 3

Algorithm for Identifying Loop Invariant Code

Input: A loop L consisting of basic blocks. Each basic block contains a sequence of

RTL instructions. We assume ud-chains exist.

Output: The set of instructions that compute the same value each time through the

loop

Informal Algorithm:

1. Mark “invariant” those statements whose operands are either

– Constant

– Have all reaching definitions outside of L

2. Repeat until a fixed point is reached: mark “invariant” those unmarked statements

whose operands are either

– Constant

– Have all reaching definitions outside of L

– Have exactly one reaching definition and that definition is in the set marked

“invariant”

Is this last condition too strict?

February 23, 2015 Reuse Optimization I 4

Algorithm for Identifying Loop Invariant Code (cont)

Is the Last Condition Too Strict?

No

 If there is more than one reaching definition for an operand, then neither

one dominates the operand

 If neither one dominates the operand, and if at least one is inside the loop,

then the value can vary depending on the control path taken, so the value

is not loop invariant

x = c1 x = c2

...= x

Invariant
statements

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 3

February 23, 2015 Reuse Optimization I 5

Code Motion

What’s the Next Step?

Do we simply move the “invariant” statements outside the loop?

No, we need to make sure that we don’t change the dominance relations

involving any invariant statement

Three conditions must be met. For some statement

s: x = y + z

1. The block containing s dominates all loop exits

2. No other statement in the loop assigns to x

3. The block containing s dominates all uses of x in the loop

Examples?

February 23, 2015 Reuse Optimization I 6

Example 1

Condition 1 is needed

 If the block containing s does not dominate all exits, we might assign to x

when we’re not supposed to

if u<v goto B3

x = 2
u = u+1

v = v – 1

if v<9 goto B5

x = 1

j = x

B1

B5

B4

B2

B3

x=2 is loop invariant, but B3 does

not dominate B4, the exit node, so

moving x=2 would change the

meaning of the loop for those cases

where B3 is never executed

Can we move x=2 outside the loop?

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 4

February 23, 2015 Reuse Optimization I 7

B2 dominates the exit so condition 1

is satisfied, but code motion will set

the value of x to 2 if B3 is ever

executed, rather than letting it vary

between 2 and 3.

Example 2

Condition 2 is Needed

 If some other statement in the loop assigns x, the movement of the

statement may cause some statement to see the wrong value

Can we move x=3 outside the loop?

x = 3
if u<v goto B3

x = 2
u = u+1

v = v – 1

if v<9 goto B5

x = 1

j = x

B1

B2

B5

B4

B3

February 23, 2015 Reuse Optimization I 8

Conditions 1 and 2 are met, but the

use of x in block B2 can be reached

from a different def, namely x=1

from B1.

If we were to move x=4 outside the

loop, the first iteration through the

loop would print 4 instead of 1

Example 3

Condition 3 is Needed

 If the block containing s does not dominate all uses of x in the loop, we

might not assign the correct value of x

Can we move x=4 outside the loop?

print x
x = 4

if u<v goto B3

u = u+1

v = v – 1

if v<9 goto B5

x = 1

j = x

B1

B2

B3

B5

B4

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 5

February 23, 2015 Reuse Optimization I 9

Loop Invariant Code Motion Algorithm

Input: A loop L with ud-chains and dominator information

Output: A modified loop with a preheader and 0 or more statements moved to

the preheader

Algorithm:

1. Find loop-invariant statements s, which defines some variable x

2. For each statement s defining x found in step 1, move s to preheader if:

a. s is in a block that dominates all exits of L,

b. x is not defined elsewhere in L, and

c. s is in a block that dominates all uses of x in L

Are any other conditions necessary?

February 23, 2015 Reuse Optimization I 10

Loop Invariant Code Motion Algorithm (cont)

Profitability

Can loop invariant code motion ever increase the running time of the

program?

Can loop invariant code motion ever increase the number of instructions

executed?

Before transformation, s is executed at least once (condition 2a)

After transformation, s is executed exactly once

Relaxing Condition 1

 If we’re willing to sometimes do more work: Change the condition to

a. The block containing s either dominates all loop exits, or x is dead

after the loop

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 6

February 23, 2015 Reuse Optimization I 11

Alternate Approach to Loop Invariant Code Motion

Division of labor

Move all invariant computations to the preheader and assign them to

temporaries

Use the temporaries inside the loop

Rely on Copy Propagation to remove unnecessary assignments

Benefits

Much simpler: Fewer cases to handle

February 23, 2015 Reuse Optimization I 12

print x
x = 4

if u<v goto B3

u = u+1

v = v – 1

if v<9 goto B5

x = 1

j = x

B1

B5

B4

B2

B3

Example 3 Revisited

Using the alternate approach

Move the invariant code outside the loop

Use a temporary inside the loop

print x
x = t

if u<v goto B3

u = u+1

v = v – 1

if v<9 goto B5

x = 1

t = 4

j = x

B1

B5

B4

B2

B3

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 7

February 23, 2015 Reuse Optimization I 13

Lessons

Why did we study loop invariant code motion?

Loop invariant code motion is an important optimization

Because of control flow, it’s more complicated than you might think

The notion of dominance is useful in reasoning about control flow

Division of labor can greatly simplify the problem

February 23, 2015 Reuse Optimization I 14

Reuse Optimization

Idea

Eliminate redundant operations in the dynamic execution of instructions

How do redundancies arise?

Sequences of similar operations

Multiple array index calculations

Method lookup

Lightning frequently strikes twice

Types of reuse optimization

Value numbering

Common subexpression elimination

Partial redundancy elimination

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 8

February 23, 2015 Reuse Optimization I 15

Value Numbering

Idea

Partition program variables into congruence classes

All variables in the same congruence class have the same value

Congruence

 If x and y are congruent then f(x) and f(y) are congruent

a’= a

b’= b

x = f(a ,b)

y = f(a’,b’)

x and y are

congruent

February 23, 2015 Reuse Optimization I 16

Local Value Numbering

Build congruence classes in program order

Map each variable, expression, and constant to some unique number,

which represents a congruence class

When we encounter a variable, expression or constant, see if it’s already

been mapped to a number

 If so, use the value for that number

 If not, map to a new number

Example

a := b + c

d := b

b := a

e := d + c

b 

c 

b + c is 

a  3

d 

d + c is 

e  



a

What is redundant here?

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 9

February 23, 2015 Reuse Optimization I 17

Local Value Numbering (cont)

Temporaries may be necessary

a := b + c

a := b

d := b + c

b 

c 

b + c is 

a  3

b + c is  

d  

t := b + c

a := b

d := b + c

b 

c 

b + c is 

a  3

b + c is 

d  



t

a

Alternatively

February 23, 2015 Reuse Optimization I 18

Global Value Numbering

Issue

Need to handle control flow

SSA form is helpful

Approaches to computing congruence classes

Pessimistic

Assume no variables are congruent (start with n classes)

 Iteratively coalesce classes that are determined to be congruent

Optimistic

Assume all variables are congruent (start with one class)

 Iteratively partition variables that contradict assumption

Slower but better results

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 10

February 23, 2015 Reuse Optimization I 19

Pessimistic Global Value Numbering

Idea

 Initially each variable is in its own congruence class

Consider each assignment statement s (reverse postorder in CFG)

Update LHS value number with hash of RHS

 Identical value number  congruence

Why reverse postorder?

Ensures that when we consider an assignment statement, we have already

considered definitions that reach the RHS operands

a

b

ec f

d

Postorder: d, c, e, b, f, a

February 23, 2015 Reuse Optimization I 20

Complication

Recall our basic assumption

 If x and y are congruent then f(x) and f(y) are congruent

Problem

This assumption is not true for -functions

Solution: Label -functions with join point

a’= a

b’= b

x = f(a ,b)

y = f(a’,b’)

x and y are

congruent

a1 & b1 congruent?

a2 & b2 congruent?

a3 & b3 congruent?

a1 = x1 a2 = y1

a3 = (a1,a2)

b1 = x1 b2 = y1

b3 = (b1,b2)n m
n m

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 11

February 23, 2015 Reuse Optimization I 21

Algorithm

for each assignment of the form: “x = f(a,b)”

ValNum[x]  UniqueValue()

for each assignment of the form: “x = f(a,b)” (in reverse postorder)

ValNum[x]  Hash(f  ValNum[a]  ValNum[b])

w1 = b1
x1 = b1

w3 = ϕ(w1,w2)
x3 = ϕ(x1,x2)
y1 = w3+i1
z1 = x3+i1

i1 = 1 a1 #1

b1 #2

i1 #3

w1 #4

x1 #5

w2 #6

x2 #7

w3 #8

x3 #9

y1 #10

z1 #11

#2

#2

#1
#1

n(#2,#1)  #12

n(#2,#1)  #12

+(#12,#3) #13

+(#12,#3) #13

w2 = a1
x2 = a1

February 23, 2015 Reuse Optimization I 22

Snag!

Problem

Our algorithm assumes that we consider operands before variables that

depend upon it

Can’t deal with code containing loops!

Solution

 Ignore back edges

Make conservative (worst case) assumption for previously unseen

variable (i.e., assume its in its own congruence class)

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 12

February 23, 2015 Reuse Optimization I 23

Optimistic Global Value Numbering

Idea

 Initially all variables in one congruence class

Split congruence classes when evidence of non-congruence arises

Variables that are computed using different functions

Variables that are computed using functions with non-congruent

operands

February 23, 2015 Reuse Optimization I 24

Splitting

Initially

Variables computed using the same function are placed in the same class

Iteratively

Split classes when corresponding

operands are in different classes

Example: Suppose that a1 and c1 are

congruent, but e1 is congruent to neither

x1 = f(a1,b1)

. . .

y1 = f(c1,d1)

. . .

z1 = f(e1,f1)

x1 y1 z1

P

a1 c1

Q

P’

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 13

February 23, 2015 Reuse Optimization I 25

x1 y1 z1

P

P \1 Q P /1 Q

Splitting (cont)

Definitions

Suppose P and Q are sets representing congruence classes

Q splits P for each i into two sets

P \i Q contains variables in P whose ith operand is in Q

P /i Q contains variables in P whose ith operand is not in Q

Q properly splits P if neither resulting set is empty

x1 = f(a1,b1)

. . .

y1 = f(c1,d1)

. . .

z1 = f(e1,f1)

x1 y1 z1 a1 c1

Q

February 23, 2015 Reuse Optimization I 26

Algorithm

worklist 

for each function f

Cf 

for each assignment of the form “x = f(a,b)”

Cf  Cf  { x }

worklist  worklist  {Cf}

CC  CC  {Cf}

while worklist ≠ 

Delete some D from worklist

for each class C properly split by D (at operand i)

CC  CC – C

worklist  worklist – C

Create new congruence classes Cj {C \i D} and Ck {C /i D}

CC  CC  Cj  Ck

worklist  worklist  Cj  Ck

Note: see paper for optimization

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 14

February 23, 2015 Reuse Optimization I 27

Example

x0 = 1

y0 = 2

x1 = x0+1

y1 = y0+1

z1 = x0+1

S0 {x0}

S1 {y0}

S2 {x1,y1,z1}

S3 {x1,z1}

S4 {y1}

SSA code Congruence classes

Worklist: S0={x0}, S1={y0}, S2={x1,y1,z1}, S3={x1,z1}, S4={y1}

S0 psplit S0? S0 psplit S1? S0 psplit S2? yes!

S2 \1 S0 = {x1,z1} = S3

S2 /1 S0 = {y1} = S4

no no

February 23, 2015 Reuse Optimization I 28

Comparing Optimistic and Pessimistic

Differences

Handling of loops

Pessimistic makes worst-case assumptions on back edges

Optimistic requires actual contradiction to split classes

w0 = 5

x0 = 5

w1=ϕ(w0,w2)
x1=ϕ(x0,x2)
w2 = w1+1

x2 = x1+1

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 15

February 23, 2015 Reuse Optimization I 29

Single global result

Variables correspond to values

No data flow analysis

Optimistic: Iterate over congruence classes, not CFG nodes

Pessimistic: Visit each assignment once

-functions

Make data-flow merging explicit

Treat like normal functions

Role of SSA

a = b

. . .

a = c

. . .

a = d

a1 = b

. . .

a2 = c

. . .

a3 = d

a not congruent

to anything

Congruence classes:

{a1,b}, {a2,c},{a3,d}

February 23, 2015 Reuse Optimization I 30

Next Time

Lecture

More reuse optimizations

