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Loop Invariant Code Motion

Last Time

SSA

Today

Loop invariant code motion

Reuse optimization

Next Time

More reuse optimization

Common subexpression elimination

Partial redundancy elimination
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Identifying Loop Invariant Code

Motivation

Avoid redundant computations

Example

w = . . .

y = . . .

z = . . .

L1: x = y + z 

L1: v = w + x

. . .

if . . . goto L1

Everything that x depends upon is

computed outside the loop, i.e., all 

defs of y and z are outside of the

loop, so we can move x = y + z

outside the loop

What happens once we move that

statement outside the loop?
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Algorithm for Identifying Loop Invariant Code

Input: A loop L consisting of basic blocks.  Each basic block contains a sequence of  

RTL instructions.  We assume ud-chains exist.

Output: The set of instructions that compute the same value each time through the 

loop

Informal Algorithm:

1. Mark “invariant” those statements whose operands are either

– Constant

– Have all reaching definitions outside of L

2. Repeat until a fixed point is reached: mark “invariant” those unmarked statements 

whose operands are either

– Constant

– Have all reaching definitions outside of L

– Have exactly one reaching definition and that definition is in the set marked 

“invariant”

Is this last condition too strict?  
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Algorithm for Identifying Loop Invariant Code (cont)

Is the Last Condition Too Strict?

No

 If there is more than one reaching definition for an operand, then neither 

one dominates the operand

 If neither one dominates the operand, and if at least one is inside the loop, 

then the value can vary depending on the control path taken, so the value 

is not loop invariant

x = c1 x = c2

...= x

Invariant
statements
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Code Motion

What’s the Next Step?

Do we simply move the “invariant” statements outside the loop?

No, we need to make sure that we don’t change the dominance relations 

involving any invariant statement

Three conditions must be met.  For some statement 

s:     x = y + z

1. The block containing s dominates all loop exits

2. No other statement in the loop assigns to x

3. The block containing s dominates all uses of x in the loop

Examples?
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Example 1

Condition 1 is needed 

 If the block containing s does not dominate all exits, we might assign to x

when we’re not supposed to

if u<v goto B3

x = 2
u = u+1

v = v – 1

if v<9 goto B5

x = 1

j = x

B1

B5

B4

B2

B3

x=2 is loop invariant, but B3 does 

not dominate B4, the exit node, so 

moving x=2 would change the 

meaning of the loop for those cases 

where B3 is never executed

Can we move x=2 outside the loop? 
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B2 dominates the exit so condition 1 

is satisfied, but code motion will set 

the value of x to 2 if B3 is ever 

executed, rather than letting it vary 

between 2 and 3.

Example 2

Condition 2 is Needed

 If some other statement in the loop assigns x, the movement of the 

statement may cause some statement to see the wrong value

Can we move x=3 outside the loop? 

x = 3
if u<v goto B3

x = 2
u = u+1

v = v – 1

if v<9 goto B5

x = 1

j = x

B1

B2

B5

B4

B3
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Conditions 1 and 2 are met, but the 

use of x in block B2 can be reached 

from a different def, namely x=1

from B1.

If we were to move x=4 outside the 

loop, the first iteration through the 

loop would print 4 instead of 1

Example 3

Condition 3 is Needed

 If the block containing s does not dominate all uses of x in the loop, we 

might not assign the correct value of x

Can we move x=4 outside the loop? 

print x
x = 4

if u<v goto B3

u = u+1

v = v – 1

if v<9 goto B5

x = 1

j = x

B1

B2

B3

B5

B4
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Loop Invariant Code Motion Algorithm

Input: A loop L with ud-chains and dominator information

Output: A modified loop with a preheader and 0 or more statements moved to

the preheader

Algorithm:

1. Find loop-invariant statements s, which defines some variable  x

2. For each statement s defining x found in step 1, move s to preheader if:

a. s is in a block that dominates all exits of L,

b. x is not defined elsewhere in L, and

c. s is in a block that dominates all uses of x in L

Are any other conditions necessary?
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Loop Invariant Code Motion Algorithm (cont)

Profitability

Can loop invariant code motion ever increase the running time of the 

program?

Can loop invariant code motion ever increase the number of instructions 

executed?

Before transformation, s is executed at least once (condition 2a)

After transformation, s is executed exactly once

Relaxing Condition 1

 If we’re willing to sometimes do more work: Change the condition to

a. The block containing s either dominates all loop exits, or x is dead   

after the loop
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Alternate Approach to Loop Invariant Code Motion

Division of labor

Move all invariant computations to the preheader and assign them to 

temporaries

Use the temporaries inside the loop 

Rely on Copy Propagation to remove unnecessary assignments

Benefits

Much simpler:  Fewer cases to handle
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print x
x = 4

if u<v goto B3

u = u+1

v = v – 1

if v<9 goto B5

x = 1

j = x

B1

B5

B4

B2

B3

Example 3 Revisited

Using the alternate approach

Move the invariant code outside the loop

Use a temporary inside the loop

print x
x = t

if u<v goto B3

u = u+1

v = v – 1

if v<9 goto B5

x = 1

t = 4

j = x

B1

B5

B4

B2

B3
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Lessons

Why did we study loop invariant code motion?

Loop invariant code motion is an important optimization

Because of control flow, it’s more complicated than you might think

The notion of dominance is useful in reasoning about control flow

Division of labor can greatly simplify the problem
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Reuse Optimization

Idea

Eliminate redundant operations in the dynamic execution of instructions

How do redundancies arise?

Sequences of similar operations

Multiple array index calculations

Method lookup

Lightning frequently strikes twice

Types of reuse optimization

Value numbering

Common subexpression elimination

Partial redundancy elimination
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Value Numbering

Idea

Partition program variables into congruence classes

All variables in the same congruence class have the same value

Congruence

 If x and y are congruent then f(x) and f(y) are congruent

a’= a

b’= b

x = f(a ,b)

y = f(a’,b’)

x and y are 

congruent
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Local Value Numbering

Build congruence classes in program order

Map each variable, expression, and constant to some unique number, 

which represents a congruence class

When we encounter a variable, expression or constant, see if it’s already 

been mapped to a number

 If so, use the value for that number

 If not, map to a new number

Example

a := b + c

d := b

b := a

e := d + c

b 

c 

b + c is 

a  3 

d 

d + c is 

e  



a

What is redundant here?
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Local Value Numbering (cont)

Temporaries may be necessary

a := b + c

a := b

d := b + c

b 

c 

b + c is 

a  3 

b + c is  

d  

t := b + c

a := b

d := b + c

b 

c 

b + c is 

a  3 

b + c is 

d  



t

a

Alternatively
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Global Value Numbering

Issue

Need to handle control flow

SSA form is helpful

Approaches to computing congruence classes

Pessimistic

Assume no variables are congruent (start with n classes)

 Iteratively coalesce classes that are determined to be congruent

Optimistic

Assume all variables are congruent (start with one class)

 Iteratively partition variables that contradict assumption

Slower but better results
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Pessimistic Global Value Numbering

Idea

 Initially each variable is in its own congruence class

Consider each assignment statement s (reverse postorder in CFG)

Update LHS value number with hash of RHS

 Identical value number  congruence

Why reverse postorder?

Ensures that when we consider an assignment statement, we have already 

considered definitions that reach the RHS operands

a

b

ec f

d

Postorder:   d, c, e, b, f, a
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Complication

Recall our basic assumption

 If x and y are congruent then f(x) and f(y) are congruent

Problem

This assumption is not true for -functions

Solution:  Label -functions with join point

a’= a

b’= b

x = f(a ,b)

y = f(a’,b’)

x and y are 

congruent

a1 & b1 congruent?

a2 & b2 congruent?

a3 & b3 congruent?

a1 = x1 a2 = y1

a3 = (a1,a2)

b1 = x1 b2 = y1

b3 = (b1,b2)n m
n m
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Algorithm

for each assignment of the form: “x = f(a,b)”

ValNum[x]  UniqueValue()

for each assignment of the form: “x = f(a,b)”  (in reverse postorder)

ValNum[x]  Hash(f  ValNum[a]  ValNum[b])

w1 = b1
x1 = b1

w3 = ϕ(w1,w2)
x3 = ϕ(x1,x2)
y1 = w3+i1
z1 = x3+i1

i1 = 1 a1 #1

b1 #2

i1 #3

w1 #4

x1 #5

w2 #6

x2 #7

w3 #8

x3 #9

y1 #10

z1 #11

#2

#2

#1
#1

n(#2,#1)  #12

n(#2,#1)  #12

+(#12,#3) #13

+(#12,#3) #13

w2 = a1
x2 = a1
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Snag!

Problem

Our algorithm assumes that we consider operands before variables that 

depend upon it

Can’t deal with code containing loops!

Solution

 Ignore back edges

Make conservative (worst case) assumption for previously unseen 

variable (i.e., assume its in its own congruence class)
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Optimistic Global Value Numbering

Idea

 Initially all variables in one congruence class

Split congruence classes when evidence of non-congruence arises

Variables that are computed using different functions

Variables that are computed using functions with non-congruent 

operands
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Splitting

Initially

Variables computed using the same function are placed in the same class

Iteratively

Split classes when corresponding 

operands are in different classes

Example: Suppose that a1 and c1 are 

congruent, but e1 is congruent to neither

x1 = f(a1,b1)

. . .

y1 = f(c1,d1)

. . .

z1 = f(e1,f1)

x1 y1 z1

P

a1 c1

Q

P’
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x1 y1 z1

P

P \1 Q P /1 Q

Splitting (cont)

Definitions

Suppose P and Q are sets representing congruence classes

Q splits P for each i into two sets

P \i Q contains variables in P whose ith operand is in Q

P /i Q contains variables in P whose ith operand is not in Q

Q properly splits P if neither resulting set is empty

x1 = f(a1,b1)

. . .

y1 = f(c1,d1)

. . .

z1 = f(e1,f1)

x1 y1 z1 a1 c1

Q
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Algorithm

worklist 

for each function f

Cf 

for each assignment of the form “x = f(a,b)”

Cf  Cf  { x }

worklist  worklist  {Cf}

CC  CC  {Cf}

while worklist ≠ 

Delete some D from worklist

for each class C properly split by D (at operand i)

CC  CC – C

worklist  worklist – C

Create new congruence classes Cj {C \i D} and Ck {C /i D}

CC  CC  Cj  Ck

worklist  worklist  Cj  Ck

Note: see paper for optimization
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Example

x0 = 1

y0 = 2

x1 = x0+1

y1 = y0+1

z1 = x0+1

S0 {x0}

S1 {y0}

S2 {x1,y1,z1}

S3 {x1,z1}

S4 {y1}

SSA code Congruence classes

Worklist: S0={x0}, S1={y0}, S2={x1,y1,z1}, S3={x1,z1}, S4={y1}

S0 psplit S0? S0 psplit S1? S0 psplit S2? yes! 

S2 \1 S0 = {x1,z1} = S3

S2 /1 S0 = {y1} = S4

no no
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Comparing Optimistic and Pessimistic 

Differences

Handling of loops

Pessimistic makes worst-case assumptions on back edges

Optimistic requires actual contradiction to split classes

w0 = 5

x0 = 5

w1=ϕ(w0,w2)
x1=ϕ(x0,x2)
w2 = w1+1

x2 = x1+1
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Single global result

Variables correspond to values

No data flow analysis

Optimistic: Iterate over congruence classes, not CFG nodes

Pessimistic: Visit each assignment once

-functions

Make data-flow merging explicit

Treat like normal functions

Role of SSA

a = b

. . .

a = c

. . .

a = d

a1 = b

. . .

a2 = c

. . .

a3 = d

a not congruent 

to anything

Congruence classes:

{a1,b}, {a2,c},{a3,d}
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Next Time

Lecture

More reuse optimizations


