
Calvin Lin

The University of Texas at Austin

CS380 C Compilers 1

February 25, 2015 Reuse Optimization II 1

Loop Invariant Code Motion

Last Time

Loop invariant code motion

Value numbering

Today

Finish value numbering

More reuse optimization

Common subexpression elimination

Partial redundancy elimination

Next Time

Something special

February 25, 2015 Reuse Optimization II 2

Comparing Optimistic and Pessimistic Approaches

Differences

Handling of loops

Pessimistic makes worst-case assumptions on back edges

Optimistic requires actual contradiction to split classes

w0 = 5

x0 = 5

w1=ϕ(w0,w2)
x1=ϕ(x0,x2)
w2 = w1+1

x2 = x1+1

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 2

February 25, 2015 Reuse Optimization II 3

Single global result

Variables correspond to values

No data flow analysis

Optimistic: Iterate over congruence classes, not CFG nodes

Pessimistic: Visit each assignment once

f-functions

Make data-flow merging explicit

Treat like normal functions

Role of SSA

a = b

. . .

a = c

. . .

a = d

a1 = b

. . .

a2 = c

. . .

a3 = d

a not congruent

to anything

Congruence classes:

{a1,b}, {a2,c},{a3,d}

February 25, 2015 Reuse Optimization II 4

Reuse Optimization

More reuse optimization

Common subexpression elimination (CSE)

Partial redundancy elimination (PRE)

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 3

February 25, 2015 Reuse Optimization II 5

Common Subexpression Elimination

Idea

Find common subexpressions whose range spans the same basic blocks

and eliminates unnecessary re-evaluations

Leverage available expressions

Recall available expressions

An expression (e.g., x+y) is available at node n if every path from the

entry node to n evaluates x+y, and there are no definitions of x or y after

the last evaluation along that path

Strategy

 If an expression is available at a point where it is evaluated, it need not be

recomputed

February 25, 2015 Reuse Optimization II 6

i := i + 1

t := 4 * i

b := t

2

i := j

t := 4 * i

a := t

1

i := i + 1

b := 4 * i

i := j

a := 4 * i

CSE Example

2

1

3 c := 4 * i 3 c := t

Will value numbering find this redundancy?

– No; value numbering operates on values

– CSE operates on expressions

Is CSE strictly better than value numbering?

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 4

February 25, 2015 Reuse Optimization II 7

Another CSE Example

Before CSE
c := a + b

d := m & n

e := b + d

f := a + b

g := -b

h := b + a

a := j + a

k := m & n

j := b + d

a := -b

if m & n goto L2

Summary

11 instructions

12 variables

9 binary operators

After CSE
t1 := a + b

c := t1

t2 := m & n

d := t2

t3 := b + d

e := t3

f := t1

g := -b

h := t1

a := j + a

k := t2

j := t3

a := -b

if t2 goto L2

Summary

14 instructions

15 variables

4 binary operatorsWhich is better?

February 25, 2015 Reuse Optimization II 8

CSE Approach 1

Idea

 If block b uses expression e, and e is available

Search backward from b (in CFG) to find the statement on each path that

most recently generates e

 Insert copy to n after generators

Replace e with n

Is this a good approach?

...x+y...

...x+y...

... x+y...b

x and y not defined

along yellow edges

e

entry

...x+y...

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 5

Notation

Avail(b) is the set of expressions available at block b

Gen(b) is the set of expressions generated and not killed at block b

If we use e and e Avail(b)

Allocate a new name n

Search backward from b (in CFG) to find statement on each path that most
recently generates e

 Insert copy to n after generators

Replace e with n

Problems?

Backward search for each use is expensive

Generates unique name for each use

 |names| |Uses| > |Avail|

Each generator may have many copies

b:

Example

a := b + c

t1 := a

t2 := a

b: e := b + c

f := b + c

February 25, 2015 Reuse Optimization II 9

CSE Approach 1 (cont)

February 25, 2015 Reuse Optimization II 10

Idea

Reduce number of copies by assigning a unique name to each unique

expression

Summary

e Name[e] = unassigned

 if we use e and e Avail(b)

 if Name[e]=unassigned, allocate new name n and Name[e] = n

else n = Name[e]

Replace e with n

 In a subsequent traversal of block b, if e Gen(b) and Name[e]

unassigned, then insert a copy to Name[e] after the generator of e

Problem

Requires two passes over the code

May still insert unnecessary copies

CSE Approach 2

uses

defs

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 6

February 25, 2015 Reuse Optimization II 11

CSE Approach 3

Idea

Don’t worry about temporaries

Create one temporary for each unique expression

Let subsequent pass eliminate unnecessary temporaries

At an evaluation of e

Hash e to a name, n, in a table

 Insert an assignment of e to n

At a use of e in b, if e Avail(b)

Lookup e’s name in the hash table (call this name n)

Replace e with n

Problems

 Inserts more copies than approach 2 (but extra copies are dead)

Still requires two passes (2nd pass is very general)

Comparing the Three Approaches

Approach 1 and Approach 2

Make decisions about when to insert temporaries

Approach 1:

 Insert temporaries as we look for redundant expressions

One temporary per use of redundant expression

Approach 2

Use a second pass to insert temporaries

Approach 3

Don’t worry about temporaries!

February 25, 2015 Reuse Optimization II 12

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 7

February 25, 2015 Reuse Optimization II 13

Extraneous Copies

Extraneous copies degrade performance

Let other transformations deal with them

Dead code elimination

Copy propagation

Greatly simplifies CSE

Coalesce assignments to t1 and t2 into a single statement

t1 := b + c

t2 := t1

February 25, 2015 Reuse Optimization II 14

Loop Invariant Code Motion

Last Time

Loop invariant code motion

Value numbering

Today

Finish value numbering

More reuse optimization

Common subexpression elimination

Partial redundancy elimination

Next Time

Something special

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 8

February 25, 2015 Reuse Optimization II 15

Partial Redundancy

An expression (e.g., x+y) is partially redundant at node n if some path

from the entry node to n evaluates x+y, and there are no definitions of x

or y between the last evaluation of x+y and n

Question

Can we remove partially redundant code?

Yes. It’s a three step process

Partial Redundancy Elimination (PRE)

n x + y

x + y

February 25, 2015 Reuse Optimization II 16

Partial Redundancy

An expression (e.g., x+y) is partially redundant at node n if some path

from the entry node to n evaluates x+y, and there are no definitions of x

or y between the last evaluation of x+y and n

Three Steps

Discover partially redundant expressions

Convert them to fully redundant expressions

Remove the redundancy

Is this beneficial?

PRE subsumes CSE and loop invariant code motion

n x + y

x + yx + y

Partial Redundancy Elimination (PRE)

n x + y

x + y

n

x + yx + y

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 9

February 25, 2015 Reuse Optimization II 17

...

a := b + c

Loop Invariance Example

PRE removes loop-invariant code

An invariant expression is partially redundant

PRE converts this partial redundancy to full redundancy

PRE removes the redundancy

Example

2

1 x := y * z

...

a := b + c

2

1

x := y * z

a := b + c

...2

1

x := y * z

a := b + c

February 25, 2015 Reuse Optimization II 18

insert

computation

Implementing PRE

Big picture

Use local properties (available and anticipated) to determine where

redundancy can be created within a basic block

Use global analysis (data-flow analysis) to discover where partial

redundancy can be converted to full redundancy

 Insert code and remove redundant expressions

delete computation

expr

expr

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 10

February 25, 2015 Reuse Optimization II 19

Local Properties

An expression is locally transparent in block b if its operands are not

modified in b

An expression is locally available in block b if it is computed at least once

and its operands are not modified after its last computation in b

An expression is locally anticipated if it is computed at least once and its

operands are not modified before its first evaluation

Example

a := b + c

d := a + e

Questions?

Transparent:

Available:

Anticipated:

{b + c}

{b + c, a + e}

{b + c}

February 25, 2015 Reuse Optimization II 20

Local Properties (cont)

How are these properties useful?

They tell us where we can introduce redundancy

 In which direction does anticipation flow?

The expression can be redundantly

evaluated anywhere after its last

evaluation in the block

The expression can be redundantly

evaluated anywhere in the block
Transparent

Available
a = b + c

The expression can be redundantly

evaluated anywhere before its first

evaluation in the block

Anticipated a = b + c

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 11

Example

For each block in the following figure, what are the local properties with

respect to expr?

Where can e be computed redundantly?

February 25, 2015 Reuse Optimization II 21

Local Properties (cont)

expr

expr

Big picture

Use local properties (available and anticipated) to determine where

redundancy can be created within a basic block

Use global analysis (data-flow analysis) to discover where partial

redundancy can be converted to full redundancy

 Insert code and remove redundant expressions

February 25, 2015 Reuse Optimization II 22

insert

computation

Implementing PRE

expr

expr delete computation

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 12

Global Analysis for PRE

We’ll need three global analyses

Globally available

Partially available

Globally anticipated

February 25, 2015 Reuse Optimization II 23

February 25, 2015 Reuse Optimization II 24

Intuition

Globally available is the same as Available Expressions

 If e is globally available at p, then an evaluation at p will create redundancy

along all paths leading to p

Data-flow Equations

available_in[n] = ppred[n] available_out[p]

available_out[n] = locally_available[n]

(available_in[n] transparent[n])

Globally Available

expr

p

expr

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 13

February 25, 2015 Reuse Optimization II 25

(Globally) Partially Available

Intuition

An expression is partially available if it is available along some path

 If e is partially available at p, then a path from the entry node to p such

that the evaluation of e at p would give the same result as the previous

evaluation of e along the path
expr

p

partially_available_in[n] = ppred[n] partially_available_out[p]

partially_available_out[n] = locally_available[n]

(partially_available_in[n] transparent[n])

Data-flow Equations?

February 25, 2015 Reuse Optimization II 26

Globally Anticipated

Intuition

 If e is globally anticipated at p, then adding an evaluation of e at p will

make e redundant along all paths from p, ie, you’re expecting e to be

computed in the future

Data-flow Equations?

anticipated_out[n] = ssucc[n] anticipated_in[s]

anticipated_in[n] = locally_anticipated[n]

(anticipated_out[n] transparent[n])

expr

p

exprexpr

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 14

Big picture

Use local properties (available and anticipated) to determine where

redundancy can be created within a basic block

Use global analysis (data-flow analysis) to discover where partial

redundancy can be converted to full redundancy

 Insert code and remove redundant expressions

February 25, 2015 Reuse Optimization II 27

insert

computation

Implementing PRE

expr

expr delete computation

February 25, 2015 Reuse Optimization II 28

Global Possible Placement

Goal

Convert partial redundancies to full redundancies

Possible Placement is a backwards analysis that identifies locations

where such conversions can take place

 e ppin[n] can be placed at entry of n

 e ppout[n] can be placed at exit of n

Start with locally

anticipated expressions

Push Possible Placement backwards as far as possible

How?

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 15

February 25, 2015 Reuse Optimization II 29

Global Possible Placement (cont)

Data-flow Equations

ppout[n] = ssucc[n] ppin[s]

ppin[n] = anticipated_in[n] partially_available_in[n]

(locally_anticipated[n] (ppout[n] transparent[n]))

The placement will create a redundancy

Will turn partial redundancy into full redundancy

Middle of chain

This block is at the

beginning of a chain

on every edge out of the block

How do we ensure that it is redundant on every edge out of the block?

February 25, 2015 Reuse Optimization II 30

Updating Blocks

Intuition

Perform insertion at tops of the chain

Perform deletion at the bottoms of the chain

Data-flow Equations

 insert[n] = ppout[n]

 (ppin[n] transparent[n])

available_out[n]

delete[n] = ppin[n] locally_anticipated[n]

Don’t insert it where it’s fully redundant

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 16

February 25, 2015 Reuse Optimization II 31

Updating Blocks (cont)

Intuition

Perform insertion at tops of the chain

Perform deletion at the bottoms of the chain

Functions

 insert[n] = ppout[n]

 (ppin[n] transparent[n])

available_out[n]

delete[n] = ppin[n] locally_anticipated[n]

 ppout[n] ? No

Can we omit this clause?

February 25, 2015 Reuse Optimization II 32

Exercise

B1: a := b + c B2: b := b + 1

B3: a := b + c

B1 B2 B3

transparent

locally_available

locally_anticipated

available_in

available_out

partially_available_in

partially_available_out

anticipated_out

anticipated_in

ppout

ppin

insert

delete

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 17

February 25, 2015 Reuse Optimization II 33

Comparing Redundancy Elimination

Value numbering

Examines values not expressions

Symbolic

Knows nothing about algebraic properties (1+x = x+1)

CSE

Examines expressions

PRE

Examines expressions

Subsumes CSE and loop invariant code motion

Simpler implementations are now available

Constant propagation

Requires that values be statically known

February 25, 2015 Reuse Optimization II 34

PRE Summary

What’s so great about PRE?

A modern optimization that subsumes earlier ideas

Composes several simple data-flow analyses to produce a powerful result

Finds earliest and latest points in the CFG at which an expression is

anticipated

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 18

February 25, 2015 Reuse Optimization II 35

Next Time

Lecture

Pointer analysis

Assignment3

Now available– start early!

