
3/23/2015

1

Domain-Specific Analysis 1

Domain-Specific Analysis

Last time

Context-sensitive pointer analysis

Today

A break from pointer analysis

Exploiting domain-specific information in analysis and optimization

March 23, 2015

Domain-Specific Analysis 2

Motivation

Two different views of software

Compiler’s view

Abstractions: numbers, pointers, loops

Operators: +, -, *, ->, []

Programmer’s view

Abstractions: files, matrices, locks, graphics

Operators: read, factor, lock, draw

 In high-level languages even language constructs can have this problem.

This discrepancy causes a problem...

March 23, 2015

3/23/2015

2

Domain-Specific Analysis 3

Find the Error – Part 1

Example:

Error: case outside of switch statement

 Part of the language definition

 Error reported at compile time

 Compiler indicates the location and nature of error

switch (var_83) {

case 0: func_24();

break;

case 1: func_29();

break;

}

case 2: func_78();!

March 23, 2015

Domain-Specific Analysis 4

Find the Error – Part 2

Example:

Improper call to libfunc_38

 Syntax is correct – no compiler message

 Fails at run-time

Problem: what does libfunc_38 do?

This is how compilers view reusables

struct __sue_23 * var_72;

char var_81[100];

var_72 = libfunc_84(__str_14, __str_65);

libfunc_44(var_72);

libfunc_38(var_81, 100, 1, var_72);!

March 23, 2015

3/23/2015

3

Domain-Specific Analysis 5

Find the Error – Part 3

Example:

Improper call to fread() after fclose()

The names reveal the mistake

No traditional compiler reports this error

Run-time system: how does the code fail?

Code review: rarely this easy to spot

FILE * my_file;

char buffer[100];

my_file = fopen(“my_data”, “r”);

fclose(my_file);

fread(buffer, 100, 1, my_file);!

March 23, 2015

Domain-Specific Analysis 6

Missed Opportunities

Libraries encapsulate domain-specific semantics

This semantic information provides many opportunities for error checking

This semantic information provides many opportunities for optimization

This information is unavailable to conventional compilers

Libraries are domain-specific languages

Second-class languages

The implications are significant . . .

March 23, 2015

3/23/2015

4

Domain-Specific Analysis 7

The Choice: Abstraction vs. Efficiency

Clean

Efficient

Library

Layered

Software

March 23, 2015

Domain-Specific Analysis 8

Outline

The Problem

Domain-specific optimization

PLAPACK library example

Domain-specific program checking

Format String Vulnerability example

Results

March 23, 2015

3/23/2015

5

Domain-Specific Analysis 9

The Challenge

Software libraries offer many benefits

The challenge facing libraries

Different clients have different needs

No single implementation is ideal for all situations

Real World Analogy: The Spork (really a Spofe or something like that)

spoon part

fork part

knife part

March 23, 2015

Domain-Specific Analysis 10

Interface Bloat

Common approach

Create lots of specialized routines

Let user choose the appropriate routine

March 23, 2015

3/23/2015

6

Domain-Specific Analysis 11

Normal Sync Ready Buffered

Normal

Nonblock

Persistent

12 ways (modes) to perform point-to-point communication:

Interface Bloat in MPI

MPI_Send

MPI_Send_init MPI_Ssend_init

MPI_Isend

MPI_Rsend_init MPI_Bsend_init

MPI_Ssend

MPI_Issend MPI_Irsend

MPI_Rsend MPI_Bsend

MPI_Ibsend

Short term problems:

Complex interface

Specialized routines can be difficult to use

March 23, 2015

Domain-Specific Analysis 12

Long term problems:

Interface Bloat in MPI

No performance portability

Application becomes less general

March 23, 2015

3/23/2015

7

Domain-Specific Analysis 13

Problems with Interface Bloat

Premature optimization

Requires manual changes to application source

Embeds optimizations into application source

Long Term Problems

Complicates maintenance

Defeats portability

March 23, 2015

Domain-Specific Analysis 14

How Can We Avoid Interface Bloat?

Libraries are domain-specific languages

No new syntax

No compiler support

Libraries encapsulate domain-specific semantics

This semantic information provides many opportunities for analysis and

optimization

Make this information available to compilers

c = a * b; /* language primitive */

bnMultiply(&c,a,b)/* library call*/

March 23, 2015

3/23/2015

8

Domain-Specific Analysis 15

Domain-specific information

Library

Application

Our Solution: The Broadway Compiler [Guyer and Lin’99]

Broadway

Compiler

Integrated

App and

Library

Annotations

Extends

power of compilers to

library operations

Customizes the library

for the application

March 23, 2015

Domain-Specific Analysis 16

Library

Application

Separation of Concerns

Broadway

Compiler

Integrated

App and

Library

Annotations

Domain Expert

Compiler writer

Mortal programmers

March 23, 2015

3/23/2015

9

Domain-Specific Analysis 17

The applications programmer does not see the annotations

Library

Application

Separation of Concerns

Broadway

Compiler

Integrated

App and

Library

Annotations

Hard parts are reused many times

One compiler for all libraries

Hard parts are hidden from the mortals

One set of annotations per library

March 23, 2015

Domain-Specific Analysis 18

Outline

The Problem

Domain-specific optimization

PLAPACK library example

Domain-specific program checking

Format String Vulnerability example

Results

March 23, 2015

3/23/2015

10

Domain-Specific Analysis 19

PLAPACK

Parallel Linear Algebra Package

Developed by van de Geijn, et al. [van de Geijn’97]

Developed for high performance

 40,000 lines of C code

Introduction to PLAPACK

Applications: LU, QR, Cholesky, ...

Parallel BLAS 3

Parallel BLAS 2

Parallel BLAS 1

BLAS3

BLAS2

BLAS1MPIUtils

March 23, 2015

Domain-Specific Analysis 20

Typical PLAPACK Application

while (True) {

PLA_Obj_global_length(ABR, &length);

if (length == 0) break;

PLA_Obj_split_4(ABR, nb, nb, &A11, &A12,

&A21, &A22);

Cholesky(A11);

PLA_Trsm(PLA_SIDE_RIGHT, PLA_LOW_TRIAN,

PLA_TRANS, PLA_NONUNIT_DIAG,

one, A11, A21);

PLA_Syrk(PLA_LOW_TRANS, PLA_NO_TRANS,

minus_one, A21, one, ABR);

}

“views” of the data

March 23, 2015

3/23/2015

11

Domain-Specific Analysis 21

Views in PLAPACK

The notion of views can be used to perform optimizations

Views can have special properties

These properties can be reasoned about by programmers

These properties can be exploited by using special algorithms

These properties cannot be inferred by conventional compilers

local distributed

PLA_Trsm (PLA_SIDE_RIGHT, PLA_LOW_TRIAN,

PLA_TRANS, PLA_NONUNIT_DIAG,

one, A11, A21);

PLA_Trsm_local(PLA_SIDE_RIGHT, PLA_LOW_TRIAN,

PLA_TRANS, PLA_NONUNIT_DIAG,

one, A11, A21);

March 23, 2015

Domain-Specific Analysis 22

Given the original program

Compiler analyzes the flow

of view information through

the program

Compiler determines when

specialized routines can be

used

View-Based Optimizations

PLA_Obj_view_all(A, &ABR)

while (True) {

PLA_Obj_length(ABR, &b);

b = min(b, nb);

if (b==0) break;

PLA_Obj_split_4(ABR,b,b,&A11..

&A21, &ABR);

Cholesky(A11);

PLA_Trsm(PLA_SIDE_RIGHT, …)

PLA_Syrk(PLA_LOW_TRIAN, …)

}

PLA_Trsm() and PLA_Syrk() are

overly general– they work for any

distribution

March 23, 2015

3/23/2015

12

Domain-Specific Analysis 23

Specialization Has Many Benefits

If a View is empty

PLA_Obj_view_all(A, &A11)

do {

PLA_Trsm(A11);

PLA_Obj_len(A11, &len);

len = min(length, nb);

PLA_Obj_split_4(A11,len,...);

} while (len>0)

This becomes a no-op

This loop disappears

This becomes dead code

The interaction of optimizations produces many benefits

March 23, 2015

Domain-Specific Analysis 24

Define special properties

Views can be distributed or local

Specify how library routines affect these properties

Which routines create views, shrink views, etc.?

Specify when specialized routines can be used

How can view information be used to invoke specialized routines?

What Information is Needed?

March 23, 2015

3/23/2015

13

Domain-Specific Analysis 25

Annotations specify analysis problems

Define a simple flow value – like an enumeration

The lattice structure and meet function are implied

Define transfer functions for library routines

Library-specific Analysis

procedure Copy_matrix(src, dest)

{

analyze Distribution {

if (src is-exactly Local) { dest <- Local }

}

}

property Distribution : { Distributed,

Local,

Panel { Row, Col }} LocalDistributedPanel

Row Col

()

()





March 23, 2015

Domain-Specific Analysis 26

Specifying Optimizations

Annotations define specializations

Replace a library call based on analysis results

Traditional optimizations extended to libraries

Constant propagation

Dead-code elimination

procedure ParallelMatrixMultiply(A)

{

when (Distribution : A is-exactly Local)

replace-with %{ SeqMatrixMultiply($A); }%

}

March 23, 2015

3/23/2015

14

Domain-Specific Analysis 27

Basic annotations convey data dependence information

Defs and uses of procedure parameters

Pointer relationships

These annotations are important for describing complex data structures

on_entry {obj-->view};

on_exit {A11-->view11, A12-->view12,

A21-->view21, A22-->view22};

modify {};

access {view};

Dependence Annotations

March 23, 2015

Domain-Specific Analysis 28

The Broadway Compiler has configurable phases

Each phase draws information from the appropriate annotation

How Do We Use This Information?

modify

access

Enablers Specialization
Pointer

Analysis

Abstract

Interpretation

on_exit

on_exit property

analyze
specialize

Annotations

Broadway Compiler
Traditional

Scalar
Optimizations

March 23, 2015

3/23/2015

15

Domain-Specific Analysis 29

Improvement over clean, high quality PLAPACK programs

Does It Work?

0

100

200

300

400

250 750 1500 2500

Problem size

%
 I

m
p

ro
v
em

en
t

Cray T3E

Cholesky

Lyapunov

PLA_Trsm() and

PLA_Gemm() are

specialized for their

specific calling

contexts

Trsm

Cholesky

Lyapunov

Gemm

March 23, 2015

Domain-Specific Analysis 30

 The Gemm algorithm is specialized

A Closer Look at Gemm

0

1000

2000

3000

4000

4 16 36

Number of Processors

M
F

L
O

P
S

Rank K algorithm

PLA_Gemm

Cray T3E

Pipelined Broadcast

Rank K algorithm

PLA_Gemm

 Broadcast is specialized

Scalability is
improved

 MPI_Send is specialized

Asynchronous Send

Pipelined Broadcast

Rank K algorithm

PLA_Gemm

March 23, 2015

3/23/2015

16

Domain-Specific Analysis 31

Should program

at this level

global matrix

operations

matrices + high

level communication

C language

Local

Explicitly
parallel

Global

MPI + local BLAS

C primitives

Optimizing at Multiple Levels

Levels of Abstraction in PLAPACK

global matrix

operations

matrices + high

level communication

C language

Local

Explicitly
parallel

Global

MPI + local BLAS

C primitives

There is great benefit to optimizing at multiple levels of abstraction

PLA_Gemm()

Rank K algorithm

MPI_Send()

Broadway

C compiler

March 23, 2015

Domain-Specific Analysis 32

Ultimate Performance Comparison

Gold standard

Comparison against hand-optimized version written by PLAPACK

development team

Cholesky (3072×3072)

M
F

L
O

P
S

Processors

3000

0

Cholesky (3072 x 3072)

400

Broadway

Guru-optimized

Baseline

March 23, 2015

3/23/2015

17

Domain-Specific Analysis 33

Optimization Summary

How did we improve performance?

We specialized the library code for the specific context of the Cholesky

application

Traditional compilers cannot exploit these opportunities

They are unaware of domain-specific semantics

The specification can be simple

The power is in the compiler mechanisms

Data-flow analysis is a powerful tool

Library

Application
Broadway

Compiler

Integrated

App and

Library

Annotations

March 23, 2015

Domain-Specific Analysis 34

Outline

The Problem

Domain-specific optimization

PLAPACK library example

Domain-specific program checking

Format String Vulnerability example

Results

March 23, 2015

3/23/2015

18

Domain-Specific Analysis 35

Error Detection

Error detection is a significant problem

Code review and testing are tedious and unreliable

Can the compiler help us?

Problem

Errors are often domain-specific

Not errors in the base programming language

Solution

Use Broadway configurable analysis capabilities

March 23, 2015

Domain-Specific Analysis 36

Motivating Example

Format string vulnerability

Well-known error – many CERT advisories

 Improper use of printf() family

Example:

What if the buffer contains “%s”?

What if the buffer is passed to sprintf()?

General solution

Taintedness analysis

Data from untrusted sources is “tainted”

Tainted data may not end up in format string

How do we track this property?

fgets(buffer, size, file);

printf(buffer);

March 23, 2015

3/23/2015

19

Domain-Specific Analysis 37

Previous Solutions– Type Qualifiers [Shankar, et al ’01]

Idea

Add tainted and untainted types to library function signatures

Use type constraint solver to find errors

 Errors are type mismatches

Issues

What is the type of strdup()?

What happens when the value of strings change?

fgets(tainted char *buffer, int size, FILE *f);

printf(untainted char *format, . . .);

March 23, 2015

Domain-Specific Analysis 38

Type qualifier approach

Requires manual intervention to identify context-sensitivity

Problem

Type-based constraints are not context-sensitive

Even a few false positives can be a problem

Results

Program Lines of C Procedures
Known
Errors

Errors
Found

False
Positives

bftpd 1,017 180 1 1 2

muh 5,002 228 1 1 12

cfengine 45,102 700 6 6 5

. . .

March 23, 2015

3/23/2015

20

Domain-Specific Analysis 39

The Broadway Solution

Idea

Track the taintedness of strings using dataflow analysis problem

Modeling format string vulnerabilities

Define a taintedness lattice

Determine the objects that carry the property

Describe how library routines affect the property

 Identify the error conditions

Taintedness Lattice

property Taint : { Tainted { Untainted }}

()

Untainted

Tainted

()





March 23, 2015

Domain-Specific Analysis 40

Any external input is tainted

User input: scanf(), gets()

External values: getenv()

File input: read(), fscanf(), readdir()

Note:

Taintedness is a property of the buffer, not the surface variable

Generating Tainted Data

procedure read(fd, buffer_ptr, size)

{

on_entry { buffer_ptr  buffer }

access { Disk }

modify (buffer }

analyze Taint { buffer <- Tainted }

}

March 23, 2015

3/23/2015

21

Domain-Specific Analysis 41

String manipulation can transmit taintedness

Examples: strdup(), strcpy(), strcat(), sprintf()

Transmitting Taintedness

procedure strcpy(dest, src)

{

on_entry { src  src_string

dest  dest_string

}

access { src_string }

modify { dest_string }

analyze Taint {

if (src_string is-exactly Tainted)

dest_string <- Tainted

if (src_string is-exactly Untainted)

dest_string <- Untainted

}

}

March 23, 2015

Domain-Specific Analysis 42

Test the flow values

Tainted strings are not allowed to be format strings

Examples: printf()family, syslog()

Report the exact location of the problem

The @context token gives the full call stack

Brackets are special tokens that represent the name of the actual argument

procedure syslog(priority, format_ptr, args)

{

on_entry { format_ptr  format

args  arg_contents }

access { format, arg_contents }

report if (Taint : format is-exactly Tainted)

“Error at “ ++ @context ++ “: Argument “

++ [format_ptr] ++ “ is tainted.\n”;

}

Reporting Errors

March 23, 2015

3/23/2015

22

Domain-Specific Analysis 43

Program Checking with Broadway

Benchmarks

Actual programs that were distributed with the bug

Program Lines of C Procedures
Analysis

Time
(min:sec)

Known
Errors

Errors
Found

False
Positives

bftpd 1,017 180 0:01 1 1 0

muh 5,002 228 0:06 1 1 0

cfengine 45,102 700 6:38 6 6 0

named 25,820 444 1:11 1 1 0

lpd 38,174 726 23:57 1 1 0

Run on 2Ghz Pentium 4 with 512 MB RAM

March 23, 2015

Domain-Specific Analysis 44

Open Questions

How else can domain-specific information be useful?

Scheduling and resource management optimizations

Algebraic properties of operations

Optimization of sequences of operations

Machine-specific customization

Can we apply these ideas to object-oriented languages?

Higher cost of encapsulation

Extensible code is an issue

Can we apply these ideas to dynamic optimizations?

March 23, 2015

3/23/2015

23

Domain-Specific Analysis 45

Conclusions: Compiler Perspective

Compilers typically do better with more information

 Increased scope

Peephole  Local  Global  Interprocedural analysis

Dynamic information

Profiling

Dynamic feedback

We’ve introduced a third, orthogonal dimension

Domain-specific information

March 23, 2015

Domain-Specific Analysis 46

Conclusions: Software Design

Generality vs. Performance Tradeoff

Weak assumptions  generality, code reuse

Strong assumptions  good performance

Breaking the tradeoff

Programmers should create software that is general

Let compilers specialize the software for specific contexts

March 23, 2015

3/23/2015

24

Domain-Specific Analysis 47

Conclusions: Software Quality

Improving software quality

To improve the quality software, raise the level of programming

abstraction

To help programmers reason at high levels, provide tools to reason at these

high levels

This idea applies to compilers, debuggers, performance analysis tools, etc.

Clean

Efficient

Library

Layered

Software

March 23, 2015

Domain-Specific Analysis 48

Lecture

Adaptive pointer analysis

Projects

Pre-proposals due tonight

Next Time

March 23, 2015

