
1

1

Client-Driven Pointer

Analysis

Samuel Z. Guyer

Calvin Lin

June 2003

T H E U N I V E R S I T Y O F

T E X A S
A T A U S T I N

2

Security vulnerabilities

 How does remote hacking work?
 Most are not direct attacks (e.g., cracking passwords)

 Idea: trick a program into unintended behavior

 Example:

 Vulnerability: executes any remote command
 What if this program runs as root?

 Clearly domain-specific: sockets, processes, etc.

 Requirement:

int sock;

char buffer[100];

sock = socket(AF_INET, SOCK_STREAM, 0);

read(sock, buffer, 100);

execl(buffer);

Data from an Internet socket should

not specify a program to execute

!

2

3

Detecting vulnerabilities

 What is needed to detect these vulnerabilities?

 Need to define the problem:

 Domain-specific

 Lie outside of the semantics of the C language

 Libraries control all critical system services

 Communication, file access, process control

 Analyze library routines to approximate vulnerability

 Need precise pointer analysis

 Precision can be prohibitively expensive

4

The Broadway Compiler

 Broadway – source-to-source C compiler

Domain-independent compiler mechanisms

 Annotations – lightweight specification language

Domain-specific analyses and transformations

Many libraries, one compiler

Application
Source code

Library
Annotations

Header files

Source code

Broadway

Analyzer

Optimizer

Error reports
Library-specific messages

Application+Library
Optimized source code

Compiler

3

5

Overview

 Defining error detection problems

 Adaptive pointer analysis

 Experimental results

 Future work

6

Annotations (I)

 Dependence and pointer information

 Describe pointer structures

 Indicate which objects are accessed and modified

procedure fopen(pathname, mode)

{

on_entry { pathname --> path_string

mode --> mode_string }

access { path_string, mode_string }

on_exit { return --> new file_stream }

}

4

7

Annotations (II)

 Library-specific properties

Dataflow lattices

property State : { Open, Closed}

initially Open

property Kind : { File,

Socket { Local, Remote } }

SocketFile

Local Remote
OpenClosed

^

^
^

^

8

Annotations (III)

 Effects of library routines

Dataflow transfer functions

procedure socket(domain, type, protocol)

{

analyze Kind {

if (domain == AF_UNIX) IOHandle <- Local

if (domain == AF_INET) IOHandle <- Remote

}

analyze State { IOHandle <- Open }

on_exit { return --> new IOHandle }

}

5

9

Annotations (IV)

 Reports and transformations

procedure execl(path, args)

{

on_entry { path --> path_string }

report if (Kind : path_string could-be Remote)

“Error at “ ++ $callsite ++ “: remote access”;

}

procedure slow_routine(first, second)

{

when (condition)

replace-with %{ quick_check($first);

fast_routine($first, $second); }%

}

10

Overview

 Defining error detection problems

 Adaptive pointer analysis

 Experimental results

 Future work

6

11

Pointer analysis

 Pointer analysis: not a stand-alone analysis

Supports other client analyses

 Today’s focus:

 Client analysis – analysis for detecting errors

 Pointer analysis algorithm – choose precision

Pointer

Analyzer

Client

Analysis
Memory

Model
OutputErrors

Error

Detector

CIFI Context & Flow Insensitive

CIFS Flow Sensitive CSFS Context & Flow Sensitive

CSFI Context Sensitive

12

The problem with pointer analysis

 Real-life scenario:

Check for security vulnerabilities in BlackHole mail filter

 Manually inspect reported errors

 One thing in common: a string processing routine

 Clone procedure = ad hoc context sensitivity

 Using CIFI, all 85 false positives go away

Can we automate this process?

Pointer

Analyzer
Memory

Model

Fast analysis;

85 possible

errors

Error

Detector

CIFICIFSCSFS

25X slower;

85 possible

errors

Out of memory;

No results

7

13

Our solution

 Problems
 Cost-benefit tradeoff – severe for pointer analysis

 Precision choices are too coarse

 Choice is made a priori by the compiler writer

 Solution: Mixed precision analysis
 Apply higher precision where it’s needed

 Use cheap analysis elsewhere

Key: Let the needs of client drive precision
Customized precision policy created during analysis

14

Client-Driven Pointer Analysis

 Algorithm: [Guyer & Lin ’03]

 Start with fast cheap analysis: FI and CI

 Monitor: how imprecision causes information loss

 Adapt: Reanalyze with a customized precision policy

Dependence

Graph
MonitorInformation

Loss

Pointer

Analyzer

Client

Analysis
Memory

Model

Error

Reports

CIFI

Adaptor

Custom

Policy

8

15

 Example:
Context-insensitivity

 Information merged at call
 Analyzer reports 2 possible errors

 Only 1 real error

Imprecision leads to false positives ^

^

no errorerror

maybe

Lattice

Insufficient precision

!

main

socketexecl

execl

read

stdin

?
?

16

Client-Driven Pointer Analysis

Dependence

Graph
MonitorInformation

Loss

Pointer

Analyzer

Client

Analysis
Memory

Model

Error

Reports

CIFI

Adaptor

Custom

Policy

Analysis Framework

9

17

Analysis framework

 Iterative dataflow analysis

 Pointer analysis: flow values are points-to sets

 Client analysis: flow values form typestate lattice

 Fine-grained precision policies

 Context sensitivity: per procedure

 CS: Clone or inline procedure invocation

 CI: Merge values from all call sites

 Flow sensitivity: per memory location

 FS: Build factored use-def chains

 FI: Merge all assignments into a single flow value

18

Client-Driven Pointer Analysis

Dependence

Graph
MonitorInformation

Loss

Pointer

Analyzer

Client

Analysis
Memory

Model

Error

Reports

CIFI

Adaptor

Custom

Policy

The Monitor and Adaptor

10

19

Algorithm components

 Monitor

 Runs alongside main analysis

 Records imprecision

 Adaptor

 Start at the locations of reported errors

 Trace back to the cause and diagnose

?

20

Sources of imprecision

Polluting assignments

Multiple

assignments

x =

x =

x

foo()

Multiple

procedure calls

foo()

foo()

= f(,)

Conditions

if(cond)

x = x =

ptr

Polluted target

ptr

Polluted pointer

(*ptr)
or

Pointer

dereference

11

21

Adaptor

 After analysis...
 Start at the “maybe error” variables

 Find all reachable nodes – collect the diagnoses

Often a small subset of all imprecision

?

Dependence

Graph
Precision policy

CS: foo

CS: bar

FS: x

FS: ptrCS:bar

CS:foo

FS:x
FS:ptr

22

In action...

 Monitor analysis

 Polluting assignments

 Diagnose and apply “fix”
 In this case: one procedure context-sensitive

 Reanalyze

main

socketexecl

execl

read

stdin

?
?

readread

!

12

23

Overview

 Defining error detection problems

 Adaptive pointer analysis

 Experimental results

 Future work

24

Programs

 18 open source C programs

 Unmodified source – all the issues of production code

 Many are system tools – run in privileged mode

 Representative examples:

Name Description Priv Lines of code Procedures CFG nodes

muh IRC proxy 5K (25K) 84 5,191

blackhole E-mail filter 12K (244K) 71 21,370

wu-ftpd FTP daemon 22K (66K) 205 23,107

named DNS server 26K (84K) 210 25,452

nn News reader 36K (116K) 494 46,336

13

25

Error detection problems

 Remote access vulnerabillity:

 File access:

 Format string vulnerability (FSV):

 Remote FSV:

 FTP behavior:

Data from an Internet socket should

not specify a program to execute

Files must be open when accessed

Format string may not contain

untrusted data

Check if FSV is remotely exploitable

Can this program be tricked into

reading and transmitting arbitrary files

26

Methodology

 18 open source C programs

 5 typestate error checkers

 Compare client-driven with fixed-precision

 Goals:

 First, reduce number of errors reported

Conservative analysis – fewer is better

 Second, reduce analysis time

14

27

Increasing number of CFG nodes

Results

10X

0 0 0 0 0 0 07 29 6 85 28 2 31 4 5 93 41

0
0 0

0

0

0
0

7 18
6

85

15

1

26 4

5 89
41

0
7 18

6
15

1

26 4

5

88

41

CS-FI

CI-FS

CI-FI

CS-FS

Client-Driven
Remote access vulnerability

1000X

1

100X

N
o

rm
a
li
z
e
d

 a
n

a
ly

s
is

 t
im

e

0

0 0

0

7

29

28

310

0 0

7 15
26

? ? ? ? ? ? ? ? ? ? ??

28

Why it works

 Notice:

 Different clients have different precision requirements

 Amount of extra precision is small

Name

Total

procs

context-sensitive procedures

Remote

Access

File

Access

FSV RFSV FTP

muh 84 6

apache 313 8 2 2 10

blackhole 71 2 5

wu-ftpd 205 4 4 17

named 210 1 2 1 4

cfengine 421 4 1 3 31

nn 494 2 1 1 30

15

29

Why it works (cont)

 Notice:

 Different clients have different precision requirements

 Amount of extra precision is small

Name

flow-sensitive variables

Remote

Access

File

Access

FSV RFSV FTP

muh 0.1 0.07 0.31

apache 0.89 0.18 0.91 1.07 0.83

blackhole 0.24 0.04 0.32

wu-ftpd 0.63 0.09 0.51 0.53 0.23

named 0.14 0.01 0.23 0.20 0.42

cfengine 0.43 0.04 0.46 0.48 0.03

nn 1.82 0.17 1.99 2.03 0.97

30

Time

16

31

Conclusions

 Client-driven pointer analysis

 Precision should match the client and program

Not all pointers are equal

 Need fine-grained precision policies

Key: knowing where to add more and what kind

 Blueprint for scalable analysis

Use more expensive analysis on small parts of programs

32

Future work

 Improve scalability
 Sendmail takes 2 hours to analyze in CI-FI mode

 Use even faster pointer analysis: unification-based
algorithm

 Preliminary results: Can analyze sendmail in 1 minute

 Improve accuracy
 Add path-sensitivity

 Array accesses
 Array dependence testing

 Heap models
 Shape analysis

CI-FI
CI-FS CS-FI

CS-FS

Unification-based

Path-

sensitive. . .

17

33

Related work

 Pointer analysis and typestate error checking

 Iterative flow analysis [Plevyak & Chien ‘94]

 Demand-driven pointer analysis [Heintze & Tardieu ’01]

 Combined pointer analysis [Zhang, Ryder, Landi ’98]

 Effects of pointer analysis precision [Hind ’01 & others]

 More precision is more costly

 Does it help? Is it worth the cost?

Efficient and Extensible

Security Enforcement Using

Dynamic Data Flow Analysis

Walter Chang

Brandon Streiff

Calvin Lin

The University of Texas at Austin

18

Security Today

Buggy programs deployed on critical

servers

Legacy code in unsafe languages

Rapidly-evolving threats and attackers

 Inadequate developer training and

resources to fix problems

You know the drill - it’s why we’re here

today

What We’d Like

Potentially

Unsafe Program
Safe ProgramMagic Box

19

Haven’t We Seen This Before?

Many prior solutions

Attack-specific: StackGuard, FormatGuard

Monitors: SFI, IRMs, PQL

Taint: TaintCheck, Dytan, LIFT, GIFT, etc

Language: JiF, Cyclone

 All suffer from at least one of these problems

Handles only a specific attack

Requires significant developer intervention

High runtime overhead

Our Solution

Compiler-based solution

Handles a broad class of problems

Easily adapted to meet new threats

Minimal runtime overhead

Minimal developer effort

We address all three problems of

deployability, generality, and efficiency

How do we do this?

20

Our Solution

Potentially

Unsafe Program
Safe Program

Static

Analysis

Security

Policy

Compiler

Runtime

Library

Deployability

 Compiler-based solution; simply recompile your
program against your chosen policy
 Implemented as source-to-source translator

Platform and OS independent

Links with very small runtime helper library

Works on unmodified C source code

 Does not require
Language changes

Rewrite or redesign of program

Manual inspection and correction of errors

Special hardware or OS support

21

Generality

Policy is not hardcoded but is defined in
specification files
Fully general to typestate problems

Uses Broadway Annotation Language [Guy03]

Policy is not program-specific
Write once, use many

No special knowledge about program needed to
write policy

No special knowledge about policy needed to
apply to program

Policies

 Based on typestate analysis [Strom86]

 Intuition

Every object has a tag (or tags) associated

Tags are propagated and updated as program executes

Security checks use tag values

 Supports wide range of policies

Taint tracking

Privacy and information disclosure

Labeled security

Let’s see what this looks like in action…

22

Compiler-Based Dynamic Data Flow

int sock;

char buffer[100];

sock = socket(AF_INET, SOCK_STREAM, 0);

read(sock, buffer, 100);

printf(buffer);

Program contains format string vulnerability

Data read from an internet socket is used as a

format string

Compiler-Based Dynamic Data Flow

int sock;

char buffer[100];

int vs, vb; // Declare tags

sock = socket(AF_INET, SOCK_STREAM, 0);

vs = Tainted; // Set tags

read(sock, buffer, 100);

vb = vs;

if (vb != Tainted) // Check tags

{

printf(buffer);

}

By adding code that tracks the state of data,

we can prevent this attack (and many others!)

23

Policy Specification

Uses Broadway Annotation Language
[Guy03]

Specifies
Property (the tag values)

Propagation rules

Security checks (the policy itself)

Annotations are for library functions
Requires no application-specific annotations

Reusable across applications

Example - Taint and Format String

Property: Taint

Values: Tainted, Untainted

Relation: Tainted and Untainted combine to

Tainted

property Taint : { Tainted { Untainted } }

24

Example - Taint and Format String

 Input functions taint their inputs
procedure getchar() {

analyze { Taint : return <- Tainted }

}

Library functions propagate taint
procedure strcpy(dst, src) {

on_entry { dst -> dst_string

src -> src_string }

analyze {Taint: dst_string <- src_string }

}

Example - Taint and Format String

Policy: printf should not take a tainted

string for a format string
procedure printf(fmt, args) {

on_entry { fmt -> fmt_string }

error if(Taint: fmt_string could-be Tainted)

“Error, tainted format string”

}

Note that other taint-based policies can

reuse previous definitions

25

Example - File Disclosure

 Want to prevent remote users from downloading arbitrary
files (FTP-like behavior)

 Two properties

Trustedness: Trusted, Untrusted

Origin: File, Network, StdIn, etc

 Rules

Trustedness is similar to taint

 Input functions mark data with origin

 Policy

Prevent transmission of File data from files opened with
Untrusted filenames to Untrusted sockets

Cannot be precisely modeled with taint alone

Efficiency

General data/information flow systems have

been proposed, eg GIFT [Lam06]

 System must instrument every read and write

and track every object

Some optimizations possible [Qin06]

System-specific hacks are used [Xu06]

 Leads to high overhead

TaintCheck: 35X [Newsome05]

GIFT: +82% CPU time [Lam06]

LIFT: 7.9X for compute-bound programs [Qin06]

26

Improving Efficiency

Systems are inefficient because
They track too many irrelevant statements

They track too many irrelevant objects

Only a small proportion of the program is
involved in any given vulnerability
[Newsome05]

Goal: Eliminate instrumentation on
statements and objects that cannot affect
result of security checks

Eliminating Instrumentation

 Perform a static analysis to identify possible
policy violations
Uses client-driven pointer analysis and error checker

[Guy03]

Similar to static error checkers

 Determine which statements can affect results of
security check at possible violation
Data flow slicing: a new flow-value-based dependence

analysis

 Instrument only these statements
No other statements require instrumentation because

they cannot affect enforcement checks

27

Data Flow Slicing

Given: an object o at a location l

 The data flow slice is the set of S statements
and O objects via transitive closure as follows
 l is in S and o is in O

 If s’ defines some v in O, then s’ is in S

 If o’ is used by some s’ in S, then o’ is in O

 Intuitively
S is the set of all statements that can affect the flow

value of o at l

O is the set of all objects that can affect the flow value of
o at l

Computing the Data Flow Slice

 Flow values can only change when the
underlying object is used or defined

 Compute interprocedural use-def chains on
program objects

 Trace backwards from possible violations
The location of the violation is s

The objects involved are those whose flow values are
checked at s

 Use results from static data flow analysis to
determine if flow value may change at each
statement in the trace
Data flow slice is always a subset of data dependencies

28

Keys to Success

Data Flow Analysis is flexible

Dynamic DFA can enforce policies

Static DFA can approximate dynamic behavior

Scalable and precise static analysis

Interprocedural, whole-program - more precise

than any taint/info flow system

Scalable pointer analysis [Guy03]

Uses data flow analysis to deliver precise results

customized to each analysis and application

Experimental Evaluation

 Server Programs
5 open-source server programs

Sample policy: format string attacks

Verify prevention of attacks

Measure runtime overhead and code expansion

 Compute-bound Programs
4 SPECint programs with injected vulnerabilities

Measure runtime overhead and code expansion

 Complex Policies
Sample policy: file information disclosure

3 open-source server programs

Same metrics

29

Attack Detection

Program Version Exploit Detected

pfingerd 0.7.8 NISR16122002B Yes

muh 2.05c CAN-2000-0857 Yes

wu-ftpd 2.6.0 CVE-2000-0573 Yes

bind 4.9.4 CVE-2001-0013 Yes

Sample policy: format string attack prevention

All known attacks detected

Overhead - Server Programs

Program Original DDFA Overhead

pfinger 3.07s 3.19s 3.78%

muh 11.23ms 11.23ms 0%

wu-ftp 2.745MB/s 2.742MB/s 0.10%

bind 3.58ms 3.57ms -0.38%

apache 6.048MB/s 6.062MB/s -0.24%

Average Increase 0.65%

Compare with 6%-36X for previous systems

30

Overhead - Compute-Bound

Programs

Program Overhead

gzip 51.35%

vpr 0.44%

mcf -0.32%

crafty 0.25%

Average Increase 12.93%

Results are for injected errors, true overhead is 0%

Compare with 80%-36X for previous systems

Code Expansion - Server Programs

Program Original DDFA Overhead

pfinger 49,655 49,655 0.0%

muh 59,880 60,488 1.0%

wu-ftp 205,487 207,997 1.2%

bind 215,669 219,765 1.9%

apache 552,114 554,514 0.4%

Average Increase 0.9%

Precise static analysis minimizes additional code

31

File Disclosure Prevention

Program Code Expansion Response time

pfingerd 0% 0%

muh 2.67% 2.13%

bind 0.10% -1.38%

Average 0.92% 0.25%

More complex policies do not necessarily lead to

higher overhead

Static analysis ensures overhead is only what is

required for the program and policy

Recap

Our system delivers on three key concerns for
software security solutions
Deployability - no language, OS, or hardware changes

required, no additional developer effort

Generality - supports a wide variety of policies with easy
user extensibility

Efficiency - order-of-magnitude improvement over
previous best. Minimal overhead - less than 1% for
common uses

 Key is combination of static and dynamic
analysis

32

Related Work

 Taint Tracking

Binary [New05] [Cos05] [Qin06] [Cla07]

Compiler [Wal00] [Ngu05] [Xu06] [Lam06]

Hardware [Cra04] [Suh04] [Dal07]

 Static Analysis

Numerous [Sha01] [Ash02] [Eva02] [Guy03] etc…

Monitors and Integrity

Execution Monitors [Sch00] [Mar05] etc

Control Flow Integrity/Shepherding [Kir02] [Aba05] etc

Data Flow Integrity [Cas06]

Future Work

Software engineering possibilities

Can retrofit security functionality onto legacy

applications

Allows separation of concerns

Whole-system integration

Leverage OS features (capabilities, process

coloring, etc)

Provide whole-system data flow instead of

single-application

33

Thanks!

