
CS380 C Compilers 1

April 1, 2015 Compiling Object-Oriented Languages 1

Modern Uses of Compilers

Last time

– Pointer analysis

Today

– Compiling object-oriented languages

April 1, 2015 Compiling Object-Oriented Languages 2

What is an Object-Oriented Programming Language?

Objects

– Encapsulate code and data

Inheritance

– Supports code reuse and software

evolution (kind of)

Subtype polymorphism

– Can use a subclass wherever a parent

class is expected

Dynamic binding (message sends)

– Binding of method name to code is done

dynamically based on the dynamic type

of the (receiver) object

Person

Student Teacher

Person p = new Person;

Student s = new Student;

PrintName(p);

PrintName(s);

PrintName(Person p);

p.reprimand();

CS380 C Compilers 2

April 1, 2015 Compiling Object-Oriented Languages 3

Implementation: Inheritance of Instance Variables

Goal

– Lay out object for type-independent instance variable access

Solution

– Prefixing: super-class fields are at beginning of object

Example

Multiple inheritance?

– May need to leave blanks

– Use graph coloring (one node for each distinct field, edge between
coexistent fields, color indicates layout position)

Student

Name

ID

Person

Name

Teacher

Name

Salary

April 1, 2015 Compiling Object-Oriented Languages 4

Implementation: Dynamic Binding

Problem

– The appropriate method depends on the dynamic type of the object
e.g., p.reprimand()

Solution

– Create descriptor for each class (not each object) encoding available methods

– Store a pointer to a class descriptor in each object

– Lay out methods in class descriptor just like instance variables

Usage summary

– Load class descriptor pointer from object

– Load method address from descriptor

– Jump to method

Student

getName

reprimand

workhard

Person

getName

Teacher

getName

reprimand

party

CS380 C Compilers 3

April 1, 2015 Compiling Object-Oriented Languages 5

What is a Pure Object-Oriented Programming Language?

Everything is an object

– Even numbers, strings, constants, etc.

All work achieved by sending messages to objects

– Even simple arithmetic and control flow

Example

if (&{x.eq(3)},

&{a.set(a.plus(1))},

&{a.set(a.minus(1))}

);

Very clean and simple

– But very inefficient if naively implemented

Pass closures to the if method

to create a control flow construct

Invoke x’s equal method

Pass then computation

Pass else computation

April 1, 2015 Compiling Object-Oriented Languages 6

Why are Object-Oriented Languages Slow?

Dynamism

– Code

– Data

Style

– Granularity (lots of small objects)

– Exploit dynamism

High-level (modern) features

– Closures & non-LIFO activation records

– Safety, etc.

Garbage collection

CS380 C Compilers 4

Dynamic binding

– What code gets executed at a particular static message send?

– It depends, and it may change

Example

class rectangle extends shape {

int length() { ... }

int width() { ... }

int area() { return (length() * width()); }

}

class square extends rectangle {

int size;

int length() { return(size); }

int width() { return(size); }

}

April 1, 2015 Compiling Object-Oriented Languages

Dynamism: Code

? ?

rect.area();

sq.area();

What happens with the

following?

7

April 1, 2015 Compiling Object-Oriented Languages 8

Cost of Dynamic Binding

Direct cost

– Overhead of performing dynamic method invocation

Indirect cost

– Inhibits static analysis of the code

Example

class rectangle:shape {

int length() { ... }

int width() { ... }

int area() { return (length() * width()); }

}

Want to inline and assign to registers, etc.

CS380 C Compilers 5

April 1, 2015 Compiling Object-Oriented Languages 9

Dynamism: Data

Object instance types are not statically apparent

– Need to be able to manipulate all objects uniformly

– Boxing: wrap all data and reference it with a pointer

Example

Integer n = new Integer(33);

type descriptor

data (int)

pointer

n

April 1, 2015 Compiling Object-Oriented Languages 10

Cost of Dynamism: Data

Direct cost

– Overhead of actually extracting data

– e.g., 2 loads versus 0 (if data already in a register)

Indirect cost

– More difficult to statically reason about data

CS380 C Compilers 6

April 1, 2015 Compiling Object-Oriented Languages 11

Style

Sometimes programmers write C-style code in OO languages

– Easy: just “optimize” it away

Sometimes programmers actually exploit dynamism

– Hard: it can’t just be “optimized away”

Programmers create many small objects

– Thwarts local analysis

– Exacerbates dynamism problem

– Huge problem for pure OO languages

Programmers create many small methods

– Methods to encapsulate data

– e.g. Methods to get and set member fields

April 1, 2015 Compiling Object-Oriented Languages 12

Modern High-level Features

Closures and non-LIFO activation records

– Leads to much heap allocation of data

Example

foo (Integer i) {

Integer n;

...

return (&{n+i});

}

CS380 C Compilers 7

April 1, 2015 Compiling Object-Oriented Languages 13

A Concrete Example: Java

High-level and modern

– Object-oriented (not pure, but more pure than C++)

– Granularity of objects and methods can be large or small

– Mobile (standard bytecode IR)

– Multithreaded (great for structuring distributed and UI programs)

– Garbage collected

– Dynamic class loading

– Reasonable exception system

– Rich standard libraries

April 1, 2015 Compiling Object-Oriented Languages 14

Why is Java Slow?

Bytecode interpretation?

– Not a good answer

CS380 C Compilers 8

April 1, 2015 Compiling Object-Oriented Languages 15

Approaches to Implementing Java

Interpretation

– Extremely portable

– Simple stack machine

– Performance suffers

– Interpretation overhead

– Stack machine (no registers)

Direct compilation

– Compile the source or bytecodes to native code

– Sacrifices portability

– Can have very good performance

April 1, 2015 Compiling Object-Oriented Languages 16

Approaches to Implementing Java (cont)

JIT compilation

– Still supports mobile code (with more effort)

– Can have very good performance

– Compilation time is critical

– Compiler can exploit dynamic information

JIT/Dynamic compilation

– Compiler gets several chances on the same code

– Compiler can exploit changes in dynamic information

– These systems are now quite sophisticated and effective

CS380 C Compilers 9

April 1, 2015 Compiling Object-Oriented Languages 17

Approaches to Implementing Java (cont)

Custom processor

– Direct hardware support of Java bytecodes

– This has proven to be an impractical approach

– See “Retrospective on High-Level Language Computer Architecture”
by Ditzel and Patterson (ISCA 1980)

– But maybe some hardware support (e.g., for GC) is a good idea?

Hybrids

– JIT and Interpretation

– Direct compilation and interpretation

Same-context translation

– Source-to-source or bytecode-to-bytecode

April 1, 2015 Compiling Object-Oriented Languages 18

Why is Java Slow?

Impediments to performance

– Dynamic class loading thwarts optimization

– Even the class hierarchy is dynamic

– Flexible array semantics

– Run-time checks (null pointers, array bounds, types)

– Precise exception semantics thwart optimization

– Multithreading introduces synchronization overhead

– Lots of memory references (poor cache performance)

. . . and all the usual OO challenges

CS380 C Compilers 10

April 1, 2015 Compiling Object-Oriented Languages 19

Analysis with a Dynamic Class Hierarchy

Approaches

– Ignore it (i.e., disable dynamic class loading)

– Exploit final classes & methods

– Conservative optimization (e.g., guarded devirtualization)

– Track validity of current code fragments and rebuild as necessary

– e.g., Resolution dependence graph

– Necessitates JIT/dynamic compilation

April 1, 2015 Compiling Object-Oriented Languages 20

Consider matrix multiplication

for (i=0; i<m; i++)

for (j=0; j<p; j++)

for (k=0; k<n; k++)

C[i][j] += A[i][k] * B[k][j];

Why is this Java code slow?

– 6 null pointer checks (with just 2 floating point operations!)

– 6 index checks

Can we optimize this code?

– Precise exception model

– Exception semantics inhibit removal or reordering

– No multidimensional arrays

– Rows may alias

Scientific Programming and Java

CS380 C Compilers 11

April 1, 2015 Compiling Object-Oriented Languages 21

Why can’t we just do this. . . ?

if (m <= C.size(0) && p <= C.size(1) &&

m <= A.size(0) && n <= A.size(1) &&

n <= B.size(0) && p <= B.size(1)) {

for (i=0; i<m; i++)

for (j=0; j<p; j++)

for (k=0; k<n; k++)

C[i][j] += A[i][k] * B[k][j];

} else {

raise exception

}

No out-of-bounds checks, right?

More on Matrix Multiplication

April 1, 2015 Compiling Object-Oriented Languages 22

Exceptions in Java

Exceptions in Java are precise

– The effects of all statements and expressions before a thrown exception

must appear to have taken place, and

– The effects of all statements or expressions after a thrown exception must

appear not to have taken place

Implications

– Must be very careful or clever when

– Eliminating checks or

– Reordering statements

CS380 C Compilers 12

April 1, 2015 Compiling Object-Oriented Languages 23

Idea

– Create two versions of a block of code

– One is guaranteed not to except and is optimized accordingly

– The other is used when the code might except

if (m <= C.size(0) && p <= C.size(1) &&

m <= A.size(0) && n <= A.size(1) &&

n <= B.size(0) && p <= B.size(1)) {

for (i=0; i<m; i++) // safe region

for (j=0; j<p; j++)

for (k=0; k<n; k++)

C[i][j] += A[i][k] * B[k][j];

} else {

for (i=0; i<m; i++) // unsafe region

for (j=0; j<p; j++)

for (k=0; k<n; k++)

C[i][j] += A[i][k] * B[k][j];

}

Safe Regions [Moreira et al. TOPLAS 2000]

April 1, 2015 Compiling Object-Oriented Languages 24

Java Arrays and Loop Transformations

Java arrays

– No multidimensional arrays

– Instead use arrays of arrays (can be ragged)

– Requires one memory reference for each array dimension

– Rows may alias with one another

Arrays are common in scientific applications

– Their use requires optimization for good performance

– Large body of work on loop transformations makes assumptions

– Arrays stored in contiguous memory

– No aliasing among array elements

– (Arrays are not ragged)

CS380 C Compilers 13

April 1, 2015 Compiling Object-Oriented Languages 25

Comparing Arrays

A 2D array in C

An array of arrays in Java

1 2

9 10

17 18

3 4

11 12

19 20

5 6

13 14

21 22

7 8

15 16

23 24

1 2 3 4 5 6 7 8

9 10 11 12 13 14

15 16 17 18 19 20 21

type

length type

length

type

length

type

length

April 1, 2015 Compiling Object-Oriented Languages 26

Java Arrays

Elements within an array can alias with one another

Implications?

– Complicates dependence testing

1 2 3 4 5 6 7 8

9 10 11 12 13 14

type

length type

length

type

length

A[1][i] aliases to A[2][i]

CS380 C Compilers 14

April 1, 2015 Compiling Object-Oriented Languages 27

. . .

Java Arrays (cont)

An array of arrays of complex numbers

type

length

type

length

type

length

1 2 3 4 5 6 7 8

. . .

9 10 11 12 13 14 15 16

. . .

. . .

. . .

complex complex complex complex

complex complex complex complex

What are the implications of this structure?

April 1, 2015 Compiling Object-Oriented Languages 28

Idea

– Introduce a new final array class with simpler semantics

– Treat the new class as a primitive in the compiler

doubleArray2D C = new doubleArray2D(m,p);

doubleArray2D A = new doubleArray2D(m,n);

doubleArray2D B = new doubleArray2D(n,p);

for (i=0; i<m; i++)

for (j=0; j<p; j++)

for (k=0; k<n; k++)

C.set(i,j,C.get(i,j)+A.get(i,k)*B.get(k,j));

Semantic Expansion [Artigas et al. LCPC ’99]

Look at this ugly syntax

CS380 C Compilers 15

April 1, 2015 Compiling Object-Oriented Languages 29

Semantic Expansion (cont)

Pros

– Yields good performance

– Doesn’t officially change the language

– Can be used for other pseudo primitive classes (e.g., Complex)

Cons

– Inelegant (ugly syntax)

– Not general

– Does in fact change the language

– Loses syntactic benefits of true primitives

– At odds with the spirit of the language

– Can’t extend these special classes

Are there more elegant and general solutions?

April 1, 2015 Compiling Object-Oriented Languages 30

Concepts

Dynamism

– Direct costs

– Indirect costs

Exception semantics

Array semantics

Object overhead

