
Calvin Lin, The University of Texas at 

Austin

CS380 C Compilers 1

April 15, 2015 More Register Allocation 1

More Register Allocation

Last time

– Register allocation

– Global allocation via graph coloring

Today

– More register allocation

– Procedure calls

– Interprocedural
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Register Allocation and Procedure Calls

Problem

– Register values may change across procedure calls

– The allocator must be sensitive to this

Two approaches

– Work within a well-defined calling convention

– Use interprocedural allocation

Make local decisions

Make global decisions
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Calling Conventions

Goals

– Fast calls (pass arguments in registers, minimal register saving/restoring)

– Language-independent

– Support debugging, profiling, etc.

Complicating Issues

– Varargs

– Passing/returning aggregates

– Exceptions, non-local returns

– setjmp()/longjmp()

– Non-LIFO activation records
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Architecture Review: Caller- and Callee-Saved Registers

Partition registers into two categories

– Caller-saved

– Callee-saved

Caller-saved registers

– Caller must save/restore these registers when live across call

– Callee is free to use them

Example
foo()

{

rcaller = 4

save rcaller
goo()

restore rcaller
use rcaller

}

goo()

{

rcaller = 99

}

goo() is free to 

modify rcaller

caller

callee
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Architecture Review: Caller- and Callee-Saved Registers

Callee-saved registers

– Callee must save/restore these registers when it uses them

– Caller expects callee to not change them

Example
foo()

{

rcallee = 4

goo()

use rcallee
}

goo()

{

save rcallee
rcallee = 99

restore rcallee
}

goo() promises 

not to modify 
rcallee

caller callee

save rcallee

restore rcallee
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Register Allocation and Calling Conventions

Insensitive register allocation

– Save all live caller-saved registers before call; restore after

– Save all used callee-saved registers at procedure entry; restore at return

– Suboptimal

Sensitive register allocation

– Encode calling convention constraints in the IR and interference graph

– How?

A variable that is not live across calls should go in 

caller-saved registers

A variable that is live across multiple calls should 

go in callee-saved registers

foo()

{

t = …

… = t

s = …

f()

g()

… = s

}

Use precolored nodes
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r1

r2 s1f3

s2

s4

s3

floating pointinteger

Precolored Nodes

Add architectural registers to interference graph

– Precolored (mutually interfering)

– Not simplifiable

– Not spillable (infinite degree)

Express allocation constraints

– Integers usually can’t be stored in floating point registers

– Some instructions can only store result in certain registers

– Caller-saved and callee-saved registers. . .

floating point integer
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Precolored Nodes and Calling Conventions

Callee-saved registers

– Treat entry as def of all callee-saved registers

– Treat exit as use of them all

– Allocator must “spill” callee-saved registers to use them

Caller-saved registers

– Variables live across call interfere with all caller-saved registers

– Splitting can be used (before/during/after call segments)

foo()

{

def(r3)

use(r3)

}

Live range of callee-saved registers

Encourage use of 

caller-saved regs

Encourage use of 

callee-saved regs
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Problem with Callee-Saved Registers

Run-time systems (e.g., setjmp()/longjmp() and debuggers) need to 

know register values in any stack frame

– Caller-saved registers are on stack frame at known location

– Callee-saved registers?

F2: save r1,r2

F4: save r3

F3:

F1:

r1, r2 caller-saved

r3 callee-saved
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Example

foo():

def(r3)

t1 := r3

a := ...

b := ...

... a ...

call goo

... b ...

r3 := t1

use(r3)

return

r1

r3

t1

r1, r2 caller-saved

r3 callee-saved

b ar2
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Tradeoffs

Callee-saved registers

+ Decreases code size: one procedure body may have multiple calls

+ Small procedures tend to need fewer registers than large ones; callee-save 

makes sense because procedure sizes are shrinking

- May increase execution time:  For long-lived variables, may save and 

restore registers multiple times, once for each procedure, instead of a 

single end-to-end save/restore

The larger “problem”

– We’re making local decisions for policies that require global information

April 15, 2015 More Register Allocation 12

Interprocedural Register Allocation

Wouldn’t it be nice to. . .

– Allocate registers across calls to minimize unnecessary saves/restores?

– Allocate global variables to registers over entire program?

Compile-time interprocedural register allocation?

+ Could have great performance

- Might be expensive

- Might require lots of recompilation after changes 
(no separate compilation?)

Link-time interprocedural re-allocation?

+ Low compile-time cost

+ Little impact on separate compilation

- Link-time cost
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Wall’s Link-time Register Allocator [Wall 86]

Overall strategy

– Compiler uses 8 registers for local register allocation

– Linker controls allocation of remaining 52 registers

Compiler does local allocation & planning for linker

– Load all values at beginning of each basic block;

store all values at end of each basic block

– Generate call graph information

– Generate variable usage information for each procedure

– Generate register actions

Linker does interprocedural allocation & patches compiled code

– Generates “interference graph” among variables

– Picks best variables to allocate to registers

– Executes register actions for allocated variables to patch code
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Register Actions

Describe code patch if particular variable allocated to a register

– REMOVE(var): Delete instruction if var allocated to a register

– OPx(var): Replace op x with register that was allocated to var

– RESULT(var):  Replace result with register allocated to var

Usage

-ri := rj op rk:

OP1(var) if var loaded into rj

OP2(var) if var loaded into rk

RESULT(var) if var stored from ri

-r := load var: REMOVE(var)

-store var := r: REMOVE(var)
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Example

w := (x + y) * z

r1 := load x

r2 := load y

r3 := r1 + r2

r4 := load z

r5 := r3 * r4

store w := r5

REMOVE(x)

REMOVE(y)

OP1(x), OP2(y)

REMOVE(z)

OP2(z), RESULT(w)

REMOVE(w)
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Another Example

w := y++ * z

r1 := load y

r2 := r1 + 1

store y := r2

r2 := load z

r1 := r1 * r2

store w := r1

REMOVE(y)

OP1(y), RESULT(y)

REMOVE(y)

REMOVE(z)

OP1(y), OP2(z), RESULT(w)

REMOVE(w)

r5 := r5 + 1

r1 := r5 * r2

Problem

– Loaded value is still live after store overwrites it

– Post-incremented value of y is lost if y is allocated to register

– We need two registers to hold the two values of y

Suppose y is allocated to register r5



Calvin Lin, The University of Texas at 

Austin

CS380 C Compilers 9

April 15, 2015 More Register Allocation 17

Extension

More actions

– LOAD(var): Replace load with move from the register holding var

– STORE(var): Replace store with move to the register holding var

LOAD(var)

– Use instead of REMOVE(var) if var is stored into while result of load is 

still live

STORE(var)

– Use instead of REMOVE(var) if source is stored into more than one 

variable
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Example Revisited

w := x := y++ * z

r1 := load y

r2 := r1 + 1

store y := r2

r2 := load z

r1 := r1 * r2

store x := r1

store w := r1

REMOVE(y)

OP1(y), RESULT(y)

REMOVE(y)

REMOVE(z)

OP1(y), OP2(z), RESULT(w)

REMOVE(w)

LOAD(y)

RESULT(y)

REMOVE(y)

REMOVE(z)

OP2(z), RESULT(w)

STORE(x), OP1(w)

REMOVE(w)
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Deciding Which Variables to Promote to Registers

Steps

– Use bottom-up algorithm to assign pseudo registers

– Allocate pseudo registers to non-simultaneously live variables

– Allocate real registers to most frequently used pseudo registers

A

B C

D E

pr0 pr1 pr2 pr3 pr4

B

pr0 pr1

D

pr0 pr1 pr2

E

pr6 pr7 pr8

A

pr3 pr4 pr5

C

2 3 2 12 1

2 2

4 2 2

2 1 20

2 3 4

8 7 4 14 2 20 2 3 4total reference freq

reference freq

reference freq

reference freq

call graph
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Possible Improvements

Use profile data to construct weights

Do global register allocation at compile-time

Track liveness information for variables at each call site

Track intraprocedural interference graph

Use real interference graph at link-time



Calvin Lin, The University of Texas at 

Austin

CS380 C Compilers 11

April 15, 2015 More Register Allocation 21

Performance Summary

Machine: DEC WRL Titan RISC processor (64 registers)

Basic experiment

– Local compile-time allocator uses 8 registers

– Link-time allocator uses 52 registers

– Simple static frequency estimates

– Small benchmarks

10-25% speed-up over local allocation alone

Improvements

– 0-6% with profile data

– 0-5% with compile-time global allocation

Benefit decreases with number of link-time registers

Link-time better than global register allocation
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Link-Time Register Allocation: The Big Picture

Delayed decision making

– Make decisions when more information is available, eg. link time

– Requires communication among different system components, in this case 

the compiler and the linker

– Leads to staged compilation

– Intuitively, more information is better, but effectively using this 

information can require cleverness
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Dynamic compilation requires fast register allocation

– Linear Scan Register Allocation [Poletto & Sarkar99]

– Not based on graph coloring

– Greedy algorithm based on live intervals

– Spill the variable whose interval ends furthest in the future

– What if we had spilled a or b instead of c?

JIT Environment

a

b

c

d

e

1 2 3 4 5

a a,b b,d d,ea,b

spill c

2 registers available
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Linear Scan Register Allocation

Performance results

– Linear scan is linear in number of variables

– Graph coloring is O(n2)

– Code quality is within 12% of graph coloring
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Graph Coloring

– NP-complete

– Register allocation based on graph coloring is NP-complete

Use heuristics

– Coalesce, Color, Spill, 

repeat . . .

New approach

– Use graph theory and SSA 

Register Allocation Using SSA Form  [Hack, et al 2006]

Build inter-

ference graph
Coalesce

Spill

Color

Color
Coalesce/
Exit SSASpill
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The Highlights

SSA form

– The interference graphs of programs in SSA form are chordal, which are 
perfect graphs

Perfect graphs

– Perfect graphs are k-colorable, where k is the size of the largest clique

Spilling

– Can determine exactly where spills must occur without using an 
interference graph

Coloring

– In general, can color chordal graphs in O(|V|2)

– With dominance information, can color chordal graphs in O((G)•n) time, 
where n = # of instructions and (G) = size of largest live set
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Evaluation

Benefits

– No interference graph

– Decouples spilling and coalescing

Good way to trade off coalescing vs. copying

– Coalescing can reduce copies

– eg. mov t1, t2

– Coalescing can increase spills

– In traditional register allocation, removing -functions is equivalent to 

prematurely coalescing SSA variables

– By keeping -functions, we coalesce as much as possible without incuring 

spills

t1 t2 t1t2

coalesce
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Concepts

Register allocation and procedure calls

Calling conventions

– Caller- vs. callee-saved registers

– Precoloring

– Finding register values in stack can be hard

Interprocedural analysis

– Link-time register allocation

– Register actions

Register allocation in a JIT

– Linear Scan Register Allocation
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Next Time

Course projects

– How are projects coming along?  Feel free to send me updates

Reading

– Read SoftBound paper

– Response due Sunday night


