
Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 1

April 15, 2015 More Register Allocation 1

More Register Allocation

Last time

– Register allocation

– Global allocation via graph coloring

Today

– More register allocation

– Procedure calls

– Interprocedural

April 15, 2015 More Register Allocation 2

Register Allocation and Procedure Calls

Problem

– Register values may change across procedure calls

– The allocator must be sensitive to this

Two approaches

– Work within a well-defined calling convention

– Use interprocedural allocation

Make local decisions

Make global decisions

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 2

April 15, 2015 More Register Allocation 3

Calling Conventions

Goals

– Fast calls (pass arguments in registers, minimal register saving/restoring)

– Language-independent

– Support debugging, profiling, etc.

Complicating Issues

– Varargs

– Passing/returning aggregates

– Exceptions, non-local returns

– setjmp()/longjmp()

– Non-LIFO activation records

April 15, 2015 More Register Allocation 4

Architecture Review: Caller- and Callee-Saved Registers

Partition registers into two categories

– Caller-saved

– Callee-saved

Caller-saved registers

– Caller must save/restore these registers when live across call

– Callee is free to use them

Example
foo()

{

rcaller = 4

save rcaller
goo()

restore rcaller
use rcaller

}

goo()

{

rcaller = 99

}

goo() is free to

modify rcaller

caller

callee

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 3

April 15, 2015 More Register Allocation 5

Architecture Review: Caller- and Callee-Saved Registers

Callee-saved registers

– Callee must save/restore these registers when it uses them

– Caller expects callee to not change them

Example
foo()

{

rcallee = 4

goo()

use rcallee
}

goo()

{

save rcallee
rcallee = 99

restore rcallee
}

goo() promises

not to modify
rcallee

caller callee

save rcallee

restore rcallee

April 15, 2015 More Register Allocation 6

Register Allocation and Calling Conventions

Insensitive register allocation

– Save all live caller-saved registers before call; restore after

– Save all used callee-saved registers at procedure entry; restore at return

– Suboptimal

Sensitive register allocation

– Encode calling convention constraints in the IR and interference graph

– How?

A variable that is not live across calls should go in

caller-saved registers

A variable that is live across multiple calls should

go in callee-saved registers

foo()

{

t = …

… = t

s = …

f()

g()

… = s

}

Use precolored nodes

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 4

April 15, 2015 More Register Allocation 7

r1

r2 s1f3

s2

s4

s3

floating pointinteger

Precolored Nodes

Add architectural registers to interference graph

– Precolored (mutually interfering)

– Not simplifiable

– Not spillable (infinite degree)

Express allocation constraints

– Integers usually can’t be stored in floating point registers

– Some instructions can only store result in certain registers

– Caller-saved and callee-saved registers. . .

floating point integer

April 15, 2015 More Register Allocation 8

Precolored Nodes and Calling Conventions

Callee-saved registers

– Treat entry as def of all callee-saved registers

– Treat exit as use of them all

– Allocator must “spill” callee-saved registers to use them

Caller-saved registers

– Variables live across call interfere with all caller-saved registers

– Splitting can be used (before/during/after call segments)

foo()

{

def(r3)

use(r3)

}

Live range of callee-saved registers

Encourage use of

caller-saved regs

Encourage use of

callee-saved regs

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 5

April 15, 2015 More Register Allocation 9

Problem with Callee-Saved Registers

Run-time systems (e.g., setjmp()/longjmp() and debuggers) need to

know register values in any stack frame

– Caller-saved registers are on stack frame at known location

– Callee-saved registers?

F2: save r1,r2

F4: save r3

F3:

F1:

r1, r2 caller-saved

r3 callee-saved

April 15, 2015 More Register Allocation 10

Example

foo():

def(r3)

t1 := r3

a := ...

b := ...

... a ...

call goo

... b ...

r3 := t1

use(r3)

return

r1

r3

t1

r1, r2 caller-saved

r3 callee-saved

b ar2

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 6

April 15, 2015 More Register Allocation 11

Tradeoffs

Callee-saved registers

+ Decreases code size: one procedure body may have multiple calls

+ Small procedures tend to need fewer registers than large ones; callee-save

makes sense because procedure sizes are shrinking

- May increase execution time: For long-lived variables, may save and

restore registers multiple times, once for each procedure, instead of a

single end-to-end save/restore

The larger “problem”

– We’re making local decisions for policies that require global information

April 15, 2015 More Register Allocation 12

Interprocedural Register Allocation

Wouldn’t it be nice to. . .

– Allocate registers across calls to minimize unnecessary saves/restores?

– Allocate global variables to registers over entire program?

Compile-time interprocedural register allocation?

+ Could have great performance

- Might be expensive

- Might require lots of recompilation after changes
(no separate compilation?)

Link-time interprocedural re-allocation?

+ Low compile-time cost

+ Little impact on separate compilation

- Link-time cost

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 7

April 15, 2015 More Register Allocation 13

Wall’s Link-time Register Allocator [Wall 86]

Overall strategy

– Compiler uses 8 registers for local register allocation

– Linker controls allocation of remaining 52 registers

Compiler does local allocation & planning for linker

– Load all values at beginning of each basic block;

store all values at end of each basic block

– Generate call graph information

– Generate variable usage information for each procedure

– Generate register actions

Linker does interprocedural allocation & patches compiled code

– Generates “interference graph” among variables

– Picks best variables to allocate to registers

– Executes register actions for allocated variables to patch code

April 15, 2015 More Register Allocation 14

Register Actions

Describe code patch if particular variable allocated to a register

– REMOVE(var): Delete instruction if var allocated to a register

– OPx(var): Replace op x with register that was allocated to var

– RESULT(var): Replace result with register allocated to var

Usage

-ri := rj op rk:

OP1(var) if var loaded into rj

OP2(var) if var loaded into rk

RESULT(var) if var stored from ri

-r := load var: REMOVE(var)

-store var := r: REMOVE(var)

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 8

April 15, 2015 More Register Allocation 15

Example

w := (x + y) * z

r1 := load x

r2 := load y

r3 := r1 + r2

r4 := load z

r5 := r3 * r4

store w := r5

REMOVE(x)

REMOVE(y)

OP1(x), OP2(y)

REMOVE(z)

OP2(z), RESULT(w)

REMOVE(w)

April 15, 2015 More Register Allocation 16

Another Example

w := y++ * z

r1 := load y

r2 := r1 + 1

store y := r2

r2 := load z

r1 := r1 * r2

store w := r1

REMOVE(y)

OP1(y), RESULT(y)

REMOVE(y)

REMOVE(z)

OP1(y), OP2(z), RESULT(w)

REMOVE(w)

r5 := r5 + 1

r1 := r5 * r2

Problem

– Loaded value is still live after store overwrites it

– Post-incremented value of y is lost if y is allocated to register

– We need two registers to hold the two values of y

Suppose y is allocated to register r5

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 9

April 15, 2015 More Register Allocation 17

Extension

More actions

– LOAD(var): Replace load with move from the register holding var

– STORE(var): Replace store with move to the register holding var

LOAD(var)

– Use instead of REMOVE(var) if var is stored into while result of load is

still live

STORE(var)

– Use instead of REMOVE(var) if source is stored into more than one

variable

April 15, 2015 More Register Allocation 18

Example Revisited

w := x := y++ * z

r1 := load y

r2 := r1 + 1

store y := r2

r2 := load z

r1 := r1 * r2

store x := r1

store w := r1

REMOVE(y)

OP1(y), RESULT(y)

REMOVE(y)

REMOVE(z)

OP1(y), OP2(z), RESULT(w)

REMOVE(w)

LOAD(y)

RESULT(y)

REMOVE(y)

REMOVE(z)

OP2(z), RESULT(w)

STORE(x), OP1(w)

REMOVE(w)

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 10

April 15, 2015 More Register Allocation 19

Deciding Which Variables to Promote to Registers

Steps

– Use bottom-up algorithm to assign pseudo registers

– Allocate pseudo registers to non-simultaneously live variables

– Allocate real registers to most frequently used pseudo registers

A

B C

D E

pr0 pr1 pr2 pr3 pr4

B

pr0 pr1

D

pr0 pr1 pr2

E

pr6 pr7 pr8

A

pr3 pr4 pr5

C

2 3 2 12 1

2 2

4 2 2

2 1 20

2 3 4

8 7 4 14 2 20 2 3 4total reference freq

reference freq

reference freq

reference freq

call graph

April 15, 2015 More Register Allocation 20

Possible Improvements

Use profile data to construct weights

Do global register allocation at compile-time

Track liveness information for variables at each call site

Track intraprocedural interference graph

Use real interference graph at link-time

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 11

April 15, 2015 More Register Allocation 21

Performance Summary

Machine: DEC WRL Titan RISC processor (64 registers)

Basic experiment

– Local compile-time allocator uses 8 registers

– Link-time allocator uses 52 registers

– Simple static frequency estimates

– Small benchmarks

10-25% speed-up over local allocation alone

Improvements

– 0-6% with profile data

– 0-5% with compile-time global allocation

Benefit decreases with number of link-time registers

Link-time better than global register allocation

April 15, 2015 More Register Allocation 22

Link-Time Register Allocation: The Big Picture

Delayed decision making

– Make decisions when more information is available, eg. link time

– Requires communication among different system components, in this case

the compiler and the linker

– Leads to staged compilation

– Intuitively, more information is better, but effectively using this

information can require cleverness

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 12

April 15, 2015 More Register Allocation 23

Dynamic compilation requires fast register allocation

– Linear Scan Register Allocation [Poletto & Sarkar99]

– Not based on graph coloring

– Greedy algorithm based on live intervals

– Spill the variable whose interval ends furthest in the future

– What if we had spilled a or b instead of c?

JIT Environment

a

b

c

d

e

1 2 3 4 5

a a,b b,d d,ea,b

spill c

2 registers available

April 15, 2015 More Register Allocation 24

Linear Scan Register Allocation

Performance results

– Linear scan is linear in number of variables

– Graph coloring is O(n2)

– Code quality is within 12% of graph coloring

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 13

April 15, 2015 More Register Allocation 25

Graph Coloring

– NP-complete

– Register allocation based on graph coloring is NP-complete

Use heuristics

– Coalesce, Color, Spill,

repeat . . .

New approach

– Use graph theory and SSA

Register Allocation Using SSA Form [Hack, et al 2006]

Build inter-

ference graph
Coalesce

Spill

Color

Color
Coalesce/
Exit SSASpill

April 15, 2015 More Register Allocation 26

The Highlights

SSA form

– The interference graphs of programs in SSA form are chordal, which are
perfect graphs

Perfect graphs

– Perfect graphs are k-colorable, where k is the size of the largest clique

Spilling

– Can determine exactly where spills must occur without using an
interference graph

Coloring

– In general, can color chordal graphs in O(|V|2)

– With dominance information, can color chordal graphs in O((G)•n) time,
where n = # of instructions and (G) = size of largest live set

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 14

April 15, 2015 More Register Allocation 27

Evaluation

Benefits

– No interference graph

– Decouples spilling and coalescing

Good way to trade off coalescing vs. copying

– Coalescing can reduce copies

– eg. mov t1, t2

– Coalescing can increase spills

– In traditional register allocation, removing -functions is equivalent to

prematurely coalescing SSA variables

– By keeping -functions, we coalesce as much as possible without incuring

spills

t1 t2 t1t2

coalesce

April 15, 2015 More Register Allocation 28

Concepts

Register allocation and procedure calls

Calling conventions

– Caller- vs. callee-saved registers

– Precoloring

– Finding register values in stack can be hard

Interprocedural analysis

– Link-time register allocation

– Register actions

Register allocation in a JIT

– Linear Scan Register Allocation

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 15

April 15, 2015 More Register Allocation 29

Next Time

Course projects

– How are projects coming along? Feel free to send me updates

Reading

– Read SoftBound paper

– Response due Sunday night

