Calvin Lin, The University of Texas at
Austin

More Register Allocation

Last time
— Register allocation
— Global allocation via graph coloring

Today
— More register allocation
— Procedure calls
— Interprocedural

April 15, 2015 More Register Allocation

Register Allocation and Procedure Calls

Problem
— Register values may change across procedure calls
— The allocator must be sensitive to this

Two approaches

— Work within a well-defined calling convention } Make local decisions
— Use interprocedural allocation } Make global decisions

April 15, 2015 More Register Allocation

CS380 C Compilers

Calvin Lin, The University of Texas at
Austin

Calling Conventions

Goals
— Fast calls (pass arguments in registers, minimal register saving/restoring)
— Language-independent
— Support debugging, profiling, etc.

Complicating Issues
— Varargs
— Passing/returning aggregates
— Exceptions, non-local returns
— setjmp () /longjmp ()
— Non-LIFO activation records

April 15, 2015 More Register Allocation

Architecture Review: Caller- and Callee-Saved Registers

Partition registers into two categories
— Caller-saved
— Callee-saved

Caller-saved registers
— Caller must save/restore these registers when live across call
— Callee is free to use them

caller
Example foo()/ /

{

Toalter = 4 goo() — | goo() isfreeto
save Tcaller mOdIfy rcaller
goo ()

restore r

caller
use Iiajier

April 15, 2015 More Register Allocation

CS380 C Compilers

Calvin Lin, The University of Texas at
Austin

Architecture Review: Caller- and Callee-Saved Registers

Callee-saved registers
— Callee must save/restore these registers when it uses them
— Caller expects callee to not change them

Example —
foo() / / goo () promises

callee goo () not to modify
=4

{ r

save r

Toallee =

restore r

{ save r

Lcallee

callee

callee

goo ()

callee

use Iiajlee

restore r

callee

April 15, 2015 More Register Allocation

Register Allocation and Calling Conventions

Insensitive register allocation
— Save all live caller-saved registers before call; restore after
— Save all used callee-saved registers at procedure entry; restore at return
— Suboptimal
foo ()
{
t=. A variable that is not live across calls should go in

= caller-saved registers
S = ..
£() A variable that is live across multiple calls should

g() go in callee-saved registers
. =8
}
Sensitive register allocation
— Encode calling convention constraints in the IR and interference graph
— How? Use precolored nodes

April 15, 2015 More Register Allocation

CS380 C Compilers

Calvin Lin, The University of Texas at
Austin

Precolored Nodes

Add architectural registers to interference graph
— Precolored (mutually interfering)
— Not simplifiable
— Not spillable (infinite degree)

Express allocation constraints
— Integers usually can’t be stored in floating point registers
— Some instructions can only store result in certain registers
— Caller-saved and callee-saved registers. . .

N\ 2]
Nl /\
=“«—E—B

floating point integer floating point integer
April 15, 2015 More Register Allocation

Precolored Nodes and Calling Conventions

Callee-saved registers /
— Treat entry as def of all callee-saved registers c ved regs
— Treat exit as use of them all

— Allocator must “spill” callee-saved registers to use them

foo ()

{
def (x3)

Live range of callee-saved registers
use (r3)

}
. callee-saved regs
Caller-saved registers E

— Variables live across call interfere with all caller-saved registers
— Splitting can be used (before/during/after call segments)

April 15, 2015 More Register Allocation

CS380 C Compilers

Calvin Lin, The University of Texas at
Austin

Problem with Callee-Saved Registers
Run-time systems (e.g., setjmp () /Llongjmp () and debuggers) need to
know register values in any stack frame

— Caller-saved registers are on stack frame at known location
— Callee-saved registers?

F4: saver3
F3:
rl, r2 caller-saved)
r3 callee-saved » F2: saversr2

F1:

April 15, 2015 More Register Allocation

Example

rl, r2 caller-saved
r3 callee-saved

c..0a ...
call goo
... b ...
r3 := tl
use (r3)
return

April 15, 2015 More Register Allocation

CS380 C Compilers

Calvin Lin, The University of Texas at
Austin

Tradeoffs

Callee-saved registers

+ Decreases code size: one procedure body may have multiple calls

+ Small procedures tend to need fewer registers than large ones; callee-save
makes sense because procedure sizes are shrinking

— May increase execution time: For long-lived variables, may save and

restore registers multiple times, once for each procedure, instead of a
single end-to-end save/restore

The larger “problem”

— We’re making local decisions for policies that require global information

April 15, 2015 More Register Allocation

Interprocedural Register Allocation

Wouldn’t it be nice to. . .

— Allocate registers across calls to minimize unnecessary saves/restores?
— Allocate global variables to registers over entire program?

Compile-time interprocedural register allocation?
+ Could have great performance
— Might be expensive

— Might require lots of recompilation after changes
(no separate compilation?)

Link-time interprocedural re-allocation?
+ Low compile-time cost

+ Little impact on separate compilation
— Link-time cost

April 15, 2015 More Register Allocation

CS380 C Compilers

Calvin Lin, The University of Texas at
Austin

Wall’s Link-time Register Allocator [wall 86]

Overall strategy
— Compiler uses 8 registers for local register allocation
— Linker controls allocation of remaining 52 registers

Compiler does local allocation & planning for linker

— Load all values at beginning of each basic block;
store all values at end of each basic block

— Generate call graph information
— Generate variable usage information for each procedure
— Generate register actions

Linker does interprocedural allocation & patches compiled code
— Generates “interference graph” among variables
— Picks best variables to allocate to registers
— Executes register actions for allocated variables to patch code

April 15, 2015 More Register Allocation

Register Actions

Describe code patch if particular variable allocated to a register
— REMOVE(var): Delete instruction if var allocated to a register
— OPx(var): Replace op x with register that was allocated to var
— RESULT(var): Replace result with register allocated to var

Usage
—r := load var: REMOVE(var)
:= rj op rk:
OP1(var) if var loaded into rj
OP2(var) if var loaded into rk
RESULT(var) if var stored from ri

—store var := r: REMOVE(var)

April 15, 2015 More Register Allocation

CS380 C Compilers

Calvin Lin, The University of Texas at
Austin

Example

w = (x +

REMOVE(x)
REMOVE(y)
OP1(x), OP2(y)
REMOVE(z)
OP2(z), RESULT (w)
REMOVE(w)

April 15, 2015 More Register Allocation

Another Example

w = y+t+ * z
Suppose y is allocated to register 5
REMOVE(y)

r5 + 1 OP1(y), RESULT(y)
REMOVE(y)
:= load z REMOVE(z)
:= r5 * r2 OP1(y), OP2(z), RESULT(w)
REMOVE(w)
Problem
— Loaded value is still live after store overwrites it

— Post-incremented value of y is lost if y is allocated to register
— We need two registers to hold the two values of y

April 15, 2015 More Register Allocation

CS380 C Compilers

Calvin Lin, The University of Texas at
Austin

Extension

More actions
— LOAD(var): Replace load with move from the register holding var
— STORE(var): Replace store with move to the register holding var

LOAD(var)
— Use instead of REMOVE(var) if var is stored into while result of load is
still live

STORE(var)

— Use instead of REMOVE(wvar) if source is stored into more than one
variable

April 15, 2015 More Register Allocation

Example Revisited

= yt++ ¥ oz

= load y removew) LOAD(y)
rl + 1 oriy) resuLT) RESULT (y)
Y = r2 removey REMOVE(y)

= load z revovew) REMOVE(z)

= rl * r2 op oreresuere) OP2(z), RESULT (w)
x :=rl STORE(x), OP1(w)
w = rl revovew REMOVE(w)

April 15, 2015 More Register Allocation

CS380 C Compilers

Calvin Lin, The University of Texas at
Austin

Deciding Which Variables to Promote to Registers

Steps
— Use bottom-up algorithm to assign pseudo registers
— Allocate pseudo registers to non-simultaneously live variables
— Allocate real registers to most frequently used pseudo registers

A : A
/ \ pr0 ‘prl ‘prz ‘pr3 ‘pr4

reference freq 2 3 2 12 1 2 3 4

(o) :

/ \ reference freq 2 2 1 20
ONO z
call graph pro [pr. | pr2

reference freq 4 2 2

total reference freq 8 7 4

April 15, 2015 More Register Allocation

Possible Improvements

Use profile data to construct weights

Do global register allocation at compile-time

Track liveness information for variables at each call site
Track intraprocedural interference graph

Use real interference graph at link-time

April 15, 2015 More Register Allocation

CS380 C Compilers

10

Calvin Lin, The University of Texas at
Austin

Performance Summary

Machine: DEC WRL Titan RISC processor (64 registers)

Basic experiment
— Local compile-time allocator uses 8 registers

— Link-time allocator uses 52 registers

— Simple static frequency estimates

— Small benchmarks

=10-25% speed-up over local allocation alone
Improvements

— 0-6% with profile data

— 0-5% with compile-time global allocation

Benefit decreases with number of link-time registers

Link-time better than global register allocation

April 15, 2015 More Register Allocation

Link-Time Register Allocation: The Big Picture

Delayed decision making
— Make decisions when more information is available, eg. link time

— Requires communication among different system components, in this case
the compiler and the linker

— Leads to staged compilation

— Intuitively, more information is better, but effectively using this
information can require cleverness

April 15, 2015 More Register Allocation

CS380 C Compilers

11

Calvin Lin, The University of Texas at
Austin

JIT Environment

Dynamic compilation requires fast register allocation
— Linear Scan Register Allocation [Poletto & Sarkar99]
— Not based on graph coloring
— Greedy algorithm based on live intervals
— Spill the variable whose interval ends furthest in the future

1 2 3 4 5 2 registers available
a a,babb,dd,e
spill ¢

— What if we had spilled a or b instead of c?
April 15, 2015 More Register Allocation

Linear Scan Register Allocation

Performance results
— Linear scan is linear in number of variables
— Graph coloring is O(n?)
— Code quality is within 12% of graph coloring

April 15, 2015 More Register Allocation

CS380 C Compilers

12

Calvin Lin, The University of Texas at
Austin

Register Allocation Using SSA Form [Hack, et al 2006]

Graph Coloring
— NP-complete
— Register allocation based on graph coloring is NP-complete

Use heuristics
— Coalesce, Color, Spill,
repeat. . .

Build inter-
ference graph

New approach
— Use graph theory and SSA

April 15, 2015 More Register Allocation

The Highlights

SSA form

— The interference graphs of programs in SSA form are chordal, which are
perfect graphs

Perfect graphs
— Perfect graphs are k-colorable, where k is the size of the largest clique

Spilling
— Can determine exactly where spills must occur without using an
interference graph

Coloring
— In general, can color chordal graphs in O(|V|?)

— With dominance information, can color chordal graphs in O(w(G)-n) time,
where n = # of instructions and o(G) = size of largest live set

April 15, 2015 More Register Allocation

CS380 C Compilers

Calvin Lin, The University of Texas at
Austin

Evaluation

Benefits
— No interference graph
— Decouples spilling and coalescing

Good way to trade off coalescing vs. copying
— Coalescing can reduce copies
— €g.mov tl1, t2
— Coalescing can increase spills

coalesce

w) [W e

— In traditional register allocation, removing ¢-functions is equivalent to
prematurely coalescing SSA variables

— By keeping ¢-functions, we coalesce as much as possible without incuring

spills
April 15, 2015 More Register Allocation 27

Concepts

Register allocation and procedure calls

Calling conventions
— Caller- vs. callee-saved registers
— Precoloring
— Finding register values in stack can be hard

Interprocedural analysis
— Link-time register allocation

— Register actions

Register allocation ina JIT
— Linear Scan Register Allocation

April 15, 2015 More Register Allocation

CS380 C Compilers

14

Calvin Lin, The University of Texas at
Austin

Next Time

Course projects
— How are projects coming along? Feel free to send me updates

Reading
— Read SoftBound paper
— Response due Sunday night

April 15, 2015 More Register Allocation

CS380 C Compilers

15

