Instruction Scheduling

Last time
— Register allocation

Today
— Instruction scheduling
— The problem: Pipelined computer architecture
— Asolution: List scheduling
— Improvements on this solution

April 19, 2015 Instruction Scheduling

Background: Pipelining Basics

Idea

— Begin executing an instruction before completing the previous one

Without Pipelining

time >
g‘ Instr,
S Instr,
=.
2 Instr,

Instr;
Instr,
N— —

April 19, 2015

Instruction Scheduling

With Pipelining

time

Instr,

suodNSul

Instr,

Instr,

Instr;

Instr,

J

Idealized Instruction Data-Path

Instructions go through several stages of execution

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
: Instruction :
Instruction Decode & — Execute — Memory Rgglster
Fetch . Access Write-back
Register Fetch
IF = ID/RF = EX = MEM = WB
time >
S [IF [ID |EX |[MM|wB
=] IF [ID |EX |MM|WB
%. IF [ID |EX |MM|WB
T IF [ID |EX [MM|WB
IF [ID |EX |MM|WB
IF [ID |EX |MM|WB
April 19, 2015 Instruction Scheduling

Pipelining Detalils

Observations
— Individual instructions are no faster (but throughput is higher)
— Potential speedup determined by number of stages (more or less)
— Filling and draining pipe limits speedup
— Rate through pipe is limited by slowest stage
— Less work per stage implies faster clock

Modern Processors

— Long pipelines: 5 (Pentium), 14 (Pentium Pro), 22 (Pentium 4), 31
(Prescott), 14 (Core i7), 8 ARM 11

— Issue width: 2 (Pentium), 4 (UltraSPARC) or more (dead Compag EV8)

— Dynamically schedule instructions (from limited instruction window)
or statically schedule (e.g., IA-64)

— Speculate
— Outcome of branches
— Value of loads (research)

April 19, 2015 Instruction Scheduling

What Limits Performance?

Data hazards
— Instruction depends on result of prior instruction that is still in the pipe

Structural hazards

— Hardware cannot support certain instruction sequences because of limited
hardware resources

Control hazards
— Control flow depends on the result of branch instruction that is still in the
pipe

An obvious solution
— Stall (insert bubbles into pipeline)

April 19, 2015 Instruction Scheduling

Stalls (Data Hazards)

Code
add $rl1,$r2,$r3 /I Sr1 1s the destination
mul $r4,S$rl,Srl Il Sr4 is the destination

Pipeline picture

time >

"IE |ID |EX |MM]|wB

SUOIINISUI

%
%
%

o

X

z

2

Z

April 19, 2015 Instruction Scheduling

Stalls (Structural Hazards)

Code
mul rl,Sr2,S$r3 I/ Suppose multiplies take two cycles
mul $r4,$r5,S$r6

Pipeline Picture

time >

IF |ID |EX | MM | WB

SUOIONJAISUI

April 19, 2015 Instruction Scheduling

Stalls (Control Hazards)

Code
bz $rl, label /l'If $r1==0, branch to label
add $r2,$r3,Sr4

Pipeline Picture

A 4

time

IF |ID |EX |MM|WB

SUOIONJAISUI

April 19, 2015 Instruction Scheduling

Hardware Solutions

Data hazards
— Data forwarding (doesn’t completely solve problem)
— Runtime speculation (doesn’t always work)

Structural hazards
— Hardware replication (expensive)
— More pipelining (doesn’t always work)

Control hazards
— Runtime speculation (branch prediction)

Dynamic scheduling

— Can address all of these issues
— Very successful

April 19, 2015 Instruction Scheduling

Context: The MIPS R2000

MIPS Computer Systems
— “First” commercial RISC processor (R2000 in 1984)
— Began trend of requiring nontrivial instruction scheduling by the compiler

What does MIPS mean?
— Microprocessor without Interlocked Pipeline Stages

April 19, 2015 Instruction Scheduling 10

Instruction Scheduling for Pipelined Architectures

Goal

— An efficient algorithm for reordering instructions to minimize pipeline
stalls

Constraints
— Data dependences (for correctness)
— Hazards (can only have performance implications)

Simplifications
— Do scheduling after instruction selection and register allocation
— Only consider data hazards

April 19, 2015 Instruction Scheduling

11

Recall Data Dependences

Data dependence
— A data dependence is an ordering constraint on 2 statements

— When reordering statements, all data dependences must be observed to
preserve program correctness

True (or flow) dependences
— Write to variable x followed by a read of x (read after write or RAW)

X = 5;
Anti-dependences print (x); \
— Read of variable x followed by a write (WAR)
int ;
Output dependences zrins , (x) false
— Write to variable x followed by > dependences
another write to x (WAW) x = gr'
X = ;
J

April 19, 2015 Instruction Scheduling 12

List Scheduling [Gibbons & Muchnick *86]

Scope
— Basic blocks

Assumptions
— Pipeline interlocks are provided (i.e., algorithm need not introduce no-ops)
— Pointers can refer to any memory address (i.e., no alias analysis)
— Hazards take a single cycle (stall); here let’s assume there are two...
— Load immediately followed by ALU op produces interlock
— Store immediately followed by load produces interlock

Main data structure: dependence DAG
— Nodes represent instructions
— Edges (s;,,) represent dependences between instructions
— Instruction s, must execute before s,
— Sometimes called data dependence graph or data-flow graph

April 19, 2015 Instruction Scheduling 13

Dependence Graph Example

dst src src

Sample code [Dependence graph
1 addi $r2,1,Srl
2 addi $sp,12,8sp O ©
3 |st a, Sro0
4 |1d $r3,-4(S$sp) e e e
5 |1d Srd ,-8 (Ssp)
6 laddi| $sp,8,$sp
[/ |st 0(Ssp),S$r2 ‘3 'D
8 |1d $r5,a
9 |addi | $r4,1,8r4 (7)

Hazards in current schedule
—(3,4), (5,6), (7,8), (8,9)

Any topological sort is okay, but we want best one

April 19, 2015 Instruction Scheduling

Scheduling Heuristics

Goal
— Avoid stalls

What are some good heuristics?

— Does an instruction interlock with any immediate successors in the
dependence graph?

— How many immediate successors does an instruction have?
— Is an instruction on the critical path?

April 19, 2015 Instruction Scheduling

15

Scheduling Heuristics (cont)

Idea: schedule an instruction earlier when...
— It does not interlock with the previously scheduled instruction
(avoid stalls)

— It interlocks with its successors in the dependence graph
(may enable successors to be scheduled without stall)

— It has many successors in the graph
(may enable successors to be scheduled with greater flexibility)

— It is on the critical path
(the goal is to minimize time, after all)

April 19, 2015 Instruction Scheduling

16

Scheduling Algorithm

Build dependence graph G
Candidates < set of all roots (nodes with no in-edges) in G
while Candidates # &
Select instruction s from Candidates {Using heuristics—in order}
Schedule s
Candidates «<— Candidates — s
Candidates < Candidates U “exposed” nodes
{Add to Candidates those nodes whose
predecessors have all been scheduled}

April 19, 2015 Instruction Scheduling 17

Scheduling Example

Dependence Graph Scheduled Code

3 st a, $r0

2 addi $sp,12,8sp
5 1d Sr4d ,-8 ($sp)
4 1d Sr3,-4($sp)
8 1d $r5,a

1 addi $r2,1,$rl
6 addi $sp,8,S$sp
7 st 0(Ssp) ,5r2
9 addi $r4,1,S$r4

Candidates Hazards in new schedule
1 addi $r2,1,Srl —(8,1)

2 addi S$sp,12,S$sp

April 19, 2015 Instruction Scheduling

18

Scheduling Example (cont)

Original code

1 addi $r2,1,Srl

2 addi $sp,12,$sp
3 st a, $r0

4 1d Sr3,-4($sp)
5 1d Sr4d ,-8 ($sp)
6 addi $sp,8,S$sp
[/ st 0($Ssp),S$r2
8 1d $r5,a

9 addi $r4,1,S$r4

Hazards in original schedule
—(3,4), (5,6), (7,8), (8,9)

st
addi
1d
1d
1d
addi
addi
st
addi

O NO L OO POoOIDNDW

a, $r0
Ssp,12,$sp
$r4/‘8($SP)
$r3,-4($sp)
$r5,a
$Sr2,1,Srl
$sp,8,98sp
0($sp) ,$r2
Srd4,1,Sr4

Hazards in new schedule

-(8,1)

April 19, 2015 Instruction Scheduling

19

Complexity

Quadratic in the number of instructions
— Building dependence graph is O(n?)
— May need to inspect each instruction at each scheduling step: O(n?)
— In practice: closer to linear

April 19, 2015 Instruction Scheduling

20

Improving Instruction Scheduling

Techniques
— Scheduling loads
— Register renaming
— Loop unrolling

} Deal with data hazards

Deal with control hazards

April 19, 2015 Instruction Scheduling

21

Scheduling Loads

Reality
— Loads can take many cycles (slow caches, cache misses)
— Many cycles may be wasted

Most modern architectures provide non-blocking (delayed) loads
— Loads never stall
— Instead, the use of a register stalls if the value is not yet available
— Scheduler should try to place loads well before the use of target register

April 19, 2015 Instruction Scheduling 22

Scheduling Loads (cont)

Hiding latency
— Place independent instructions behind loads

load rl load rl
load r2 add r3
add r3 load| r2
| | | | | | | | | | | | | | | | |
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
time > time >

— How many instructions should we insert?
— Depends on latency
— Difference between cache miss and cache hits are growing
— If we underestimate latency: Stall waiting for the load
— If we overestimate latency: Hold register longer than necessary
Wasted parallelism

April 19, 2015 Instruction Scheduling 23

Balanced Scheduling [Kerns and Eggers’92]

Idea
— Impossible to know the latencies statically

— Instead of estimating latency, balance the ILP (instruction-level
parallelism) across all loads

— Schedule for characteristics of the code instead of for characteristics of the
machine

Balancing load
— Compute load level parallelism

independent instructions
of loads that can use this parallelism

LLP=1+

April 19, 2015 Instruction Scheduling 24

Balanced Scheduling Example

Example
@ @ @ h “dSt i balanced
scheaufing scheduling
@ @ @ wW=5 w=1
LO LO L0
X0 L1l X0
@ X1 X0 X1
X2 X1
X3 X2
LLP for LO = 1+4/2=3 o "
LLPforL1= 1+2/1=3

/ \

Pessimistic ~ Optimistic

April 19, 2015 Instruction Scheduling

25

Register Renaming

Idea
— Reduce false data dependences by reducing register reuse
— Give the instruction scheduler greater freedom

Example
add Srl, $r2, 1 add Srl, S$r2, 1
st Srl, [$fp+52] st $Srl, [$fp+52]
mul $Srl, $r3, 2 ‘ mul $r1l, $r3, 2
st $rl, [$fp+40] st $r1l, [S$fp+40]

add Srl, $r2, 1
mul Srll, $r3, 2

) st Srl, [$fp+52]
st $rll, [$£fp+40]

April 19, 2015 Instruction Scheduling 26

Loop Unrolling

Idea

— Replicate body of loop and iterate fewer times
— Reduces loop overhead (test and branch)
— Creates larger loop body = more scheduling freedom

Example
L: 1df [rl], £O
fadds £0, £1, f2
stf £2, [rl]
(sub rl1l, 4, rl
loop |cmp rl, O
overhead | bg L
. nop

April 19, 2015

stf
sub
cmp
bg

nop
1df

0

| | |
1 2 3 4

5 6 7 8 9 10 11 12 13 14 15 16

Cycles per iteration: 12

Instruction Scheduling

27

Loop Unrolling Example

Sample loop
L: 1df [rl], f£O 14f
fadds £0, fl, £2 fadds
1df [rl-4], £10 j}dc’ifd
Ca S
fadds £10, f1, f£f12 Stf
stf f£2, [rl] stf
stf £12, [rl1-4] sub
cmp
sub rl, 8, rl" bg
cmp rl, O Loop nop
> 1df
bg L Overhead | | | | | | | | | | | | | i | |
nop y, 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cycles per iteration: 14/2 =7
(71% speedup!)

The larger window lets us hide the latency of the £adds instruction

April 19, 2015 Instruction Scheduling

Phase Ordering Problem

Register allocation
— Tries to reuse registers
— Atrtificially constrains instruction schedule

Just schedule instructions first?
— Scheduling can dramatically increase register pressure

Classic phase ordering problem
— Tradeoff between memory and parallelism

Approaches
— Consider allocation & scheduling together
— Run allocation & scheduling multiple times
(schedule, allocate, schedule)

April 19, 2015 Instruction Scheduling

29

Concepts

Instruction scheduling
— Reorder instructions to efficiently use machine resources
— List scheduling

Improving instruction scheduling
— Balanced scheduling
— Consider characteristics of the program
— Register renaming
— Loop unrolling

Phase ordering problem

April 19, 2015 Instruction Scheduling

30

Next Time

Lecture
— More instruction scheduling

April 19, 2015 Instruction Scheduling

31

Scheduling Example

Dependence Graph Scheduled Code
3 st a, $r0
D 3 2 addi S$sp,12,Ssp
4 1d Sr3,-4 (Ssp)
(4) (5) (8) 5 1d $rd,-8($sp)
8 1d $r5,a
1 addi $r2,1,Srl
(&) © 6 addi $sp,8,S$sp
7 st 0(Ssp) ,Sr2
" 9 addi $r4,1,S5r4
Candidates Hazards in New Schedule
addi $r2,1,$rl —(8,1)

addi $spB,B2%8pp)
&d 8£45p8 ($5R)
1d $r5,a

addi $r4,1,$r4
April 19, 2015 Instruction Scheduling

©Coo&s ™

32

Scheduling Example

Dependence Graph Scheduled Code
3 st a, $r0
o 3 2 addi S$sp,12,Ssp
4 1d Sr3,-4 (Ssp)
o e e 5 1d $rd,-8(S$sp)
8 1d $r5,a
6 addi $sp,8,S$sp
‘, ‘; 1 addi $r2,1,Srl
7 st 0(Ssp) ,Sr2
" O addi $r4,1,$r42
Candidates Hazards in New Schedule
addi $r2,1,$rl ~(8,1)

addi $sp,12,8sp
st 0 ($sp) ,$r2
1d $r5,a

addi $r4,1,$r4
April 19, 2015 Instruction Scheduling

oo -

33

Scheduling Example

Dependence Graph
(D /@\ (3
O OENO
OO

Candidates
1 addi $r2,1,Srl
2 addi $sp,12,8sp

April 19, 2015

Scheduled Code

3 st a, $r0

2 addi S$sp,12,Ssp
4 1d Sr3,-4 (Ssp)
5 1d Srd,-8(S$sp)
1 addi $r2,1,Srl
6 addi $sp,8,S$sp
8 1d $r5,a

7 st 0($sp),$r2
O addi $r4,1,S$r42

Hazards in New Schedule
_(811)

Instruction Scheduling

34

Scheduling Example

Dependence Graph

f 06 :

Candidates
1 addi $r2,1,8rl
2 addi $sp,12,8sp
3 st a, $r0

April 19, 2015

Scheduled Code

3 st a, $r0

2 addi S$sp,12,Ssp
4 1d Sr3,-4 (Ssp)
5 1d Srd,-8(S$sp)
6 addi $sp,8,S$sp
1 addi $r2,1,Srl
7 st 0($sp),$r2
8 1d $r5,a

9 addi $r4,1,Sr4

Hazards in New Schedule
—(5,6), (7,8)

Instruction Scheduling

35

Software Pipelining

Basic Idea

— lIdeally, we could completely unroll loops and have complete freedom in
scheduling across iteration boundaries

— Software pipelining is a systematic approach to scheduling across iteration
boundaries without doing loop unrolling

— Use control-flow profiles to identify most frequent path through a loop

— If the most frequent path has hazards, try to move some of the long latency
Instructions to previous iterations of the loop

— Three parts of a software pipeline
— Kernel: Steady state execution of the pipeline
— Prologue: Code to fill the pipeline
— Epilogue: Code to empty the pipeline

April 19, 2015 Instruction Scheduling 36

Software Pipelining Example

Sample loop (reprise)

L: 1df [rl], £O0 ldf
fadds £0, f1, f£2 tadds
stf
stf £f2, [rl] sub
sub rl, 4, rl Cme
cmp rl, O r?op
bg L 1df
nop R R

Cycles per iteration: 12

April 19, 2015 Instruction Scheduling

Software Pipelining Example (cont)

1df [r1], f£O stf £f2, [rl]
fadds £fo, f1, f2 fadds f0, f1, f2
stf £f2, [rl] 1d4f [r1-8], fO
sub rl, 4, rl sub rl, 4, rl
1df [rl], f£O stf £f2, [rl]
fadds £fo0, f£1, £f2 fadds f0, £f1, £2
stf £f2, [rl] 1df [r1-8], f£O
sub rl, 4, rl sub rl, 4, rl

1df [rl], £0 stf £2, [rl]
fadds £f0, f£1, ff———__,,,—————dr e o 51
stf £2, [rl] 14f [r1-8], f£O

sub rl, 4, rl » sub rl, 4, rl
1df [rl], f£O

fadds fo, f1, f2

stf f2[[rl]

sub rl, 4, rl

April 19, 2015 Instruction Scheduling

Software Pipelining Example (cont)

Sample loop
1df [rl], £O stf
fadds £0, £1, £2 faddfdf [T
1df [r1-4], £0 cmp
L: stf £2, [rl] bg
fadds £0, £1, £2 sub
1df [rl-8], £O |
Cmp rl’ 8 0 I1 I2 ; tll 5I 6I 7I 8I 9I 1(|) 11I 12I 13I 14I 15I 16I
bg L

Cycles per iteration: 7 (71% speedup!)

sub rl1l, 4, rl
stf f£2, [rl]
sub rl1l, 4, rl
fadds £0, £f1, £f2
stf f£2, [rl]

April 19, 2015 Instruction Scheduling 39

