
1

April 21, 2015 Predication and Speculation 1

Predication and Speculation

Last time

– Instruction scheduling

Today

– Brief history of computer architecture

– Predication and speculation

– Compiling for IA-64

April 21, 2015 Predication and Speculation 2

A Brief History of Computer Architecture

The Early Years: CISC

– Programmed by humans

– Feature bloat:

– Provide many instructions

– Provide many addressing modes

– Variable length instructions

– Complex instructions

– VAX: REMQHI, EDITPC, POLYF

Problem

– Difficult to implement efficiently

– Difficult to pipeline

– Difficult to generate good code for

2

April 21, 2015 Predication and Speculation 3

A Brief History of Computer Architecture (cont)

The Early 1980s: RISC

– Simplify the ISA to facilitate pipelining

– Uniform instruction format simplifies decoding

– Uniform instructions easier to pipeline

– Pipelining improves clock speeds

Uniform ISA Simplifies Compilation

– Stanford: Produce an architecture that leverages their strong compiler

group

– Berkeley: Produce an architecture that does not require heroic compilation

Problems

– Uncertain latency

– No binary compatibility

April 21, 2015 Predication and Speculation 4

A Brief History of Computer Architecture (cont)

The 1990’s: Dynamic Superscalar

– Simplified pipelining and larger transistor budgets enable hardware

scheduling

– Re-order instructions

– Hardware speculation (branch prediction)

– Increased issue width

Note

– We’re talking about implementation trends here, not changes in the

architecture

Problems

– The bureaucracy problem

– More and more resources being devoted to control and management

– Fewer and fewer resources being devoted to actual work

– ILP limited (typically between 1 and 2)

3

April 21, 2015 Predication and Speculation 5

A Brief History of Computer Architecture (cont)

The 1990’s: CISC implemented on RISC core

– Provide binary compatibility

– Dynamically translate CISC instructions to RISC instructions

– Best of both worlds?

Note

– This again is a microarchitectural change, not an architectural change

Problems

– Hardware complexity

– Hardware still needs to discover parallelism

– Still have the n2 scheduling problem

– Still difficult to compile for

April 21, 2015 Predication and Speculation 6

Implicitly Sequential Instruction Stream

Problems

– Compilers can expose parallelism

– Compilers must eventually emit linear code

– Hardware must then re-analyze code to perform OoO execution

– Hardware loses information available to the compiler

– Compiler and hardware can only communicate through the sequential

stream of instructions, so hardware does redundant work

How can we solve this problem?

source code compiler

parallelized
code

machine code hardware

program

FPU’s

4

April 21, 2015 Predication and Speculation 7

Explicitly Parallel Instruction Stream

A solution

– Hardware does not need to re-analyze code to detect dependences

– Hardware does not perform OoO execution

VLIW: Very Long Instruction Word

– Each instruction controls multiple functional units

– Each instruction is explicitly parallel

source code compiler

parallelized
code

parallel machine code hardware

program

FPU’s

April 21, 2015 Predication and Speculation 8

VLIW

Basic idea

– Each instruction controls multiple functional units

– Rely on compilers to perform scheduling and to identify parallelism

– Simplified hardware implementations

Benefits

– Compiler can look at a larger window of instructions than hardware

– Can improve the scheduler even after a chip has been fabricated

Problems

– Slow compilation times

– No binary compatibility

– Difficult for compilers to deal with aliasing and long latencies

– Code is implementation-specific

5

April 21, 2015 Predication and Speculation 9

VLIW and IA-64

VLIW

– Big in the embedded market

– Binary compatibility is less of an issue

– An old idea

– Horizontal microcode

– Multiflow (1980’s)

– Intel i860 (early 1990’s)

Terminology

– EPIC: Explicitly Parallel Instruction Computer

– Recent twist on VLIW

– Don’t make code implementation-specific

– IA-64 was Intel’s EPIC instruction set

– Itanium was the first IA64 implementation

April 21, 2015 Predication and Speculation 10

Explicitly Parallel Instruction Sets: IA-64

IA-64 Design Philosophy

– Break the model of implicitly sequential execution

– Use template bits to specify instructions that can execute in parallel

– Issue these independent instructions to the FPU’s in any order

– (Templates will cause some increase in code size)

– The hardware can then grab large chunks of instructions and simply feed

them to the functional units

– Hardware does not spend a lot of time figuring out order of

execution; hence, simplified hardware control

– Statically scheduled code

– Hardware can then provide a larger number of registers

– 128 (about 4 times more than current microprocessors)

– Number of registers fixed by the architecture, but number of

functional units is not

6

April 21, 2015 Predication and Speculation 11

IA-64

A return to hardware “simplicity”

– Revisit the ideas of VLIW

– Simplify the hardware to make it faster

– Spend larger percentage of cycles doing actual work

– Spend larger percentage of hardware on registers, caches, and FPU’s

– Use larger number of registers to support more parallelism

Engineering goal

– Produce an “inherently scalable

architecture”

– Design an architecture―an

ISA―for which there can be

many implementations (lBM/360)

– This flexibility allows the implementation

to change for “years to come”

parallel machine code hardware

program

program

April 21, 2015 Predication and Speculation 12

Two Key Performance Bottlenecks

Branches

– Modern microprocessors perform good branch prediction

– But when they mispredict, the penalty is high

– Penalties increase as we increase pipeline depths

– Estimates: 20-30% of performance goes to branch mispredictions [Intel98]

– Branches also lead to small basic blocks, which restrict latency hiding

opportunities

Memory latency

– CPU speed doubles every 18 months (60% annual increase)

– Memory speed increase about 5% per year

7

April 21, 2015 Predication and Speculation 13

Control dependences inhibit parallelism

Don’t know whether to execute

instr3 or instr5 until the cmp is

completed

instr1

instr2

. . .

P1,P2 cmp(r2,0)

(P2)jump else

instr3

instr4

jump Exit

instr5

instr6

. . .

instr7

Branches Limit Performance

if

then

else

April 21, 2015 Predication and Speculation 14

Idea

Add a predicate flag to each instruction

 If predicate is true, the instruction is

executed

 If predicate is false, the instruction is

not executed

Predicates are simply bits in a register

Converts control flow into data flow

Exposes parallelism

With predicate flags, instr3 – instr7 can

all be fetched in parallel

instr1

instr2

. . .

P1,P2 cmp(r2,0)

(P2)jump else

(P1)instr3

(P1)instr4

jump Exit

(P2)instr5

(P2)instr6

. . .

instr7

Predicated Execution

if

then

else

This is called if-conversion

Benefits?

Fewer branches (fewer mispredictions)

Larger basic blocks

More parallelism

8

April 21, 2015 Predication and Speculation 15

The Memory Latency Problem

Memory Latency

– Writes can be done out of order and can be buffered

– Loads are the problem: processor must wait for loads to complete before
using the loaded value

– Standard latency-hiding trick: issue non-blocking load as early as possible
to hide latency

The Problem

– Loads typically issued at beginning
of basic block

– Can’t we move the Load outside the
basic block?

– If the Load were to cause an
exception when the basic block
is not executed, then the early
Load causes an erroneous
exception

instr1

instr2

. . .

(P2)jump else

Load

instr3

jump Exit

April 21, 2015 Predication and Speculation 16

Benefits?

More freedom to move code– can now move Loads above branches as

long as the check is in the original basic block

Complication: What happens if chk.s is issued without a corresponding

load.s?

This is clearly an error, so we need to be careful about where we

move the load.s

(Control) Speculative Loads

Split-phase operation

– Standard trick in parallel computing

– Issue the load (load.s) as early as you

wish

– Detect any exception and record it

somewhere with the target of the load

– Can later check to see whether the load

completed successfully: chk.s

load.s r13

instr1

instr2

jump P2

load

instr3

chk.s r13

. . .

9

April 21, 2015 Predication and Speculation 17

(Data) Speculative Loads

Issue

– Want to speculate that a load is not data

dependent on a preceding store

Split-phase operation

– Issue early advanced load (record entry

in advanced load address table (ALAT))

– Clear corresponding ALAT entries at

store

– Check instruction looks for ALAT entry

(branch to patch code if not found)

Note

– Can speculate instructions that depend

on load, too

load.a r13

instr1

instr2

store

load

chk.a r13

instr3

reg # addr size

reg # addr size

reg # addr size

. . .

chk/ld CAM on reg #

st CAM on addr

April 21, 2015 Predication and Speculation 18

The Problem

– Place N Queens on a chessboard so they don’t attack each other

The Solution

– March through columns with a recursive procedure

– B array: check the row

– A and C arrays: check the two diagonals

– Code to test if the (i,j)th square is legal:

if ((b[i]==0) && (a[i+j-1]==0) && c[i+j+N]==0)

N-Queens Example

10

April 21, 2015 Predication and Speculation 19

N-Queens Solution

Load the addresses into registers

(Assume we can issue 3 instructions per cycle)

De-reference the arrays

Test for legality

Summary

3 basic blocks

12 instructions

13 cycles (assuming 1 cycle per instruction

except 2 cycles per load)

3 conditional branches

Almost no parallelism!

Parallelism boundary

Basic block boundary

1

2

4

5

6

8

9

10

12

13

r1 = &b[i]

r3 = &a[i+j-1]

r5 = &c[i+j+N]

load r2 = [r1]

P1,P2 cmp(r2,0)

<P2> jump Else

load r4 = [r3]

P3,P4 cmp(r4,0)

<P4> jump Else

load r6 = [r5]

P5,P6 cmp(r6,0)

<P5> jump Then

Else . . .

if ((b[i]==0) && (a[i+j-1]==0) && c[i+j+N]==0)

April 21, 2015 Predication and Speculation 20

r1 = &b[i]

r3 = &a[i+j-1]

r5 = &c[i+j+N]

load r2 = [r1]

load.s r4 = [r3]

load.s r6 = [r5]

P1,P2 cmp(r2,0)

<P2> jump Else

check.s r4

P3,P4 cmp(r4,0)

<P4> jump Else

check.s r6

P5,P6 cmp(r6,0)

<P5> jump Then

N-Queens Solution: Adding Speculation

9 cycles, 3 branches

1

2

4

5

With Speculation

6

7

8

9

r1 = &b[i]

r3 = &a[i+j-1]

r5 = &c[i+j+N]

load r2 = [r1]

P1,P2 cmp(r2,0)

<P2> jump Else

load r4 = [r3]

P3,P4 cmp(r4,0)

<P4> jump Else

load r6 = [r5]

P5,P6 cmp(r6,0)

<P5> jump Then

13 cycles, 3 branches

1

2

4

5

6

8

9

10

12

13

Original Code

11

April 21, 2015 Predication and Speculation 21

r1 = &b[i]

r3 = &a[i+j-1]

r5 = &c[i+j+N]

load r2 = [r1]

load.s r4 = [r3]

load.s r6 = [r5]

P1,P2 cmp(r2,0)

<P2> jump Else

<P1> check.s r4

<P1> P3,P4 cmp(r4,0)

<P4> jump Else

<P3> check.s r6

<P3> P5,P6 cmp(r6,0)

<P5> jump Then

N-Queens Solution: Adding Predication

r1 = &b[i]

r3 = &a[i+j-1]

r5 = &c[i+j+N]

load r2 = [r1]

load.s r4 = [r3]

load.s r6 = [r5]

P1,P2 cmp(r2,0)

<P2> jump Else

check.s r4

P3,P4 cmp(r4,0)

<P4> jump Else

check.s r6

P5,P6 cmp(r6,0)

<P5> jump Then

9 cycles, 3 branches

1

2

4

5

With Speculation

6

7

8

9

1

2

4

With Predication

5

6

7

7 cycles, 1 branch

April 21, 2015 Predication and Speculation 22

N-Queens Solution: Summary

1

2

4

Predication

5

6

7

7 cycles, 1 branch

r1 = &b[i]

r3 = &a[i+j-1]

r5 = &c[i+j+N]

load r2 = [r1]

P1,P2 cmp(r2,0)

<P2> jump Else

load r4 = [r3]

P3,P4 cmp(r4,0)

<P4> jump Else

load r6 = [r5]

P5,P6 cmp(r6,0)

<P5> jump Then

13 cycles, 3 branches

1

2

4

5

6

8

9

10

12

13

Original Code

r1 = &b[i]

r3 = &a[i+j-1]

r5 = &c[i+j+N]

load r2 = [r1]

load.s r4 = [r3]

load.s r6 = [r5]

P1,P2 cmp(r2,0)

<P1> check.s r4

<P1> P3,P4 cmp(r4,0)

<P3> check.s r6

<P3> P5,P6 cmp(r6,0)

<P5> jump Then

12

April 21, 2015 Predication and Speculation 23

Predication is an Old Idea

High performance computing

– SIMD machines (Single Instruction Multiple Data)

– All processors operate in lock-step but operate on different data

– What do you do with control flow?

if (A[i][j] < 0)

A[i][j] = -A[i][j]

– Compute a mask of 0’s and 1’s

– Execute both halves of the control flow using the appropriate mask

– Can do this in either hardware or software

Mask[i][j] = (A[i][j] < 0)

A[i][j] -= Mask[i][j] * 2 * A[i][j]

April 21, 2015 Predication and Speculation 24

Is Predication a Good Idea?

Where should we perform predication?

Runtime information helps

Branch behavior

Load latencies

Degree of predication depends on issue width

The ISA can be implementation-independent

But the compilers that emit code cannot be implementation-independent

Opportunities for profiling

13

April 21, 2015 Predication and Speculation 25

Is Speculation a Good Idea?

What are the disadvantages of speculation?

– Wasted work

The real question: Who should perform speculation?

– The hardware can exploit runtime information

– The compiler can exploit a much larger scope

Speculation increases parallelism

– Increase performance by exploiting parallelism

– Other examples of this?

– Asynchronous communication in parallel computing

– Continuations in functional languages

– Multi-tasking

April 21, 2015 Predication and Speculation 26

Implications

IA64

– The ideas were not new

– The willingness to change the ISA was new and significant

Implications for compilers

– Increased role of the compiler

– More control over sequencing, prefetching, stores, branch prediction

– Hardware doesn’t “undo” the compiler’s work

Future systems

– What is the right division of labor between the compiler and the hardware?

– How else can compilers be used to simplify the hardware and make the

hardware more effective?

– Can we improve the communication between the compiler and hardware?

14

April 21, 2015 Predication and Speculation 27

Epilogue

Intel announces 64-bit IA-32

– The end of IA-64

What went wrong with IA-64?

What does the future hold for Dynamic Superscalar? VLIW?

April 21, 2015 Predication and Speculation 28

Concepts

Predication and speculation

Performance bottlenecks

– Branches, memory latency

IA-64 characteristics

– VLIW

– Support for data/control speculation (if-conversion), predication, and on

and on...

Role of compiler

– Must work hard!

– Has less available information

– Has larger scope

15

April 21, 2015 Predication and Speculation 29

Next Time

Reading

– Due Sunday night

Lecture

– High level optimizations

– Parallelism and locality

