

Dependence Analysis for Loops

Big picture

- To improve data locality and parallelism we often focus on loops
- To transform loops, we must understand data dependences in loops
- Since we can't represent all iterations of a loop, we need some abstractions
- The basic question: does a transformation preserve all dependences?

Today

- Basic abstractions and machinery

Next class

- Its application

April 27, 2015

Compiling for Parallelism and Locality

6

Loop-independent dep	pendences	
do i = 1,1 A(i) = C(i) = enddo	00 B(i)+1 Dependences within the same loop iteration	
Loop-carried depende	nces	
<pre>do i = 1,1 A(i) = C(i) = enddo</pre>	00 B(i)+1 A(i-1)*2 Dependences that cross loop iterations- these depend on the loop structure	

Example 2			
Code			
do i = 1,5	5		
do j =	2,6		
A(j,	i) = A(j-1,i+	1)+1	
enddo			
enddo	v	Vhen does A(j-1,i+1) get writt	en?
Iteration	Write	Read /	
i ^s (i,j)	A(j,i)	<u>A(j-1,i+1)</u>	
i [≖] (i+1,j-1)	<u>A(j-1,i+1)</u>	WAR dependence	
Which iteration c	omes first?		
(i,j)			
$\mathbf{v} = \mathbf{i}^{\mathrm{T}}$ - \mathbf{i}^{S} = (i+	1,j-1) - (i,j)	= (1,-1)	
April 27, 2015	Compiling for Do	allations and Locality	14

Definition

- A direction vector serves the same purpose as a distance vector when less precision is required or available
- Element *i* of a direction vector is <, >, or = based on whether the source of the dependence precedes, follows, or is in the same iteration as the target in loop *i*

Example

<section-header><section-header><section-header><section-header><text><text><text><text><text><text>