
Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 1

Loop-Carried Dependences

Definition

– A dependence D=(d1,...dn) is carried at loop level i if di is the first non-
zero element of D

Example

do i = 1,5

do j = 2,6

A(j,i) = B(j-1,i)+1

B(j,i) = A(j,i-1)*2

enddo

enddo

Distance vectors: (1,0) for accesses to A

(0,1) for accesses to B

Loop-carried dependences

– The i loop carries dependence due to A

– The j loop carries dependence due to B
April 27, 2015 Compiling for Parallelism and Locality 1

April 27, 2015 Compiling for Parallelism and Locality
2

Idea

– The iterations of a loop can be executed in parallel if the loop carries no

dependences

Example

do i = 1,5

do j = 2,6

A(j,i) = B(j-1,i-1)+1

B(j,i) = A(j,i-1)*2

enddo

enddo

Can we parallelize the i loop?

Parallelization

j

i

Iteration Space

Distance Vectors:

(1,0) for A (flow)

(1,1) for B (flow)

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 2

April 27, 2015 Compiling for Parallelism and Locality 3

Idea

– The iterations of a loop can be executed in parallel if the loop carries no

dependences

Example

do i = 1,5

do j = 2,6

A(j,i) = B(j-1,i-1)+1

B(j,i) = A(j,i-1)*2

enddo

enddo

Can we instead parallelize the j loop?

Parallelization (cont)

j

i

Iteration Space

Distance Vectors:

(1,0) for A (flow)

(1,1) for B (flow)

April 27, 2015 Compiling for Parallelism and Locality 4

Problem

– Loop-carried dependences inhibit parallelism

– Scalar references result in loop-carried dependences

Example

do i = 1,6

t = A(i) + B(i)

C(i) = t + 1/t

enddo

Can this loop be parallelized?

What kind of dependences are these?

Scalar Expansion: Motivation

i

Convention for these slides: Arrays start with upper case letters, scalars do not

No.

Anti dependences.

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 3

April 27, 2015 Compiling for Parallelism and Locality 5

Scalar Expansion

Idea

– Eliminate false dependences by introducing extra storage

Example

do i = 1,6

T(i) = A(i) + B(i)

C(i) = T(i) + 1/T(i)

enddo

Can this loop be parallelized?

i

Disadvantages?

Yes.

April 27, 2015 Compiling for Parallelism and Locality 6

Scalar Expansion Details

Restrictions

– The loop must be a countable loop

i.e. The loop trip count must be independent of the body of the loop

– There can not be loop-carried flow dependences due to the scalar

– The expanded scalar must have no upward exposed uses in the loop

do i = 1,6

print(t)

t = A(i) + B(i)

C(i) = t + 1/t

enddo

 When the scalar is live after the loop, we must move the correct array

value into the scalar

 Nested loops may require much more storage

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 4

April 27, 2015 Compiling for Parallelism and Locality 7

Example 2: Parallelization (reprise)

Why can’t this loop be parallelized?

do i = 1,100

A(i) = A(i-1)+1

enddo

Why can this loop be parallelized?

do i = 1,100

A(i) = A(i)+1

enddo

1 2 3 4 5 ...

i

1 2 3 4 5 ...

i

Distance Vector: (1)

Distance Vector: (0)

April 27, 2015 Compiling for Parallelism and Locality 8

Sample code

do j = 1,6

do i = 1,5

A(j,i) = A(j,i)+1

enddo

enddo

Why is this legal?

– There are no loop-carried dependences, so we can arbitrarily change the

order of iteration

Example 1: Loop Permutation (reprise)

do i = 1,5

do j = 1,6

A(j,i) = A(j,i)+1

enddo

enddo

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 5

April 27, 2015 Compiling for Parallelism and Locality 9

Dependence Testing

Consider the following code

do i = 1,5

A() = A()+1

enddo

Question

– How do we determine whether one array reference depends on another

across iterations of an iteration space?

3*i+2 2*i+1

April 27, 2015 Compiling for Parallelism and Locality 10

Dependence Testing in General

General code

do i1 = l1,h1

...

do in = ln,hn

A(f(i1,...,in)) = ... A(g(i1,...,in))

enddo

...

enddo

There exists a dependence between iterations I=(i1, ..., in) and J=(j1, ..., jn)

when

– f(I) = g(J)

– (l1,...ln) < I,J < (h1,...,hn)

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 6

April 27, 2015 Compiling for Parallelism and Locality 11

Dependence Testing: Simple Case

Sample code

do i = l,h

A(a*i+c1) = ... A(a*i+c2)

enddo

Dependence?

a*i1+c1 = a*i2+c2, or

a*i1 – a*i2 = c2-c1

A solution exists if a divides c2-c1 evenly

April 27, 2015 Compiling for Parallelism and Locality 12

Exercise

Code

do i = l,h

A(2*i+2) = A(2*i-2)+1

enddo

Dependence?

2*i1 – 2*i2 = -2 – 2 = -4

i1 – i2 = -2 (yes, 2 divides -4)

Kind of dependence?

– Anti? i2 + d = i1  d = -2

 Flow? i1 + d = i2  d = 2

i1

i2

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 7

April 27, 2015 Compiling for Parallelism and Locality 13

GCD Test

Idea

– Generalize test to linear functions of iterators

Code

do i = li,hi

do j = lj,hj

A(a1*i + a2*j + a0) = ... A(b1*i + b2*j + b0) ...

enddo

enddo

Again

– a1*i1 - b1*i2 + a2*j1 – b2*j2 = b0 – a0

– Solution exists if gcd(a1,a2,b1,b2) divides b0 – a0

April 27, 2015 Compiling for Parallelism and Locality 14

Example

Code

do i = li,hi

do j = lj,hj

A(4*i + 2*j + 1) = ... A(6*i + 2*j + 4) ...

enddo

enddo

gcd(4,-6,2,-4) = 2

Does 2 divide 4-1?

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 8

April 27, 2015 Compiling for Parallelism and Locality 15

Next Time

Lecture

– Loop transformations

April 29, 2015 Loop Transformations 16

Loop Transformations for Parallelism & Locality

Last time

– Data dependences and loops

– Loop transformations

– Parallelization

– Scalar expansion

Today

– Loop transformations

– Loop reversal

– Loop fusion

– Loop fission

– Loop interchange

– Unroll and Jam

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 9

April 29, 2015 Loop Transformations 17

Review

Distance vectors

– Concisely represent dependences in loops (i.e., in iteration spaces)

– Dictate what transformations are legal

– e.g., Permutation and parallelization

Direction vectors

– Compare iS and iT: <, >, =

Legality

– A dependence vector is legal when it is lexicographically nonnegative

Loop-carried dependence

– A dependence D=(d1,...dn) is carried at loop level i if di is the first

nonzero element of D

April 29, 2015 Loop Transformations 18

Loop Reversal

Idea

– Change the direction of loop iteration

(i.e., From low-to-high indices to high-to-low indices or vice versa)

Benefits?

– Improved cache performance

– Enables other transformations (coming soon)

Example

do i = 6,1,-1

A(i) = B(i) + C(i)

enddo

do i = 1,6

A(i) = B(i) + C(i)

enddo

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 10

April 29, 2015 Loop Transformations 19

Loop Reversal and Distance Vectors

Impact

– Reversal of loop i negates the ith entry of all distance vectors associated

with the loop

– What does it do to direction vectors?

When is reversal legal?

– When the loop being reversed does not carry a dependence

(i.e., When the transformed distance vectors remain legal)

Example

do i = 1,5

do j = 1,6

A(j,i) = A(j-1,i-1)+1

enddo

enddo

Dependence:

Distance Vector:

Flow

(1,1)

Can either loop be reversed?

April 29, 2015 Loop Transformations 20

Loop Reversal Example

Legality

– Loop reversal will change the direction of the dependence relation

Is the following legal?

do i = 1,6

A(i) = A(i-1)

enddo

do i = 6,1,-1

A(i) = A(i-1)

enddo

Dependence:

Distance Vector:

Flow

(1)

Dependence:

Distance Vector:

Anti

(1)

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 11

April 29, 2015 Loop Transformations 21

Loop Fusion

Idea

– Combine multiple loop nests into one

Example

do i = 1,n

A(i) = A(i-1)

enddo

do j = 1,n

B(j) = A(j)/2

enddo

do i = 1,n

A(i) = A(i-1)

B(i) = A(i)/2

enddo

Pros?

May improve data locality

Reduces loop overhead

May enable better instruction scheduling

Enables array contraction (opposite of scalar expansion)

Cons?

May hurt i-cache performance

May hurt data locality How?

Loop Fusion Can Hurt Locality

Example

do j = 1,n

do i = 1,m

B(i,j) = A(i,j) + A(i,j-1) + A(i,j-2)

enddo

enddo

do j = 1,n

do i = 1,m

C(i,j) = B(i,j) + D(i,j)

enddo

enddo

April 29, 2015 Loop Transformations 22

reuse

reuse

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 12

Loop Fusion Can Hurt Locality (cont)

After fusion

do j = 1,n

do i = 1,m

B(i,j) = A(i,j) + A(i,j-1) + A(i,j-2)

C(i,j) = B(i,j) + D(i,j)

enddo

enddo

April 29, 2015 Loop Transformations 23

Saved loads

Lost reuse

April 29, 2015 Loop Transformations 24

do i = 1,n

body1

enddo

do i = 1,n

body2

enddo

do i = 1,n

body1

body2

enddo

Legality of Loop Fusion

Basic Requirements

– Both loops must have same structure

– Same loop depth

– Same loop bounds

– Same iteration directions

– Dependences must be preserved

e.g., Flow dependences must not become anti dependences

All cross-loop

dependences

flow from body1

to body2

Ensure that fusion

does not introduce

dependences from

body2 to body1

Can we relax any of these

restrictions?

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 13

April 29, 2015 Loop Transformations 25

What are the dependences?

do i = 1,n

s1 A(i) = B(i) + 1

enddo

do i = 1,n

s2 C(i) = A(i)/2

enddo

do i = 1,n

s3 D(i) = 1/C(i+1)

enddo

What are the dependences?

do i = 1,n

s1 A(i) = B(i) + 1

s2 C(i) = A(i)/2

s3 D(i) = 1/C(i+1)

enddo

Loop Fusion Example

s1
f s2

s2
f s3

s1
f s2

s3
a s2

Fusion changes the dependence

between s2 and s3, so fusion is illegal

Is there some transformation that will enable fusion of these loops?

April 29, 2015 Loop Transformations 26

Loop reversal is legal for the original loops

– Does not change the direction of any dependence in the original code

– Will reverse the direction in the fused loop: s3
a s2 will become s2

f s3

do i = n,1

s1 A(i) = B(i) + 1

enddo

do i = n,1

s2 C(i) = A(i)/2

enddo

do i = n,1

s3 D(i) = 1/C(i+1)

enddo

do i = n,1

s1 A(i) = B(i) + 1

s2 C(i) = A(i)/2

s3 D(i) = 1/C(i+1)

enddo

Loop Fusion Example (cont)

s1
f s2

s2
f s3

s1
f s2

s2
f s3

After reversal and fusion all original

dependences are preserved

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 14

April 29, 2015 Loop Transformations 27

Loop Fission (Loop Distribution)

Idea

– Split a loop nest into multiple loop nests (the inverse of fusion)

Example

do i = 1,n

A(i) = B(i) + 1

C(i) = A(i)/2

enddo

Motivation?

– Produces multiple (potentially) less constrained loops

– May improve locality

– Enable other transformations, such as interchange

Legality?

do i = 1,n

A(i) = B(i) + 1

enddo

do i = 1,n

C(i) = A(i)/2

enddo

April 29, 2015 Loop Transformations 28

do i = 1,n

body1

body2

enddo

Loop Fission (cont)

Legality

– Fission is legal when the loop body contains no cycles in the dependence

graph

do i = 1,n

body1

enddo

do i = 1,n

body2

enddo

Cycles cannot

be preserved

because after

fission all

cross-loop

dependences

flow from

body1 to body2

