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Loop-Carried Dependences

Definition

– A dependence D=(d1,...dn) is carried at loop level i if di is the first non-
zero element of D

Example

do i = 1,5

do j = 2,6

A(j,i) = B(j-1,i)+1

B(j,i) = A(j,i-1)*2

enddo

enddo

Distance vectors: (1,0) for accesses to A

(0,1) for accesses to B

Loop-carried dependences

– The i loop carries dependence due to A

– The j loop carries dependence due to B
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Idea

– The iterations of a loop can be executed in parallel if the loop carries no 

dependences

Example

do i = 1,5

do j = 2,6

A(j,i) = B(j-1,i-1)+1

B(j,i) = A(j,i-1)*2

enddo

enddo

Can we parallelize the i loop?

Parallelization

j

i

Iteration Space

Distance Vectors:

(1,0) for A (flow)

(1,1) for B (flow)
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Idea

– The iterations of a loop can be executed in parallel if the loop carries no 

dependences

Example

do i = 1,5

do j = 2,6

A(j,i) = B(j-1,i-1)+1

B(j,i) = A(j,i-1)*2

enddo

enddo

Can we instead parallelize the j loop?

Parallelization (cont)

j

i

Iteration Space

Distance Vectors:

(1,0) for A (flow)

(1,1) for B (flow)
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Problem

– Loop-carried dependences inhibit parallelism

– Scalar references result in loop-carried dependences

Example

do i = 1,6

t = A(i) + B(i)

C(i) = t + 1/t

enddo

Can this loop be parallelized?

What kind of dependences are these?

Scalar Expansion: Motivation

i

Convention for these slides:  Arrays start with upper case letters, scalars do not

No.

Anti dependences.
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Scalar Expansion

Idea

– Eliminate false dependences by introducing extra storage

Example

do i = 1,6

T(i) = A(i) + B(i)

C(i) = T(i) + 1/T(i)

enddo

Can this loop be parallelized?

i

Disadvantages?

Yes.
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Scalar Expansion Details

Restrictions

– The loop must be a countable loop

i.e. The loop trip count must be independent of the body of the loop

– There can not be loop-carried flow dependences due to the scalar

– The expanded scalar must have no upward exposed uses in the loop

do i = 1,6

print(t)

t = A(i) + B(i)

C(i) = t + 1/t

enddo

 When the scalar is live after the loop, we must move the correct array 

value into the scalar

 Nested loops may require much more storage
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Example 2: Parallelization (reprise)

Why can’t this loop be parallelized?

do i = 1,100

A(i) = A(i-1)+1

enddo

Why can this loop be parallelized?

do i = 1,100

A(i) = A(i)+1

enddo

1 2 3 4 5 ...

i

1 2 3 4 5 ...

i

Distance Vector: (1)

Distance Vector: (0)
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Sample code

do j = 1,6

do i = 1,5

A(j,i) = A(j,i)+1

enddo

enddo

Why is this legal?

– There are no loop-carried dependences, so we can arbitrarily change the 

order of iteration

Example 1: Loop Permutation (reprise)

do i = 1,5

do j = 1,6

A(j,i) = A(j,i)+1

enddo

enddo
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Dependence Testing

Consider the following code

do i = 1,5

A(     ) = A(     )+1

enddo

Question

– How do we determine whether one array reference depends on another 

across iterations of an iteration space?

3*i+2      2*i+1
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Dependence Testing in General

General code

do i1 = l1,h1

...

do in = ln,hn

A(f(i1,...,in)) = ... A(g(i1,...,in))

enddo

...

enddo

There exists a dependence between iterations I=(i1, ..., in) and J=(j1, ..., jn) 

when

– f(I) = g(J)

– (l1,...ln) < I,J < (h1,...,hn)
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Dependence Testing: Simple Case

Sample code

do i = l,h

A(a*i+c1) = ... A(a*i+c2)

enddo

Dependence?

a*i1+c1 = a*i2+c2, or

a*i1 – a*i2 = c2-c1

A solution exists if a divides c2-c1 evenly
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Exercise

Code

do i = l,h

A(2*i+2) = A(2*i-2)+1

enddo

Dependence?

2*i1 – 2*i2 = -2 – 2 = -4

i1 – i2 = -2 (yes, 2 divides -4)

Kind of dependence?

– Anti?  i2 + d = i1  d = -2

 Flow? i1 + d = i2  d = 2

i1

i2
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GCD Test

Idea

– Generalize test to linear functions of iterators

Code

do i = li,hi

do j = lj,hj

A(a1*i + a2*j + a0) = ... A(b1*i + b2*j + b0) ...

enddo

enddo

Again

– a1*i1 - b1*i2 + a2*j1 – b2*j2 = b0 – a0

– Solution exists if gcd(a1,a2,b1,b2) divides b0 – a0
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Example

Code

do i = li,hi

do j = lj,hj

A(4*i + 2*j + 1) = ... A(6*i + 2*j + 4) ...

enddo

enddo

gcd(4,-6,2,-4) = 2

Does 2 divide 4-1?
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Next Time

Lecture

– Loop transformations
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Loop Transformations for Parallelism & Locality

Last time

– Data dependences and loops

– Loop transformations

– Parallelization

– Scalar expansion

Today

– Loop transformations

– Loop reversal

– Loop fusion

– Loop fission

– Loop interchange

– Unroll and Jam
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Review

Distance vectors

– Concisely represent dependences in loops (i.e., in iteration spaces)

– Dictate what transformations are legal

– e.g., Permutation and parallelization

Direction vectors

– Compare iS and iT: <, >, =

Legality

– A dependence vector is legal when it is lexicographically nonnegative

Loop-carried dependence

– A dependence D=(d1,...dn) is carried at loop level i if di is the first 

nonzero element of D
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Loop Reversal

Idea

– Change the direction of loop iteration

(i.e., From low-to-high indices to high-to-low indices or vice versa)

Benefits?

– Improved cache performance

– Enables other transformations (coming soon)

Example

do i = 6,1,-1

A(i) = B(i) + C(i)

enddo

do i = 1,6

A(i) = B(i) + C(i)

enddo
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Loop Reversal and Distance Vectors

Impact

– Reversal of loop i negates the ith entry of all distance vectors associated 

with the loop

– What does it do to direction vectors?

When is reversal legal?

– When the loop being reversed does not carry a dependence

(i.e., When the transformed distance vectors remain legal)

Example

do i = 1,5

do j = 1,6

A(j,i) = A(j-1,i-1)+1

enddo

enddo

Dependence:

Distance Vector:

Flow

(1,1)

Can either loop be reversed?
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Loop Reversal Example

Legality

– Loop reversal will change the direction of the dependence relation

Is the following legal?

do i = 1,6

A(i) = A(i-1)

enddo

do i = 6,1,-1

A(i) = A(i-1)

enddo

Dependence:

Distance Vector: 

Flow

(1)

Dependence:

Distance Vector: 

Anti

(1)
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Loop Fusion

Idea

– Combine multiple loop nests into one

Example

do i = 1,n

A(i) = A(i-1)

enddo

do j = 1,n

B(j) = A(j)/2

enddo

do i = 1,n

A(i) = A(i-1)

B(i) = A(i)/2

enddo

Pros?

May improve data locality

Reduces loop overhead

May enable better instruction scheduling

Enables array contraction (opposite of scalar expansion)

Cons?

May hurt i-cache performance

May hurt data locality How?

Loop Fusion Can Hurt Locality

Example

do j = 1,n

do i = 1,m

B(i,j) = A(i,j) + A(i,j-1) + A(i,j-2)

enddo

enddo

do j = 1,n

do i = 1,m

C(i,j) = B(i,j) + D(i,j)

enddo 

enddo
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reuse

reuse
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Loop Fusion Can Hurt Locality (cont)

After fusion

do j = 1,n

do i = 1,m

B(i,j) = A(i,j) + A(i,j-1) + A(i,j-2)

C(i,j) = B(i,j) + D(i,j)

enddo

enddo
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Saved loads

Lost reuse
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do i = 1,n

body1

enddo

do i = 1,n

body2

enddo

do i = 1,n

body1

body2

enddo

Legality of Loop Fusion

Basic Requirements

– Both loops must have same structure

– Same loop depth

– Same loop bounds

– Same iteration directions

– Dependences must be preserved

e.g., Flow dependences must not become anti dependences

All cross-loop 

dependences 

flow from body1 

to body2

Ensure that fusion 

does not introduce 

dependences from 

body2 to body1

Can we relax any of these 

restrictions?
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What are the dependences?

do i = 1,n

s1 A(i) = B(i) + 1

enddo

do i = 1,n

s2 C(i) = A(i)/2

enddo

do i = 1,n

s3 D(i) = 1/C(i+1)

enddo

What are the dependences?

do i = 1,n

s1 A(i) = B(i) + 1

s2 C(i) = A(i)/2

s3 D(i) = 1/C(i+1)

enddo

Loop Fusion Example

s1
f s2

s2
f s3

s1
f s2

s3
a s2

Fusion changes the dependence 

between s2 and s3, so fusion is illegal

Is there some transformation that will enable fusion of these loops?
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Loop reversal is legal for the original loops

– Does not change the direction of any dependence in the original code

– Will reverse the direction in the fused loop: s3
a s2 will become s2

f s3

do i = n,1

s1 A(i) = B(i) + 1

enddo

do i = n,1

s2 C(i) = A(i)/2

enddo

do i = n,1

s3 D(i) = 1/C(i+1)

enddo

do i = n,1

s1 A(i) = B(i) + 1

s2 C(i) = A(i)/2

s3 D(i) = 1/C(i+1)

enddo

Loop Fusion Example (cont)

s1
f s2

s2
f s3

s1
f s2

s2
f s3

After reversal and fusion all original 

dependences are preserved
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Loop Fission (Loop Distribution)

Idea

– Split a loop nest into multiple loop nests (the inverse of fusion)

Example

do i = 1,n

A(i) = B(i) + 1

C(i) = A(i)/2

enddo

Motivation?

– Produces multiple (potentially) less constrained loops

– May improve locality

– Enable other transformations, such as interchange

Legality?

do i = 1,n

A(i) = B(i) + 1

enddo

do i = 1,n

C(i) = A(i)/2

enddo
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do i = 1,n

body1

body2

enddo

Loop Fission (cont)

Legality

– Fission is legal when the loop body contains no cycles in the dependence 

graph

do i = 1,n

body1

enddo

do i = 1,n

body2

enddo

Cycles cannot 

be preserved 

because after 

fission all 

cross-loop 

dependences 

flow from 

body1 to body2


