
Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 1

May 4, 2015 Loop Transformations 1

Recall Loop Fusion

Idea

– Combine multiple loop nests into one

Example

do i = 1,n

A(i) = A(i-1)

enddo

do j = 1,n

B(j) = A(j)/2

enddo

do i = 1,n

A(i) = A(i-1)

B(i) = A(i)/2

enddo

How?

May 4, 2015 Loop Transformations 2

do i = 1,n

body1

enddo

do i = 1,n

body2

enddo

do i = 1,n

body1

body2

enddo

Recall Legality Requirement

Dependences must be preserved

– e.g., Flow dependences must not become anti dependences

All cross-loop

dependences

flow from body1

to body2

Ensure that fusion

does not introduce

dependences from

body2 to body1

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 2

May 4, 2015 Loop Transformations 3

What are the dependences?

do i = 1,n

s1 A(i) = B(i) + 1

enddo

do i = 1,n

s2 C(i) = A(i)/2

enddo

do i = 1,n

s3 D(i) = 1/C(i+1)

enddo

What are the dependences?

do i = 1,n

s1 A(i) = B(i) + 1

s2 C(i) = A(i)/2

s3 D(i) = 1/C(i+1)

enddo

Loop Fusion Example

s1
f s2

s2
f s3

s1
f s2

s3
a s2

Fusion changes the dependence

between s2 and s3, so fusion is illegal

May 4, 2015 Loop Transformations 4

Recall Loop Fission (Loop Distribution)

Idea

– Split a loop nest into multiple loop nests (the inverse of fusion)

Example

do i = 1,n

A(i) = B(i) + 1

C(i) = A(i)/2

enddo

do i = 1,n

A(i) = B(i) + 1

enddo

do i = 1,n

C(i) = A(i)/2

enddo

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 3

May 4, 2015 Loop Transformations 5

do i = 1,n

body1

body2

enddo

Loop Fission (cont)

Legality

– Fission is legal when the loop body contains no cycles in the dependence

graph

do i = 1,n

body1

enddo

do i = 1,n

body2

enddo

Cycles cannot

be preserved

because after

fission all

cross-loop

dependences

flow from

body1 to body2

Recall our fusion example

do i = 1,n

s1 A(i) = B(i) + 1

enddo

do i = 1,n

s2 C(i) = A(i)/2

enddo

do i = 1,n

s3 D(i) = 1/C(i+1)

enddo

May 4, 2015 Loop Transformations 6

do i = 1,n

s1 A(i) = B(i) + 1

s2 C(i) = A(i)/2

s3 D(i) = 1/C(i+1)

enddo

Loop Fission Example

s1
f s2

s2
f s3

s1
f s2

s3
a s2

Can we perform fission on this loop?

Do we have a contradiction?

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 4

May 4, 2015 Loop Transformations 7

If there are no cycles, we can reorder the loops with a topological sort

do i = 1,n

s1 A(i) = B(i) + 1

enddo

do i = 1,n

s3 D(i) = 1/C(i+1)

enddo

do i = 1,n

s2 C(i) = A(i)2

enddo

do i = 1,n

s1 A(i) = B(i) + 1

s2 C(i) = A(i)/2

s3 D(i) = 1/C(i+1)

enddo

Loop Fission Example (cont)

s1
f s2

s3
a s2

s1
f s2

s3
a s2

Fission is legal

May 4, 2015 Loop Transformations 8

do i = 1,n

do j = 1,n

x = A(2,j)

enddo

enddo

Loop Interchange

Idea

– Swap the order of two loops to increase parallelism, to improve spatial

locality, or to enable other transformations

– Also known as loop permutation

Example

do j = 1,n

do i = 1,n

x = A(2,j)

enddo

enddo

This code is invariant with

respect to the inner loop,

yielding better locality

This access strides through

a row of A

(Assuming column-major order for Fortran)

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 5

May 4, 2015 Loop Transformations 9

do i = 1,n

do j = 1,n

x = A(i,j)

enddo

enddo

Loop Interchange (cont)

Example

do j = 1,n

do i = 1,n

x = A(i,j)

enddo

enddo

This array now has stride 1

access

This array has stride

n access

May 4, 2015 Loop Transformations 10

Case analysis of the direction vectors

Legality of Loop Interchange

(<,=)

The dependence is carried by the i loop.

After interchange the dependence will be (=,<), so the dependence will

still be carried by the i loop, so the dependence relations do not change.

(=,<)

The dependence is carried by the j loop.

After interchange the dependence will be (<,=), so the dependence will

still be carried by the j loop, so the dependence relations do not change.

(=,=)

The dependence is loop independent, so it is unaffected by interchange

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 6

May 4, 2015 Loop Transformations 11

Case analysis of the direction vectors (cont)

(<,<)

The dependence distance is positive in both dimensions.

After interchange it will still be positive in both dimensions, so the

dependence relations do not change.

Legality of Loop Interchange (cont)

(>,*) (=,>)

Such direction vectors are not possible for the original loop.

(<,>)

The dependence is carried by the outer loop.

After interchange the dependence will be (>,<), which changes the

dependences and results in an illegal direction vector, so interchange is

illegal.

May 4, 2015 Loop Transformations 12

Consider the (<,>) case

Loop Interchange Example

do i = 1,n

do j = 1,n

C(i,j) = C(i+1,j-1)

enddo

enddo

do j = 1,n

do i = 1,n

C(i,j) = C(i+1,j-1)

enddo

enddo

Before

(1,1) C(1,1) = C(2,0)

(1,2) C(1,2) = C(2,1)

. . .

(2,1) C(2,1) = C(3,0)

After

(1,1) C(1,1) = C(2,0)

(1,2) C(2,1) = C(3,0)

. . .

(2,1) C(1,2) = C(2,1)

d = (<,>) fd = (<,>) a

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 7

May 4, 2015 Loop Transformations 13

Example 2 from Last Lecture

Sample code

do i = 1,5

do j = 2,6

A(j,i) = A(j-1,i+1)+1

enddo

enddo

Kind of dependence:

Distance vector:

j

i

Anti

(1, -1)

May 4, 2015 Loop Transformations 14

Can we fuse these loop nests?

Fusion Exercise

do i = 1,n

X(i) = 0

enddo

do j = 1,n

do k = 1,n

X(k) = X(k)+A(k,j)*Y(j)

enddo

enddo

f

Fusion of these

loops would

violate this

dependence

do i = 1,n

X(i) = 0

do k = 1,n

X(k) = X(k)+A(k,i)*Y(i)

enddo

enddo

Is there some transformation that will enable fusion of these loops?

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 8

May 4, 2015 Loop Transformations 15

Use loop interchange to preserve dependences

Fusion Exercise (cont)

do i = 1,n

X(i) = 0

enddo

do k = 1,n

do j = 1,n

X(k) = X(k)+A(k,j)*Y(j)

enddo

enddo

f

do i = 1,n

X(i) = 0

do j = 1,n

X(i) = X(i)+A(i,j)*Y(j)

enddo

enddo

f

May 4, 2015 Loop Transformations 16

Loop Unrolling

Motivation

– Reduces loop overhead

– Improves effectiveness of other transformations

– Code scheduling

– CSE

The Transformation

-Make n copies of the loop: n is the unrolling factor

-Adjust loop bounds accordingly

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 9

May 4, 2015 Loop Transformations 17

Loop Unrolling (cont)

Example

do i=1,n do i=1,n by 2

A(i) = B(i) + C(i) A(i) = B(i) + C(i)

enddo A(i+1) = B(i+1) + C(i+1)

enddo

Details

- When is loop unrolling legal?

- Handle end cases with a cloned copy of the loop

- Enter this special case if the remaining number of iteration is less

than the unrolling factor

May 4, 2015 Loop Transformations 18

Problem

– We’d like to produce loops with the right balance of memory operations

and floating point operations

– The ideal balance is machine-dependent

– e.g. How many load-store units are connected to the L1 cache?

– e.g. How many functional units are provided?

Loop Balance

-The inner loop has 1 memory

operation per iteration and 1 floating

point operation per iteration

- If our target machine can only

support 1 memory operation for

every two floating point operations,

this loop will be memory bound
What can we do?

Example

do j = 1,2*n

do i = 1,m

A(j) = A(j) + B(i)

enddo

enddo

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 10

May 4, 2015 Loop Transformations 19

Idea

– Restructure loops so that loaded values are used many times per iteration

Unroll and Jam

– Unroll the outer loop some number of times

– Fuse (Jam) the resulting inner loops

Unroll and Jam

Example

do j = 1,2*n

do i = 1,m

A(j) = A(j) + B(i)

enddo

enddo

Unroll the Outer Loop

do j = 1,2*n by 2

do i = 1,m

A(j) = A(j) + B(i)

enddo

do i = 1,m

A(j+1) = A(j+1) + B(i)

enddo

enddo

May 4, 2015 Loop Transformations 20

Unroll the Outer Loop

do j = 1,2*n by 2

do i = 1,m

A(j) = A(j) + B(i)

enddo

do i = 1,m

A(j+1) = A(j+1) + B(i)

enddo

enddo

Unroll and Jam Example (cont)

Jam the inner loops

do j = 1,2*n by 2

do i = 1,m

A(j) = A(j) + B(i)

A(j+1) = A(j+1) + B(i)

enddo

enddo

- The inner loop has 1 load per

iteration and 2 floating point

operations per iteration

- We reuse the loaded value of B(i)

- The Loop Balance matches the

machine balance

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 11

May 4, 2015 Loop Transformations 21

Legality

– When is Unroll and Jam legal?

Disadvantages

– What limits the degree of unrolling?

Unroll and Jam (cont)

May 4, 2015 Loop Transformations 22

Policies

Policies for improving locality and parallelism

– Many proposed ideas

– Few unified frameworks

– Locality framework [Wolf and Lam 1991]

– Phrase a class of loop transformations as unimodular matrix

transformations

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 12

May 4, 2015 Loop Transformations 23

Concepts

Using direction and distance vectors

Transformations

– What is the benefit?

– What do they enable?

– When are they legal?

May 4, 2015 Loop Transformations 24

Lecture

– Dynamic compilation

Next Time

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 13

May 4, 2015 Loop Transformations 25

Question of the Day

Q: Is it really a small world?

How many hops does it

take to connect two random

persons in the US?

A: According to an old study (more than 45 years old), only 3!

(Interestingly, many of the critical links were butchers.)

Q: How many hops does it take to connect two random persons in

the world?

May 4, 2015 Loop Transformations 26

Prelude

A: 5, or 6 degrees of

separation

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 14

May 4, 2015 Loop Transformations 27

Dynamic Compilation

Last time

– Loop transformations and parallelism

This time

– Dynamic compilation

May 4, 2015 Loop Transformations 28

Limitations of static analysis

– Programs can have values and invariants that are known at runtime but

unknown at compile time. Static compilers cannot exploit such values or

invariants

– Many of the motivations for profile-guided optimizations apply here

Basic idea

– Perform translation at runtime when more information is known

– Traditionally, two types of translations are done

– Runtime code generation

– Partial evaluation

Motivation

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 15

May 4, 2015 Loop Transformations 29

Basic idea

– Take a general program and partially evaluate it, producing a specialized

program that’s more efficient

e.g., f(a,b,c)f’(a,b), where the result has its third parameter hard-

coded into the implementation. f’ is typically more efficient than f

– Exploit runtime constants, which are variables whose value does not

change during program execution, e.g., write-once variables

Partial Evaluation

Exploiting runtime constants

-Perform constant propagation

-Eliminate memory ops

-Remove branches

-Unroll loops

Improves performance by moving

computation from runtime to compile

time

May 4, 2015 Loop Transformations 30

Programs with Runtime Constants

Interpreters:

Simulators:

Graphics renderers:

Scientific simulations:

Extensible OS kernels:

Examples

– A cache simulator might take the line size as a parameter

– A partially evaluated simulator might produce a faster simulator for the

special case where the line size is 16

The program being interpreted is runtime constant

The subject of simulation (circuit, cache, network)

is runtime constant

The scene to render is runtime constant

Matrices can be runtime constants

Extensions to the kernel can be runtime constant

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 16

May 4, 2015 Loop Transformations 31

Partial Evaluation (cont)

Interesting theoretical results

– Can partially evaluate an interpreter with respect to a program (i.e.,

compile it) [1st Futamura projection, 1971]

– Can partially evaluate a partial evaluator with respect to an interpreter (i.e,

generate a compiler) [2nd Futamura projection, 1983]

– Can partially evaluate a partial evaluator with respect to a partial evaluator

(i.e., generate a compiler generator) [3rd Futamura projection]

Early PE research focused on functional languages

– Recent work has moved to languages such as C and Java [Cook ‘11]

Key issue

– When do we stop partially evaluating the code when there is iteration or

recursion?

May 4, 2015 Loop Transformations 32

Dynamic Compilation with DyC

DyC [Auslander, et al 1996]

– Apply ideas of Partial Evaluation

– Perform some of the Partial Evaluation at runtime

– Can handle more runtime constants than Partial Evaluation

– Reminiscent of link-time register allocation in the sense that the

compilation is performed in stages

Tradeoffs

– Must overcome the run-time cost of the dynamic compiler

– Fast dynamic compilation: low overhead

– High quality dynamically generated code: high benefit

– Ideal: dynamically translate code once, execute this code many times

– Implication: don’t dynamically translate everything

– Only perform dynamic translation where it will be profitable

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 17

May 4, 2015 Loop Transformations 33

Applying Dynamic Compilation

How do we know what will be profitable?

– Let user annotations guide the dynamic compilation process

System design

– Dynamic compilation for the C language

– Declarative annotations:

– Identify pieces of code to dynamically compile: dynamic regions

– Identify source code variables that will be constant during the

execution of dynamic regions: runtime constants

May 4, 2015 Loop Transformations 34

Staged Compilation in DyC

annotated C

code static

compiler

template

setup code

directives

dynamic

compiler

(stitcher)

executable

program

runtime
values

static compile time dynamic compile time

-Make the static compiler do as much work as possible

-Give the dynamic compiler as little work as possible

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 18

May 4, 2015 Loop Transformations 35

Dynamically Compiled Code

Static compiler

– Produces machine code templates, in addition to normal machine code

– Templates contain holes that will be filled with runtime constant values

– Generates setup code to compute the values of these runtime constants

– Together, the template and setup code will replace the original dynamic

region dynamic region entrance

first time?

setup code

template code

dynamic region exit

May 4, 2015 Loop Transformations 36

The Dynamic Compiler

The Stitcher

– Follows directives, which are produced by the static compiler, to copy

code templates and to fill in holes with appropriate constants

– The resulting code becomes part of the executable code and is hopefully

executed many times

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 19

May 4, 2015 Loop Transformations 37

cacheResult cacheLookup (void *addr, Cache *cache) {

dynamicRegion(cache) { /* cache is a runtime constant */

int blockSize = cache->blockSize;

int numLines = cache->numLines;

int tag = addr / (blockSize * numLines);

int line = (add / blockSize) % numLines;

setStructure **setArray = cache->lines[line]->sets;

int assoc = cache->associativity;

int set;

unrolled for (set=0; set<assoc; set++) {

if (setArray[set]dynamic->tag == tag)

return CacheHit;

}

return CacheMiss;

} /* end of dynamic region */

}

The Annotations

cacheResult cacheLookup (void *addr, Cache *cache) {

dynamicRegion(cache) { /* cache is a runtime constant */

int blockSize = cache->blockSize;

int numLines = cache->numLines;

int tag = addr / (blockSize * numLines);

int line = (add / blockSize) % numLines;

setStructure **setArray = cache->lines[line]->sets;

int assoc = cache->associativity;

int set;

unrolled for (set=0; set<assoc; set++) {

if (setArray[set]dynamic->tag == tag)

return CacheHit;

}

return CacheMiss;

} /* end of dynamic region */

May 4, 2015 Loop Transformations 38

dynamicRegion(cache)

- Identifies a block that will be dynamically compiled

- Its arguments are runtime constants within the scope of the dynamic

region

-The static compiler will compute additional runtime constants that are

derived from this initial set

The Annotations

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 20

May 4, 2015 Loop Transformations 39

cacheResult cacheLookup (void *addr, Cache *cache) {

dynamicRegion(cache) { /* cache is a runtime constant */

int blockSize = cache->blockSize;

int numLines = cache->numLines;

int tag = addr / (blockSize * numLines);

int line = (add / blockSize) % numLines;

setStructure **setArray = cache->lines[line]->sets;

int assoc = cache->associativity;

int set;

unrolled for (set=0; set<assoc; set++) {

if (setArray[set]dynamic->tag == tag)

return CacheHit;

}

return CacheMiss;

} /* end of dynamic region */

}

dynamic

-Any type of data can be considered constant

- In particular, contents of arrays and pointer-based structures are

assumed to be runtime constant whenever they are accessed by runtime

constant pointers

-To ensure that this assumption is correct, users must insert the dynamic

annotation to mark pointer refs that are not constant

The Annotations

May 4, 2015 Loop Transformations 40

cacheResult cacheLookup (void *addr, Cache *cache) {

dynamicRegion(cache) { /* cache is a runtime constant */

int blockSize = cache->blockSize;

int numLines = cache->numLines;

int tag = addr / (blockSize * numLines);

int line = (add / blockSize) % numLines;

setStructure **setArray = cache->lines[line]->sets;

int assoc = cache->associativity;

int set;

unrolled for (set=0; set<assoc; set++) {

if (setArray[set]dynamic->tag == tag)

return CacheHit;

}

return CacheMiss;

} /* end of dynamic region */

}

The Annotations

unrolled

-Directs the compiler to completely unroll a loop

-Loop termination must be governed by runtime constants

-The static compiler can check whether this annotation is legal

-Complete unrolling is a critical optimization

-Allows induction variables to become runtime constants

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 21

May 4, 2015 Loop Transformations 41

cacheResult cacheLookup (void *addr, Cache *cache) {

dynamicRegion key(cache, foo) {

int blockSize = cache->blockSize;

int numLines = cache->numLines;

int tag = addr / (blockSize * numLines);

int line = (add / blockSize) % numLines;

setStructure **setArray = cache->lines[line]->sets;

int assoc = cache->associativity;

int set;

unrolled for (set=0; set<assoc; set++) {

if (setArray[set]dynamic->tag == tag)

return CacheHit;

}

return CacheMiss;

} /* end of dynamic region */

}

The Annotations

key

-Allows the creation of multiple versions of a dynamic region, each

using different runtime constants

-Separate code is dynamically generated for each distinct combination

of values of the runtime constants

May 4, 2015 Loop Transformations 42

The Need for Annotations

Automatic dynamic compilation is difficult

– Which variables are runtime constant over which pieces of code?

– Complicated by aliases, side effects, pointers that can modify memory

– Which loops are profitable to unroll?

– Estimating profitability is the difficult part

Annotation errors

– Lead to incorrect dynamic compilation

– e.g., Incorrect code if a value is not really a runtime constant

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 22

May 4, 2015 Loop Transformations 43

The Static Compiler

Operates on low-level IR

– CFG + three address code in SSA form

Tasks

– Identifies runtime constants inside of dynamic regions

– Splits each dynamic region subgraph into set-up and template code
subgraphs

– Optimizes the control flow for each procedure

– Generates machine code, including templates

– In most cases, table space for runtime constants can be statically
allocated

– What do we do about unrolled loops?

– Generates stitcher directives

May 4, 2015 Loop Transformations 44

Detecting Runtime Constants

Simple data-flow analysis

– Propagates initial runtime constants through the dynamic region using the
following transfer functions

-x = y x is a constant iff y is a constant

-x = y op z x is a const iff y and z are consts and op is an

idempotent, side-effect free, non-trapping op

-x = f(y1, … yn) x is a const iff the yi are consts and f is an

idempotent, side-effect free, non-trapping function

-x = *p x is a constant iff p is constant

-x = dynamic *p x is not constant

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 23

May 4, 2015 Loop Transformations 45

Detecting Runtime Constants (cont)

Merging control flow

– If a variable has the same runtime constant reaching definition along all
predecessors, it’s considered a constant after the merge

x2 = 2

t1 = test

t1?

x1 = 1

x3 = (x1,x2)

- If test is a runtime constant, then we’ll
always take one branch or the other

- If test is constant, is idempotent so the
result is constant

- If test is not constant, is not idempotent,
so the result is not constant

May 4, 2015 Loop Transformations 46

Optimizations

Integrated optimizations

– For best quality code, optimizations should be performed across dynamic
region boundaries, e.g., global CSE, global register allocation

– Optimizations can be performed both before and after the dynamic region
has been split into setup and template codes

Restrictions on optimizing split code

– Instructions with holes cannot be moved outside of their dynamic region

– Holes cannot be treated as legal values outside of the dynamic region.
(e.g., Copy propagation cannot propagate values of holes outside of
dynamic regions)

– Holes are typically viewed as constants throughout the dynamic region,
but induction variables become constant for only a given iteration of an
unrolled loop

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 24

May 4, 2015 Loop Transformations 47

The Stitcher

Performs directive-driven tasks

– Patches holes in templates

– Unrolls loops

– Patches pc-relative instructions (such as relative branches)

Performs simple peephole optimizations

– Strength reduction of multiplies, unsigned division, modulus

May 4, 2015 Loop Transformations 48

The End Result

Final dynamically generated code from our example

– Assuming the following configuration:

– 512 lines, 32 byte blocks, 4-way set associative

– cache is an address loaded from the runtime constants table

cacheResult cacheLookup (void *addr, Cache *cache) {

int gat = addr >> 14;

int line = (add >> 5) & 511;

setStructure **setArray = cache->lines[line]->sets;

if (setArray[0]->tag == tag) goto L1:

if (setArray[1]->tag == tag) goto L1:

if (setArray[2]->tag == tag) goto L1:

if (setArray[3]->tag == tag) goto L1:

return CacheMiss;

L1: return CacheHit;

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 25

May 4, 2015 Loop Transformations 49

cacheResult cacheLookup (void *addr, Cache *cache) {

int blockSize = cache->blockSize;

int numLines = cache->numLines;

int tag = addr / (blockSize * numLines);

int line = (add / blockSize) % numLines;

setStructure **setArray = cache->lines[line]->sets;

int assoc = cache->associativity;

int set;

for (set=0; set<assoc; set++) {

if (setArray[set]->tag == tag)

return CacheHit;

}

return CacheMiss;

}

The Original Code without Annotations

May 4, 2015 Loop Transformations 50

Performance Results

Two measures of performance

– Asymptotic improvement: speedup if overhead were 0

– Break even point: the fewest number of iterations at which the dynamic
compilation system is profitable

Benchmark

Asymptotic speedup of

dynamic regions Breakeven point

calculator

matrix multiply

sparse mat multiply

event dispatcher

quicksort

1.7

1.6

1.8

1.4

1.2

916 interpretations

31,392 scalar ×’s

2645 matrix ×’s

722 event dispatches

3050 records

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 26

May 4, 2015 Loop Transformations 51

Evaluation

Today’s discussion

– Simple caching scheme

– Setup once, reuse thereafter

– More sophisticated schemes are possible

– Can cache multiple versions of code

– Can provide eager, or speculative, specialization

– Can allow different dynamic regions for different variables

Subsequent progress on DyC

– More sophisticated language and compiler [Grant, et al 1999]

– More complexity is needed

– Extremely difficult to annotate the applications

– Automated insertion of annotations [Mock, et al 2000]

– Use profiling to obtain value and frequency information

