
February 20, 2013

Calvin Lin, The University of Texas at Austin 1

CS380P Lecture 11 Two Parallel Algorithms 1

Today’s Plan

 Today

– Two questions

– How should you build a parallel computer?

– Can we do automatic parallelization at a coarser level?

 Parallel architectures

 Automatic parallelization
– We’ve already argued that it’s not practical

– A more forceful argument using

two parallel algorithms as examples

CS380P Lecture 11 Two Parallel Algorithms 2

The mismatch becomes worse

– Looking for much more parallelism, often at a larger granularity

– The automatic parallelization funnel

 An alternative approach
– Start with maximal parallelism

– Define parallel algorithms that operate on a large number of virtual
processors

– Map the virtual processors to physical processors

– Will typically aggregate many virtual processors on onto one physical
processors

– Is this a good idea?

Parallel Computers

 Problem

 Language
 Algorithm

 Compiler

 Hardware

February 20, 2013

Calvin Lin, The University of Texas at Austin 2

CS380P Lecture 11 Two Parallel Algorithms 3

Case Study: The Tera MTA (aka Cray MTA)

 The logical extreme in SM computers: Provide the illusion of uniform
 access to memory even as P scales to large values

 The key idea
– Use multithreading to hide latency
– Each processor supports multiple threads. At each clock cycle, the

processor switches to another thread. Latency is hidden because by
the time a thread executes its next cycle, any expensive memory
access had already completed.

register
file 128 threads

register
file

register
file

 Multithreaded Processor (one node)

 processor

CS380P Lecture 11 Two Parallel Algorithms 4

The Tera MTA (cont)

 Massive parallelism

– How do you get so much parallelism?

– Exploit parallelism at many levels

– Instruction level

– Within basic blocks

– Across different processes

– Between user code and OS code

 Advantage

– Supports hard-to-parallelize applications

 Disadvantage

– Everything was custom designed

– GaAs instead of CMOS technology

February 20, 2013

Calvin Lin, The University of Texas at Austin 3

CS380P Lecture 11 Two Parallel Algorithms 5

 Interconnection Topology

– Sparsely populated 3D Torus

– Why?

– P processors with latency L to memory ⇒ network must hold P × L
messages if each processor will be busy each cycle

– As L grows, we need to reduce P

– This is why urban sprawl is bad

The Tera MTA (cont)

 Memory
– Randomized memory allocation

to reduce contention

– No caches

CS380P Lecture 11 Two Parallel Algorithms 6

The Tera Computer—Epiloque

 MTA-1
– Delivered in late 1990’s
– Set record for integer sort in 1997

 MTA-2
– Follow-on to MTA-1 implemented in CMOS technology
– Impressive speedups on hard problems [Anderson, et al SC2003]

 Lessons
– With a good design, good performance can be delivered for a wide variety

of application domains

 Aside
– Recognizes the importance of good tools
– Large compiler effort with excellent personnel
– In 2000, TeraComputer Co. bought Cray, Inc.from SGI

February 20, 2013

Calvin Lin, The University of Texas at Austin 4

CS380P Lecture 11 Two Parallel Algorithms 7

Distributed Memory Architectures

 Goal

– Provide a scalable architecture

– Processes communicate through messages

 Disadvantage

– Often considered more difficult to program

– The distributed memory model is often mistakenly used synonymously
with “message passing”

– This is a short-sighted view, as we can imagine divorcing the
programming model from the hardware substrate

 Examples

– Most of the larger machines are distributed memory machines

CS380P Lecture 11 Two Parallel Algorithms 8

The Law of Nature

 Big fish eat little fish

February 20, 2013

Calvin Lin, The University of Texas at Austin 5

CS380P Lecture 11 Two Parallel Algorithms 9

The Killer Micros

 Economies of scale

– Sales of microprocessors took off in the 80’s

– Supercomputers with custom-designed processors found it difficult to
compete against those with commodity processors

CS380P Lecture 11 Two Parallel Algorithms 10

Networks of Workstations (NOW, COW…)

Use distributed system as a supercomputer

– Don’t just reuse the CPU, reuse the entire workstation, including the CPU,
memory, and I/O interface

– Views parallel computing as an extension of distributed computing

– Some claim that Networks of Workstations provide parallel computing for
free

 Problems?

– Software is still not a commodity part

– Moreover, the simpler the hardware, the more the software needs to do

– Workstations typically not designed with NOW’s in mind, so some
components are not quite right

– e.g., Need to redesign the network interface

February 20, 2013

Calvin Lin, The University of Texas at Austin 6

CS380P Lecture 11 Two Parallel Algorithms 11

Clusters

 Basic idea

– Build distributed memory machines from commodity parts, perhaps with
some new redesign

– e.g., different form factors for rack-mounting

– Connect these workstations with high-speed commodity networks

 Advantages

– Scalable price/performance

– Can buy a few nodes or many nodes

– Supports incremental expansion

– Relatively low cost

 Disadvantages

– Relatively high communication latency compared to CPU speed

CS380P Lecture 11 Two Parallel Algorithms 12

Parallel Programming—the Big Picture

 How should we write parallel programs?

– Pthreads

– MPI

 Other alternatives

– Use higher level parallel languages

– Automatic parallelization

 Are these good solutions?

February 20, 2013

Calvin Lin, The University of Texas at Austin 7

CS380P Lecture 11 Two Parallel Algorithms 13

Automatic Parallelization

 Focus on loops

– Large body of work on loop transformations

– Many loop transformations proposed

– The key question: dependence analysis

– Can one iteration of a loop execute concurrently with another
iteration?

for i = 1 to n do

a[i] = a[i-1]

 a[1] = a[0]

 a[2] = a[1]

 a[3] = a[2]

 . . .

 Dependence testing

– Solve system of linear equations to see if a dependence exists across
iterations

i = 1
i = 2
i = 3

CS380P Lecture 11 Two Parallel Algorithms 14

Automatic Parallelization (cont)

 Limitations of this approach?

– Not everything can be expressed as a dense array

– Language semantics interfere

– Loop transformations are most amenable to Fortran

– Most modern languages do not have true multi-dimensional arrays,
but instead use arrays of arrays

– These arrays of arrays hinder dependence analysis

February 20, 2013

Calvin Lin, The University of Texas at Austin 8

CS380P Lecture 11 Two Parallel Algorithms 15

Comparing Arrays

 A 2D array in Fortran

 An array of arrays in Java

1 2

9 10

17 18

3 4

11 12

19 20

5 6

13 14

21 22

7 8

15 16

23 24

1 2 3 4 5 6 7 8

9 10 11 12 13 14

15 16 17 18 19 20 21

type
length type

length

type
length

type
length

for i≠j or k ≠l ,
A[i][k] and A[j][l] refer to distinct

memory locations

CS380P Lecture 11 Two Parallel Algorithms 16

Java Arrays

 Elements within an array can alias with one another

Implications?

– Complicates dependence testing

– Can’t simply reason algebraically

1 2 3 4 5 6 7 8

9 10 11 12 13 14

type
length type

length

type
length

A[1][i] aliases to A[2][i]

February 20, 2013

Calvin Lin, The University of Texas at Austin 9

CS380P Lecture 11 Two Parallel Algorithms 17

Limits of Automatic Parallelization

 Perhaps we’re just not trying hard enough?

– Parallel algorithms are often fundamentally different from sequential
algorithms

– Finding good parallel algorithms is AI-complete [Bill Mark, 2005]

 Today

– Two examples that illustrate this point

CS380P Lecture 11 Two Parallel Algorithms 18

Image Understanding

 Computer identification of images

 Example: DHS scans images looking for potential terrorist threats

February 20, 2013

Calvin Lin, The University of Texas at Austin 10

CS380P Lecture 11 Two Parallel Algorithms 19

Image Understanding

 Step 1: Convert image to binary image using thresholding

 Step 2: Identify connected components

CS380P Lecture 11 Two Parallel Algorithms 20

Image Understanding

 Step 3: Identify the different components using classification

turkey hand cart
Let’s focus on Step 2

February 20, 2013

Calvin Lin, The University of Texas at Austin 11

CS380P Lecture 11 Two Parallel Algorithms 21

Counting Connected Components

 Connected Components
– Given a binary image, count the number of connected components.
– Two 1’s are connectedif they are adjacent to each other in any of the 8

compass directions

– Example: The following is a single connected component

– How can we compute the number of connected components quickly?

1
01
00

1
0

0

1
0
00

N

S

EW

SW SE

NW NE

CS380P Lecture 11 Two Parallel Algorithms 22

The Obvious Recursive Approach

 Represent each pixel as a node in a graph

– Find pixels that are 1’s

– “Bleed out” from these 1’s using Breadth First Search

– Continue with unmarked 1’s

– Stop when all 1’s have been marked

 What is the running time?

– O(size-of-image)

 Clever algorithm: O(m+n) for an m××××n image and additional hardware

1
0

1
0

1

0

0 10

0

1 1

0 1
1
11111

1

0
1 1

1

February 20, 2013

Calvin Lin, The University of Texas at Austin 12

CS380P Lecture 11 Two Parallel Algorithms 23

A Parallel Solution

 The Amazing Levialdi Shrinking Operator (1972)

– A morphological operator that takes a window of pixels as input and
modifies a window of pixels as output

– Each pixel simultaneously changes state according to the following rules

(1) A 1 bit becomes a 0 if there are 0’s to its West, NW, and North

(2) A 0 bit becomes a 1 if there are 1’s to its West and North

X
0 ? 1

? ?1
1

0 1
0 0

? 0
? ?

(3) All other bits remain unchanged

CS380P Lecture 11 Two Parallel Algorithms 24

 The Amazing Levialdi Shrinking Operator (1972)

– A morphological operator that takes a window of pixels as input and
modifies a window of pixels as output

– Each pixel simultaneously changes state according to the following rules

(1) A 1 bit becomes a 0 if there are 0’s to its West, NW, and North

(2) A 0 bit becomes a 1 if there are 1’s to its West and North

A Parallel Solution

X
0 ? 1

? ?1
1

0 1
0 0

? 0
? ?

(3) All other bits remain unchanged

What do these rules do?

February 20, 2013

Calvin Lin, The University of Texas at Austin 13

CS380P Lecture 11 Two Parallel Algorithms 25

Deconstructing the Levialdi Operator

 Basic idea

– Each connected component has a well-defined bounding box

– If we can identify these bounding boxes, we can identify the connected
components

– Note that each bounding box has a well-defined lower-right corner

1

1
1

CS380P Lecture 11 Two Parallel Algorithms 26

Deconstructing the Levialdi Operator II

 Basic idea (cont)

– These rules cause a connected component to shrink towards the lower
right hand corner of its bounding box, until it eventually disappears
(poof!)

– Rule (1) causes the upper-left most 1 to disappear

1

1
1

1

0
1

11 1 10 1

1

1
1

1

0
1

February 20, 2013

Calvin Lin, The University of Texas at Austin 14

CS380P Lecture 11 Two Parallel Algorithms 27

 Basic idea (cont)

– Rule (2) creates a 1 if a 0 sits at the bottom-right of two 1’s

– Thus, holes in the bounding box are filled as the connected component
shrinks.

Deconstructing the Levialdi Operator III

1
1
0

?
? 1

CS380P Lecture 11 Two Parallel Algorithms 28

The Algorithm in Action

February 20, 2013

Calvin Lin, The University of Texas at Austin 15

CS380P Lecture 11 Two Parallel Algorithms 29

The Algorithm in Action

CS380P Lecture 11 Two Parallel Algorithms 30

The Dreaded Spiral

February 20, 2013

Calvin Lin, The University of Texas at Austin 16

CS380P Lecture 11 Two Parallel Algorithms 31

Does This Algorithm Work?

 Problem

– What if two components have the same bounding box?

– This cannot happen, because then the two would be connected

 Problem

– What if two components have bounding boxes with the same lower right
corner?

– This can happen, but the algorithm will detect the poofsat different times

CS380P Lecture 11 Two Parallel Algorithms 32

Overlapping Bounding Boxes

February 20, 2013

Calvin Lin, The University of Texas at Austin 17

CS380P Lecture 11 Two Parallel Algorithms 33

How Do We Recognize the Disappearing Components?

 Identify the lower right corner

– To check for the disappearance of a connected component

For each [1→0] transition,

check to see if the bit’s East, SE, and South bits are 0.

Q: What if the bit to the NE is a 1?

Won’t we mistakenly identify a poof when we shouldn’t?

A: The bit to the NE would have set the bit to the East to a 1, so our check

above would have failed

1
1
01 0
00

CS380P Lecture 11 Two Parallel Algorithms 34

The Levialdi Algorithm

Boolean Image[n][n]; // Initialize boundaries to 0’s
Boolean Next[n][n];
int count = 0;
Boolean moreOnes = False;

do {
shrink();
countAndTest();
Swap (Next, Image);

} while (moreOnes);

February 20, 2013

Calvin Lin, The University of Texas at Austin 18

CS380P Lecture 11 Two Parallel Algorithms 35

The Levialdi Algorithm (cont)

shrink()
{

for (int i=1; i<=n; i++)
{

for (int j=1; j<=n; j++)
{

Next[i][j] = Image[i][j] && (Image[i][j-1] ||
Image[i-1][j-1] ||
Image[i-1][j]);

Next[i][j] = Image[i][j] || (Image[i-1][j] &&
Image[i][j-1] &&

!Image[i][j]);
}

}
}

Rule 1

Rule 2

CS380P Lecture 11 Two Parallel Algorithms 36

The Levialdi Algorithm (cont)

countAndTest()
{

for (int i=1; i<=n; i++)
{

for (int j=1; j<=n; j++)
{

if (Image[i][j] && !Next[i][j] &&
!(Next[i][j+1] ||

Next[i+1][j+1] ||
Next[i+1][j]))

count++;
if (Next[i][j])

moreOnes = True;
}

}
}

count
poofs

February 20, 2013

Calvin Lin, The University of Texas at Austin 19

CS380P Lecture 11 Two Parallel Algorithms 37

Q: How long does it take to shrink a connected component?

A: O(w+h), where w and h are the width and height of the connected

component’s bounding box.

Q: How large can a bounding box be?

A: No bigger than m × n, the size of the image.

So the running time of the algorithm is O((m+n) × iter), where iter is the

time it takes to iterate over the 2 for loops

Time Complexity

CS380P Lecture 11 Two Parallel Algorithms 38

What’s Neat About this Algorithm?

 Plenty of parallelism

– The algorithm uses only local information at each pixel, so we can
implement the algorithm in parallel.

– We can use a 2D array of processors, with one processor per pixel.

 The larger point

– The algorithm is completely different from the sequential one

February 20, 2013

Calvin Lin, The University of Texas at Austin 20

CS380P Lecture 11 Two Parallel Algorithms 39

The Solar System

 Isaac Newton (17th Century)

– A planet orbiting the Sun follows an elliptical path

– This 2-body problem is easy to solve mathematically

 Is the solar system stable?

 Laplace failed

– Made simplifying assumptions

– Solvable but inaccurate

 Still an unsolved problem

CS380P Lecture 11 Two Parallel Algorithms 40

Computer Simulations of the Solar System [Saha, et al, 1997]

 This is an obvious N-body problem

– 1 sun

– 9 planets

– 1 moon

 Largest solution to date

– 100M years

– Took about a year to simulate on a uni-processor workstation (c. 1996)

 Can we parallelize this?

– Obvious answer: Assign one processor to each planet

– How can we get significantly more parallelism?

February 20, 2013

Calvin Lin, The University of Texas at Austin 21

CS380P Lecture 11 Two Parallel Algorithms 41

Integration-Based Approach

 Leverage Newton’s work

– Without the gravitational effects of the other planets, each planet’s orbit
would be elliptical

– We can estimate where each planet will be t time steps in the future

– Given estimates for all of the planets, we can then adjust each individual
estimate to produce an accurate simulation

CS380P Lecture 11 Two Parallel Algorithms 42

Integration-Based Approach (cont)

 Parallelize across time

– Each processor computes planet locations for a different time step in the
future

– Since there are so many time steps, we have massive parallelism!

– We can use the parallel prefix operation to make corrections for each
estimate

February 20, 2013

Calvin Lin, The University of Texas at Austin 22

CS380P Lecture 11 Two Parallel Algorithms 43

Parallel Prefix Revisited

 Prefix Sum

Original array

Parallel prefix with + operator

 Solar System

– Instead of accumulating partial sums, accumulate partial errors in the
original approximation

 2 1 3 4 2 7 2 5

 2 10 26 16 23 9 12 21

 Compute partial sums in this direction

CS380P Lecture 11 Two Parallel Algorithms 44

Integration-Based Approach (cont)

 A few details

– Can use thousands of processors

– Largest feasible timestep is about one week

– Requires quadruple precision floating-point precision for a few iterations

– Goal: simulate 10B years

February 20, 2013

Calvin Lin, The University of Texas at Austin 23

CS380P Lecture 11 Two Parallel Algorithms 45

Summary

 Parallel algorithms

– Often fundamentally different from sequential algorithms

– Limits the attractiveness of automatic parallelization

– Are there intermediate solutions? Stay tuned . . .

CS380P Lecture 11 Two Parallel Algorithms 46

Next Time

 Reading #9

– Anderson and Snyder paper

 Assignment 4

– Available on Friday

 Meet in GDC?

– Stay tuned

