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Today’s Plan

 Today

– Two questions

– How should you build a parallel computer?

– Can we do automatic parallelization at a coarser level?

 Parallel architectures

 Automatic parallelization
– We’ve already argued that it’s not practical

– A more forceful argument using

two parallel algorithms as examples
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The mismatch becomes worse

– Looking for much more parallelism, often at a larger granularity

– The automatic parallelization funnel

 An alternative approach
– Start with maximal parallelism

– Define parallel algorithms that operate on a large number of virtual 
processors

– Map the virtual processors to physical processors

– Will typically aggregate many virtual processors on onto one physical 
processors

– Is this a good idea?

Parallel Computers

 Problem

 Language
 Algorithm

 Compiler

 Hardware
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Case Study: The Tera MTA (aka Cray MTA)

 The logical extreme in SM computers: Provide the illusion of uniform
 access to memory even as P scales to large values

 The key idea
– Use multithreading to hide latency
– Each processor supports multiple threads.  At each clock cycle, the 

processor switches to another thread.  Latency is hidden because by 
the time a thread executes its next cycle, any expensive memory 
access had already completed.

register
file  128 threads

register
file

register
file

 Multithreaded Processor (one node)

 processor
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The Tera MTA (cont)

 Massive parallelism

– How do you get so much parallelism?

– Exploit parallelism at many levels

– Instruction level

– Within basic blocks

– Across different processes

– Between user code and OS code

 Advantage

– Supports hard-to-parallelize applications

 Disadvantage

– Everything was custom designed 

– GaAs instead of CMOS technology
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 Interconnection Topology

– Sparsely populated 3D Torus

– Why?

– P processors with latency L to memory ⇒ network must hold P × L 
messages if each processor will be busy each cycle

– As L grows, we need to reduce P

– This is why urban sprawl is bad

The Tera MTA (cont)

 Memory
– Randomized memory allocation 

to reduce contention

– No caches
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The Tera Computer—Epiloque

 MTA-1
– Delivered in late 1990’s
– Set record for integer sort in 1997

 MTA-2
– Follow-on to MTA-1 implemented in CMOS technology
– Impressive speedups on hard problems [Anderson, et al SC2003]

 Lessons
– With a good design, good performance can be delivered for a wide variety 

of application domains

 Aside
– Recognizes the importance of good tools
– Large compiler effort with excellent personnel
– In 2000, TeraComputer Co. bought Cray, Inc.from SGI
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Distributed Memory Architectures

 Goal

– Provide a scalable architecture

– Processes communicate through messages

 Disadvantage

– Often considered more difficult to program

– The distributed memory model is often mistakenly used synonymously 
with “message passing”

– This is a short-sighted view, as we can imagine divorcing the 
programming model from the hardware substrate

 Examples

– Most of the larger machines are distributed memory machines
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The Law of Nature

 Big fish eat little fish
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The Killer Micros

 Economies of scale

– Sales of microprocessors took off in the 80’s

– Supercomputers with custom-designed processors found it difficult to 
compete against those with commodity processors
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Networks of Workstations (NOW, COW…)

Use distributed system as a supercomputer

– Don’t just reuse the CPU, reuse the entire workstation, including the CPU, 
memory, and I/O interface

– Views parallel computing as an extension of distributed computing

– Some claim that Networks of Workstations provide parallel computing for 
free

 Problems?

– Software is still not a commodity part

– Moreover, the simpler the hardware, the more the software needs to do

– Workstations typically not designed with NOW’s in mind, so some 
components are not quite right

– e.g., Need to redesign the network interface
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Clusters

 Basic idea

– Build distributed memory machines from commodity parts, perhaps with 
some new redesign

– e.g., different form factors for rack-mounting

– Connect these workstations with high-speed commodity networks

 Advantages

– Scalable price/performance

– Can buy a few nodes or many nodes

– Supports incremental expansion

– Relatively low cost

 Disadvantages

– Relatively high communication latency compared to CPU speed
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Parallel Programming—the Big Picture

 How should we write parallel programs?

– Pthreads

– MPI

 Other alternatives

– Use higher level parallel languages

– Automatic parallelization

 Are these good solutions?
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Automatic Parallelization

 Focus on loops

– Large body of work on loop transformations

– Many loop transformations proposed

– The key question: dependence analysis

– Can one iteration of a loop execute concurrently with another 
iteration?

for i = 1 to n do

a[i] = a[i-1]

 a[1] = a[0]

 a[2] = a[1]

 a[3] = a[2]

 . . .

 Dependence testing

– Solve system of linear equations to see if a dependence exists across 
iterations

i = 1
i = 2
i = 3
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Automatic Parallelization (cont)

 Limitations of this approach?

– Not everything can be expressed as a dense array

– Language semantics interfere

– Loop transformations are most amenable to Fortran

– Most modern languages do not have true multi-dimensional arrays, 
but instead use arrays of arrays

– These arrays of arrays hinder dependence analysis
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Comparing Arrays

 A 2D array in Fortran

 An array of arrays in Java

1 2

9 10

17 18

3 4

11 12

19 20

5 6

13 14

21 22

7 8

15 16

23 24

1 2 3 4 5 6 7 8

9 10 11 12 13 14

15 16 17 18 19 20 21

type
length type

length

type
length

type
length

for i≠j or k ≠l , 
A[i][k] and A[j][l] refer to distinct

memory locations
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Java Arrays 

 Elements within an array can alias with one another

Implications?

– Complicates dependence testing

– Can’t simply reason algebraically

1 2 3 4 5 6 7 8

9 10 11 12 13 14

type
length type

length

type
length

A[1][i] aliases to A[2][i]
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Limits of Automatic Parallelization

 Perhaps we’re just not trying hard enough?

– Parallel algorithms are often fundamentally different from sequential 
algorithms

– Finding good parallel algorithms is AI-complete [Bill Mark, 2005]

 Today

– Two examples that illustrate this point
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Image Understanding

 Computer identification of images

 Example: DHS scans images looking for potential terrorist threats
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Image Understanding

 Step 1:  Convert image to binary image using thresholding

 Step 2:  Identify connected components
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Image Understanding

 Step 3:  Identify the different components using classification

turkey hand cart
Let’s focus on Step 2
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Counting Connected Components

 Connected Components
– Given a binary image, count the number of connected components. 
– Two 1’s are connectedif they are adjacent to each other in any of the 8 

compass directions

– Example: The following is a single connected component

– How can we compute the number of connected components quickly?

1
01
00

1
0

0

1
0
00

N

S

EW

SW SE

NW NE
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The Obvious Recursive Approach

 Represent each pixel as a node in a graph

– Find pixels that are 1’s

– “Bleed out” from these 1’s using Breadth First Search

– Continue with unmarked 1’s 

– Stop when all 1’s have been marked

 What is the running time?

– O(size-of-image)

 Clever algorithm: O(m+n) for an m××××n image and additional hardware

1
0

1
0

1

0

0 10

0

1 1

0 1
1
11111

1

0
1 1

1
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A Parallel Solution

 The Amazing Levialdi Shrinking Operator (1972)

– A morphological operator that takes a window of pixels as input and 
modifies a window of pixels as output

– Each pixel simultaneously changes state according to the following rules

(1) A 1 bit becomes a 0 if there are 0’s to its West, NW, and North

(2) A 0 bit becomes a 1 if there are 1’s to its West and North

X
0 ? 1

? ?1
1

0 1
0 0

? 0
? ?

(3) All other bits remain unchanged
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 The Amazing Levialdi Shrinking Operator (1972)

– A morphological operator that takes a window of pixels as input and 
modifies a window of pixels as output

– Each pixel simultaneously changes state according to the following rules

(1) A 1 bit becomes a 0 if there are 0’s to its West, NW, and North

(2) A 0 bit becomes a 1 if there are 1’s to its West and North

A Parallel Solution

X
0 ? 1

? ?1
1

0 1
0 0

? 0
? ?

(3) All other bits remain unchanged

What do these rules do?
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Deconstructing the Levialdi Operator

 Basic idea

– Each connected component has a well-defined bounding box

– If we can identify these bounding boxes, we can identify the connected 
components

– Note that each bounding box has a well-defined lower-right corner

1

1
1
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Deconstructing the Levialdi Operator II

 Basic idea (cont)

– These rules cause a connected component to shrink towards the lower 
right hand corner of its bounding box, until it eventually disappears 
(poof!)

– Rule (1) causes the upper-left most 1 to disappear

1

1
1

1

0
1

11 1 10 1

1

1
1

1

0
1
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 Basic idea (cont)

– Rule (2) creates a 1 if a 0 sits at the bottom-right of two 1’s

– Thus, holes in the bounding box are filled as the connected component 
shrinks.  

Deconstructing the Levialdi Operator III

1
1
0

?
? 1
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The Algorithm in Action
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The Algorithm in Action
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The Dreaded Spiral
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Does This Algorithm Work?

 Problem

– What if two components have the same bounding box?

– This cannot happen, because then the two would be connected

 Problem

– What if two components have bounding boxes with the same lower right 
corner?

– This can happen, but the algorithm will detect the poofsat different times
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Overlapping Bounding Boxes
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How Do We Recognize the Disappearing Components?

 Identify the lower right corner

– To check for the disappearance of a connected component

For each [1→0] transition, 

check to see if the bit’s East, SE, and South bits are 0.

Q:  What if the bit to the NE is a 1?

Won’t we mistakenly identify a poof when we shouldn’t?

A:  The bit to the NE would have set the bit to the East to a 1, so our check 

above would have failed

1
1
01 0
00
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The Levialdi Algorithm

Boolean Image[n][n]; // Initialize boundaries to 0’s
Boolean Next[n][n];
int count = 0;
Boolean moreOnes = False;

do {
shrink();
countAndTest();
Swap (Next, Image);

} while (moreOnes);
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The Levialdi Algorithm (cont)

shrink()
{

for (int i=1; i<=n; i++) 
{

for (int j=1; j<=n; j++) 
{

Next[i][j] = Image[i][j] && (Image[i][j-1]   ||
Image[i-1][j-1] ||
Image[i-1][j]);

Next[i][j] = Image[i][j] || (Image[i-1][j] &&
Image[i][j-1] &&

!Image[i][j]);
}

}
}

Rule 1

Rule 2
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The Levialdi Algorithm (cont)

countAndTest()
{

for (int i=1; i<=n; i++) 
{

for (int j=1; j<=n; j++) 
{

if (Image[i][j] && !Next[i][j] &&                
!(Next[i][j+1] ||

Next[i+1][j+1] ||
Next[i+1][j]))

count++; 
if (Next[i][j])

moreOnes = True;
}

}
}

count
poofs
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Q: How long does it take to shrink a connected component?

A: O(w+h), where w and h are the width and height of the connected

component’s bounding box.

Q:  How large can a bounding box be?

A:  No bigger than m × n, the size of the image.  

So the running time of the algorithm is O((m+n) × iter), where iter is the

time it takes to iterate over the 2 for loops

Time Complexity
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What’s Neat About this Algorithm?

 Plenty of parallelism

– The algorithm uses only local information at each pixel, so we can 
implement the algorithm in parallel.  

– We can use a 2D array of processors, with one processor per pixel.

 The larger point

– The algorithm is completely different from the sequential one
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The Solar System

 Isaac Newton (17th Century)

– A planet orbiting the Sun follows an elliptical path

– This 2-body problem is easy to solve mathematically

 Is the solar system stable?

 Laplace failed

– Made simplifying assumptions

– Solvable but inaccurate

 Still an unsolved problem
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Computer Simulations of the Solar System [Saha, et al, 1997]

 This is an obvious N-body problem

– 1 sun

– 9 planets

– 1 moon

 Largest solution to date

– 100M years

– Took about a year to simulate on a uni-processor workstation (c. 1996) 

 Can we parallelize this?

– Obvious answer: Assign one processor to each planet

– How can we get significantly more parallelism?
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Integration-Based Approach

 Leverage Newton’s work

– Without the gravitational effects of the other planets, each planet’s orbit 
would be elliptical

– We can estimate where each planet will be t time steps in the future

– Given estimates for all of the planets, we can then adjust each individual 
estimate to produce an accurate simulation
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Integration-Based Approach (cont)

 Parallelize across time

– Each processor computes planet locations for a different time step in the 
future

– Since there are so many time steps, we have massive parallelism!

– We can use the parallel prefix operation to make corrections for each 
estimate
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Parallel Prefix Revisited

 Prefix Sum

Original array

Parallel prefix with + operator

 Solar System

– Instead of accumulating partial sums, accumulate partial errors in the 
original approximation

 2  1  3 4  2 7  2  5

 2  10  26 16  23 9  12  21

 Compute partial sums in this direction
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Integration-Based Approach (cont)

 A few details

– Can use thousands of processors

– Largest feasible timestep is about one week

– Requires quadruple precision floating-point precision for a few iterations

– Goal: simulate 10B years
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Summary

 Parallel algorithms

– Often fundamentally different from sequential algorithms

– Limits the attractiveness of automatic parallelization

– Are there intermediate solutions?  Stay tuned . . .
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Next Time

 Reading #9

– Anderson and Snyder paper

 Assignment 4

– Available on Friday

 Meet in GDC?

– Stay tuned


