

| MPI provides a wide interface         - 12 ways to perform point-to-point communication         - MPI 2.0 offers one-sided communication |                                 |                        |                |                |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------|----------------|----------------|
|                                                                                                                                          | Normal                          | Sync                   | Ready          | Buffered       |
| Normal                                                                                                                                   | MPI_Send                        | MPI_Ssend              | MPI_Rsend      | MPI_Bsend      |
| Nonblock                                                                                                                                 | MPI_Isend                       | MPI_Issend             | MPI_Irsend     | MPI_Ibsend     |
| Persistent                                                                                                                               | MPI_Send_init                   | MPI_Ssend_init         | MPI_Rsend_init | MPI_Bsend_init |
| Why so man<br>What proble                                                                                                                | y choices?<br>ems does this cre | ate?                   |                |                |
| CS380P Lecture 18                                                                                                                        | 3                               | Performance Portabilit | у              | 2              |

















| _                  |
|--------------------|
|                    |
| -                  |
| eive data in $P_2$ |
| -                  |
|                    |
|                    |
|                    |

| Effect at P <sub>1</sub>                 | SPMD code | Effect at P <sub>2</sub>                  |
|------------------------------------------|-----------|-------------------------------------------|
| -                                        | DR()      | Non-blocking<br>receive in P <sub>2</sub> |
| Non-blocking send<br>from P <sub>1</sub> | SR()      | -                                         |
| -                                        | DN()      | Wait for receive a                        |
| Wait for send to complete                | SV()      | _                                         |

| User-I           | Defined Callback Rou                                                              | itines                                                |                                                     |     |
|------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|-----|
|                  | Effect at P <sub>1</sub>                                                          | SPMD code                                             | Effect at P <sub>2</sub>                            |     |
|                  |                                                                                   |                                                       | Post receive                                        |     |
|                  | Synchronize                                                                       | DR()                                                  | callback                                            |     |
|                  | Send data                                                                         | SR()                                                  | -                                                   |     |
|                  |                                                                                   |                                                       | Wait for receive to                                 |     |
|                  | -                                                                                 | DN()                                                  | complete                                            |     |
|                  | -                                                                                 | SV()                                                  | -                                                   |     |
| Usage            |                                                                                   | I                                                     | I                                                   |     |
| – Th<br>me<br>ma | is binding is similar to<br>essage is complete, a un<br>arshall the data as it ar | the use of non-block<br>ser-defined callback<br>rives | king receives, but when<br>routine is called to un- | the |

| One-si      | ded Communication             |                        |                              |
|-------------|-------------------------------|------------------------|------------------------------|
|             | Effect at P <sub>1</sub>      | SPMD code              | Effect at P <sub>2</sub>     |
|             | Synchronize                   | DR()                   | Synchronize                  |
|             | Put data into destination     | SR()                   | -                            |
|             | Synchronize                   | DN()                   | Synchronize                  |
|             | -                             | SV()                   | -                            |
| Usage       |                               |                        |                              |
| – Son<br>me | me hardware allows or<br>mory | ne processor to Put da | ata onto another processor's |



| Example ZPL code                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>X := D;<br/>DR();<br/><br/>S :=;<br/>SR();<br/><br/>D := S@east;<br/>DN();<br/>Y := D;<br/><br/>SV();<br/>S :=;</pre> | <ul> <li>Overall compilation scheme <ul> <li>Identify the need for communication</li> <li>Use dependence analysis to identify Defs and Uses, which define the four points of interest</li> <li>Perform code motion to push the four locations apart</li> <li>Assign static Communication Tags to each set of Ironman calls <ul> <li>These tags are used to maintain state across calls at runtime</li> <li>Insert parameters to each call</li> </ul> </li> </ul></li></ul> |



| Higher level languag                                           | es                                                      |            |
|----------------------------------------------------------------|---------------------------------------------------------|------------|
| – Can use richer and                                           | d more complicated interfaces                           |            |
| – No human would                                               | want to use the Ironman interface                       |            |
| Abstract interfaces                                            |                                                         |            |
| <ul> <li>Abstract interface<br/>interfaces</li> </ul>          | s can convey more information than lower-l              | evel       |
| <ul> <li>Abstract interface<br/>convey the right is</li> </ul> | s can be both portable and efficient—but the nformation | ey need to |
| <ul> <li>In the case of com<br/>transfer data and n</li> </ul> | munication, they should specify what and whothing more  | when to    |
|                                                                |                                                         |            |
|                                                                |                                                         |            |















| NAS MG rpr<br>procedure rprj3<br>begin<br>s := 0.5 *<br>+ 0.25 *<br>+ 0.125 *<br>+ 0.0625 * | <pre>j3 stencil in ZPL (var s,R: [,,] double; d: array [] of direction);  R (R@^d[ 1, 0, 0] + R@^d[ 0, 1, 0] + R@^d[ 0, 0, 1] + R@^d[-1, 0, 0] + R@^d[ 0, -1, 0] + R@^d[ 0, 0, -1]) (R@^d[ 1, 1, 0] + R@^d[ 1, 0, 1] + R@^d[ 0, 1, 1] + R@^d[ 1, -1, 0] + R@^d[ 1, 0, -1] + R@^d[ 0, 1, -1] + R@^d[-1, 1, 0] + R@^d[-1, 0, 1] + R@^d[ 0, -1, 1] + R@^d[-1, -1, 0] + R@^d[-1, 0, -1] + R@^d[ 0, -1, -1] + R@^d[ 1, -1, 1] + R@^d[ 1, -1, -1] + R@^d[ 1, -1, 1] + R@^d[ -1, 1, -1] + R@^d[-1, -1, 1] + R@^d[-1, -1, -1]);</pre> |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Yikes<br>– Looks quite<br>– With 27 dire<br>– What does t                                   | messy because it uses a 27-point stencil<br>ections, even naming them is inconvenient<br>his code look in Fortran + MPI?                                                                                                                                                                                                                                                                                                                                                                                                      |
| CS380P Lecture 18                                                                           | Performance Portability 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |











