Regions: An Abstraction for Expressing Array Computation

Bradford L. Chamberlain

University of Washington,

TUniversity of Texas,

E Christopher Lewis

Calvin Lin Lawrence Snyder

Seattle, WA 98195-2350
Austin, TX 78712

{brad,echris,snydei@cs.washington.edlin@cs.utexas.edu

Abstract

Most array languages, such as Fortran 90, Matlab, and APL,
provide support for referencing arrays by extending thditra
tional array subscripting construct found in scalar lamgpsa

We present an alternative approach that exploits the concep
of regions—a representation of index sets that can be name
manipulated with high-level operators, and syntacticsdipa-

rated from array references. This paper develops the concep

of region-based programming and describes its benefitein th
context of an idealized array language calRd We show
that regions simplify programming, reduce the likelihodd o

errors, and enable code reuse. Furthermore, we describe how?

regions accentuate the locality of array expressions amd ho
this locality is important when targeting parallel compste

[lo..hi,lo..hi] A=B+C
()

AlS § «+ B[S § + C[S S« 1+LO+IHI-LO-1]
(b)

g\‘(lo:hi, lo:hi)=B(lo:hi,lo:hi)+C(lo:hi,Ilo:hi)

(c)
Figure 1: Different representations of the same array laggu

computation in (a) RL and ZPL, (b) APL, and (c) Fortran 90
nd Matlab.

pression must beonformablemeaning that the subarrays ref-

We also show how the concepts of region-based programming grenced must have the same shape and!szenformability

have been used in ZPL, a fully-implemented practical paral-
lel programming language in use by scientists and engineers
In addition, we contrast region-based programming with the
array reference constructs of other array languages.

1 Introduction
Since the earliest programming languages, array refesence
have had subscripts associated with them. This notatioichwh
was inherited from linear algebra, is natural and convetrian
scalar languages since they operate on single values aea tim
In contrast, array languages support the atomic manipulati
of multiple array elements, so they typically extend triadial
subscripting to a more complex form. APL [7], the first array
language, supports the use of integer vectors in each gpibscr
position, computing the outer product of the indices in edieh
mension to determine the elements referenced. Fortran]90 [1
uses a simplified variation on this syntax to support common
reference patterns using triple or “slice” notation to dimca
regular subset of elements. Both languages allow the dpbscr
to be elided when referring to all elements of an array.
Though array language subscripting is a natural extension
of scalar subscripting, array languages exhibit an importa
property that constrains subscripts. Operands in an axay e

ensures that there are corresponding elements in eacmdpera
of an array expression so that its evaluation is well-defined
Conformability results in a strong correspondence between
subscripting expressions of array operands. Specificaky,
will often be identical and almost always be similar. This
property, which we refer to daadex locality follows naturally
from the fact that programmers tend to organize and referenc
data in logical, constrained, and meaningful ways. Index lo
cality motivates an alternative means of array referenaegus
regions

This paper describes a region-based approach for express-
ing array computations. A region is a source-level index set
that prefixes a statement to specify default indices forritsya
references. Array operators that modify the default inslican
be applied to array expressions, resulting in differeneasc
patterns. In this wayggion-based programming syntactically
separates array indexing from array references.

In this paper, we present region-based programming and
its benefits using a simple, idealized array language c&lled
RL provides a vehicle for discussing region-based program-
ming in general terms. As an example of region use in RL, Fig-
ure 1(a) shows a 2-dimensional region (in brackets) that cov
ers an array statement. The statement specifies that eement
of ann x n sub-array ofB and C (wheren=hi —10+1)
are summed and assigned to the corresponding elements of ar-
ray A. Semantically equivalent statements are given for APL
in Figure 1(b) and for Fortran 90 and Matlab in Figure 1(c).
From this trivial example, regions may appear to be a minor

1Though this is a common definition of conformability, it istnmiversal.

To appear in the ACM SIGAPL/SIGPLAN Conference on Arra§tually all variations, however, at least require tha tumber of elements be
Programming Languages, June 1999, Scranton, Pennsylvanian® same-

syntactic variation on the other forms of indexing. However are factored into a region, all that is left at the array refiees
we explain how region-based programming provides a pow- is an indication of how they differ. This applies the common
erful abstraction that has advantages related to notataie language design principle that similar things should loak s
reuse, and performance analysis. ilar, and different things should look different [10]. Fax-e
This paper also describes how the ZPL parallel program- ample, the following RL statement contains four refererioes
ming language is based on the region concept. ZPL is a real- array A, each shifted in one of the cardinal directions. It is
world programming language that is publicly available om th clear exactly how arraj is being referenced in each operand.
world-wide wel¥ and is in use by scientists and engineers [14].
We describe decisions made in the design of ZPLthatnotonly [1..m 1..n] Tenp = A@-1,0) + A@1,0) + A@O0,-1) + A
support efficient parallel implementations, but also pieva
performance model that allows programmers to easily reason The subscripted equivalent of this code requires closetisgr
about parallel overheads—an uncommon feature in parallel to discover the same relationship in its operands, let aone
programming languages. verify its legality.
This paper makes two primary contributions. The first is
an evaluation of region-based programming as an approach to Temp(1l:m1:n) = A(0:m1,1:n) + A(2:m+l, 1:n) + A(l:m 2
array language indexing. The second is a discussion of how . . .
an efficient parallel programming language can be designed ~ R€gions can be name&y naming regions, programmers
around the region construct. We detail the properties gbreg ~ €an give meaning to index sets. It is difficult to associate
based programming and enumerate its benefits. We give for- Méaning with unnamed indices, just as it is difficult to asso-
mal definitions of region and array operators and describe ho ~Ciate meaning with a memory address without using a variable
their use enables the source-level identification of indeal- name. For example, the nafiepFace is far more illustra-
ity, thereby improving programmers' understanding ofrthei Ve than[0, 1: n, 1: n] . Providing the ability to name index
codes' performance on parallel computers. Furthermore, we [2nges (asin APL) or even entire slices does not yield thesam
compare the region-based representation to the convahtion Penefit, because a programmer must potentially name a great
subscripted form. Although the region-based ZPL language pumber of similar things. For example,. thg flve'dlstlnctmc
has been described before [9], this is the first discussion of IN the code fragment above would require five different names
regions as an abstract programming language concept. Regions encode hlgh-level |nf9rmat|0n that can be manip-
Section 2 describes the advantages of region-based pro-Ulated by operators While subscript-based languages allow
gramming. In Section 3, we give a formal definition for re- arlthmetlp operators to be applied to individual dlmen5|oh
gions and describe RL's support for region declarations and & Subscript, RL provides operators that apply to the index se
operators. In Section 4, we introduce RL's array operatmis a S & whole. Regions can be defined in terms of other regions,
describe how they are used to express general array computaVhich is conceptually simpler than repeatedly constrggtey
tions. In Section 5, we describe how regions highlight index |atéd but different index sets. For example, Rafsoperator
locality and provide benefits for parallel computing. Weoals assists in the clear definition and interpretation of bomnda
discuss the relationship between RL and ZPL, and we compare [€9ions: given aregiodube = [1..n,1..n,1..n] and
the expressive power of the region-based approach with sub-2 direction vectot op = (-1, 0, 0) , the regionTopFace

scripting. In the final sections we describe related work and @P0ve can be defined using the expressiop of Cube.
give conclusions. Using region operators, a change to one region is reflected in

all regions that are defined in terms of it, thus localizingdmo

. ifications to the code.
2 Benefits of Region-based Programming

This section provides an overview of the benefits of region- Code Reuse Benefits

based programming. By separating the specification of array indices from thespe
ification of computation, regions result in code that is more
Notational Benefits general and more reusable than subscripted code. For exam-

. o . ple, regions make it trivial to write statements or procegur
Regions eliminate redundancyFactoring the common por- yat can operate on arrays of arbitrary size, while subtsatip
tions of a (potentially compound) statement's array rel |anguages require the programmer to pass around and explic-
into a single region eliminates the redundancy of subscript iy manipulate array bound information in order to achieve
specification, as illustrated by Figure 1. Though subsedpt {he same generality. Furthermore, regions can be applied to
languages typically allow a subscript to be elided whenrrefe ¢ of statements, including entire procedures, sorthe i
encing all the elements of an array, interior and bound®y el gjces for entire blocks of code can be easily changed. In par-
ments of an array are often treated separately, necesgithg ticular, scalar procedures can be trivigtifomotedto operate
use of subscripts. As a result, a region-based represemiati arrays of any size and shape by simply specifying a re-
more concise, easier to read, and less error prone. As an in-gion 4t the call site and passing in actual parameters of the

formal measure of conciseness, consider the example given i appropriate rank. Moreover, changing a region-based anogr
Table 1. Strilpped of all indexing constructs, the ZPL and For operate on higher dimensional arrays can be a simple mat-
tran 90 versions of the SPEC CFP92 swm256 benchmark are g of changing the region declarations. The array computa-
similar in size. However, comparing the complete programs, tions themselves may not need to change, or they may need to
Fortran 90 is considerably larger, devoting more than hialf 0 change in minor and obvious ways, depending on the charac-
its characters to indexing, as compared to ZPL's 27%. teristics of the algorithm. In contrast, an array languagehs

Regions accentuate the commonalities and differences@mogs Foriran 90 would require modifications to every array ref-
array referencesBecause the common portions of references erence

2http://www.cs.washington.edu/research/zpl/

language | total characters| non-indexing character$ indexing overhea
Fortran 90 3154 1513 52%
ZPL 1957 1421 27%

Table 1: Character counts for the SPEC CFP92 swm256 benkhmmdten in ZPL and Fortran 90Total charactersndicates
the total number of non-whitespace characters in the codes ey are stripped of variable declarations and NGn-indexing
charactersindicates the number of characters remaining once suliscrifin Fortran 90) and region/direction specification (in
ZPL) are removedindexing overheaéhdicates the percentage of characters that are devotechioiadexing.

Performance Analysis Benefits For example, the index set of the 2-dimensional region

Perhaps the biggest advantage of region-based programming<(1’ 6,2,0),(1,6,2,1)) would be described as follows:

is its potential for aiding in performance analysis. The oke

special operators to highlight correlations between eactya 1(((1,6,2,0),(1,6,2,1))) = $S1,6,2,0)x S1,6,2,1)
operand's reference pattern emphasizes index localitys Th 246 135

has great benefit in the parallel realm where data localéyspl 12,4,6} x {1,3,5}
a crucial role in determining performance. By supportinghsu = {(21),(23),(25),(41),
operators and by clearly defining its data allocation polécy (4,3),(4,5),(6,1),(6,3),(6,5)}
parallel region-based language such as ZPL can enable pro-

grammers to reason about the parallel execution of theesod

using straightforward syntactic cues. As a result, program

mers and compilers can locate optimization opportunities b 3.2 Basic Region Declarations

looking at the array operators used within a program, thereb

avoiding complex analysis of subscripting expressionssgéh Since dense regions constitute the common case in arragtbas

benefits are discussed in further detail in Section 5. languages, RL adopts the following as its most basic region
specification:
3 Regions R=1[li.hy lo..hp, ..., lg..hq]

In RL, a region is a rectangular index set of arbitrary rantt an Thjs style of declaration is used to define regions with triv-
stride, useful for defining arrays and array computatioms T i3] stride and alignment. Alegenerate dimensienone with

section gives a formal definition of regions, explains hoeyth st a single index—can be declared by simply specifying the
are declared in RL, and describes RL's operators for manipu- jndex .g, [3, 1. . n]). Note that although RL could sim-

lating them. ply allow programmers to express regions in a sequence de-
scriptor format, the more abstract syntax is clearer, impgp

3.1 Formal Region Definition readability. In RL, the specification above defines the fdrma
region:

Each dimension of a region is defined by a 4-tupdguence
descriptor r = (I, h,s,a), wherel andh represent the low and
high bounds of the sequencis the sequence’s stride, aad r = {(l,hy,1,11),(I2,hz,1,12),. .., (la,hg, 1, 14))
encodes the alignment of the sequence. A sequence dekcripto
r, is interpreted as defining a set of integ&¥(s,), as follows:
Since the stride is always set to 1, the complete integererang
li...h will be used for dimension. RL's region operators
Sr) = {xl<x<handx=a (mods)} (1) (described in the next section) are used to modify the stride
and alignment values of a region. Although a stride of value
]] 1 makes the alignment term in a basic region inconsequential
For example, the descript¢t, 6, 2,0) describes the setof even setting it to the range's low bound results in a consistedt an

integers between one and six, inclusiye; 4, 6}. meaningful interpretation when region operators are used t
A d-dimensional region is defined as d-ary sequence of modify its stride and bounds.

sequence des%riptorg ..Trq, wherer; represents the indices
o a
of the region's™ dimension: 3.3 Region Operators
A set of prepositional operators-of, in, at, andby—are de-
ro= (ry,rz,...,rq) fined for the sequence descriptors. Each of these operators
combines an integer valug,and a sequence descriptor to pro-

.) L duce a new sequence. The operators are defined to transform
The index set|(r), defined by the region is simply the cross- e sequences as follows:

product of the integers specified by each of its dimensions:

I(r) = Sr1) x§rz) x... x §rq) 5 of (I,hsa) = (I,h,s,a) if3=0 (2)

(1+31-1sa) ifd<0
(h+1,h+8,sa) ifd>0

{ (I,1+(-8-1),88) iféd<0
din (l,hsa) = (I,h,s,a) if 3=0(3)
(h—(d-1),h;s;a) fd>0
(I,hysa) at & = (I+6,h+9d,sa+9) 4
(ILh.sa) by 8 = (I,h,[9]-sa) ®)

In short, theof andi n operators modify the sequence bounds
relative to the existing bounds, leaving the stride andnalig
ment unchangedf describes a range adjacent to the original
range, whereasn describes a range interior to the previous
range). Theat operator translates the sequence bounds and
alignment of the sequence. Thg operator is used to scale
the stride of the sequence, leaving the bounds and alignment
unchanged.

Although there are certainly other region operators that
could be useful to a programmer, those listed here were se-
lected as a basis set since they support common array refer-
ence paradigms and are closed over our region notation. For
example, RL does not support the set-theoretic union and dif
ference operators due to the increased overhead of starihg a
iterating over non-rectangular index sets.

RL applies the prepositional operators to regions by fac-
toring the d offsets for each dimension into a vector called
adirection The following code specifies example directions
and a region in RL:

south = (1,0)
east = (0,1)
se =(1,1)
se2 =(2,2)

R=[1..m1l..n]

Using RL's prepositional region operators, new regionsbean
specified using regioR and directions:

East ernBoundary = east of R
Sout herninterior= south in R
Shi f t edSE = R at se
QddEl enent s = R by se2

The prepositional operators are evaluated for regions by
distributing each component of the direction to its corcesp
ing sequence descriptor and applying the prepositionat-ope
ator. For example, that operator would be distributed as
follows:

rat (81,%) l1,h1,s1,81), (I2,h2,5,8)) at (31,3)
l1,hy,s1,81) atdy, (12, hp, 5, a2) atdp)
l1+81,hy +081,51,81 +61),

I2482,hp+ 82,5, +87))

(
(
(

e~ o~~~

Having defined the prepositional region operators, we can no
evaluate the RL regions defined above (see Figure 2 for illus-
trated interpretations):

I(east of R) (0,2) of ((1,m,1,1),(1,n,1,1))
(0of(1,m1,1),10f(1,n,1,1))
((1,m,1,1),(n+1,n+1,1,1))

I(south in R) (1,0)in {(1,m 1,1),(1,n,1,1))
(1in(1,m1,1),0in(1,n,1,1))
((mm,1,1),(1,n,1,1))

I(R at se) ((1,m,1,1),(1,n,1,1)) at(1,1)
((1,m1,1)at1(1,n,1,1) at 1)
((2,m+1,1,2),(2,n+1,1,2))

I(R by se2)

((1,m,1,1),(1,n,1,1)) by (2,2)
((1,m,1,1) by 2,(1,n,1,1) by 2)
((1,m,2,1),(1,n,2,1))

3.4 Flood Dimensions

RL also supports the conceptfidod dimensionso represent
lower-dimensional arrays as if they were higher-dimeralion
Flood dimensions are represented by the sequence descripto
(—0,0,0,0). While this specialized descriptor doesn't make
strict mathematical sense by equation (1) above, it is used t
represent a dimension with a single set of defining valuds tha
are replicated across an infinite index range. Flood dimen-
sions are expressed in RL region specifications using an aste
isk. For example, the following two regions would be used to
represent 1-dimensional vectors perpendicular to onehanot
in a 2-dimensional space:

[* 1.
[1..n,*

Row
Col

n]

]

Flood dimensions are included in RL because they provide a
means of expressing interactions between arrays of (cmcep
ally) different rank without relying on explicit indexing-heir
utility becomes even more pronounced in parallel regioseda
languages like ZPL, due to the performance implications of
aligning arrays in a distributed context.

4 Computing with Regions

This section explains how regions are used to represent arra
computations in RL. We describe how regions specify the ex-
tent of array computations and then define RL's operatots tha
modify these indices for individual array expressions.

4.1 Extent Specification with Regions

In RL, every array operand must be enclosed withiegion
scopeof matching rank, known as itvering region These
region scopes prefix RL statements and specify the base set
of indices named by their array references. Region scopes
are dynamically scoped, allowing for the creation of region
independent functions and libraries. The following RL code
fragment illustrates several properties of region scapis
sume thatl nterior=[1..m1..n], sout h=(1,0), and
arraysA, B, andUare 2-, 2-, and 1-dimensional, respectively.

(a) region R (b) directions east, south, (c) region east of R (d) region south in R (e) region Rat se (f) region R by se2
se, and se2

Figure 2: lllustrations of the region and direction dediaras from Section 3.3. Note that the prepositional opesagive intuitive
meaning to the regions they define.

[Interior] begin 4.2 Array Operators
A= 0; . .
[south in "] A= 1: In the examples of the previous section, every statement re-
[1,] A= 2; ’ sulted in an elementwise operation over its operand arrays,
[1’ ql U _ I1: due to the statement-level granularity of the region scoBés
A . A+ B ' uses explicit array operators to express more complex array

references whose indices vary from those of the covering re-
gion. This section defines the RL array operators, which are

This fragment applies the 2-dimensional region sdapeer i c,rysed to transform the covering region's indices when aecess
to a compound statement, providing a default set of indices f Ing their array operands. The result of any operator can be
the 2-dimensional array references contained within. &er e USed as the operand to any other, and except where noted, ar-
ample, the first assignment will zero out thex n subarray ray operators have an I-value.))
of array A as specified by nt eri or. Similarly, the fifth The shift operator (infix @ translates the portion of its
will increment the same elements Afby their correspond- operand array that is referenced. Its left operand is the ar-
ing elements irB. The second and third assignments are lo- Y to shift, and the right operand is a direction vector & th
cally covered by region scopes of rank 2, thereby eclipsing Same rgnk.that speplfles Fhe magnitude and dlrectlon of the
Interior as the cover for their 2-dimensional array refer- translation in each dimension. For example, the followig R
ences. The fourth assignment zeroes a 1-dimensional array,Statémentassigns the nearest neighbor average of theréfeme
and therefore requires a 1-dimensional region cover. of array B as specified by the covering region into arry

The region scopes prefixing the second and third assign- Assume that the following directions are definatbrt h =
ments demonstrate a region's ability to inherit informaftom (-1,0),sout h = (1,0),east =(0,1), andrest =(0,-1).
an enclosing region. The second assignment's region ssope i
2-dimensional (due to its reference sout h) and uses the
" symbol as a means of referring to the enclosing region of
matching rank, namelynt eri or. The result is that ele-
ments ofA in the southernmost row dfnt eri or will be
assigned the value 1. The next region scope omits a dimensio
specification, indicating that the dimension should be inhe
ited from the covering region of matching rank, namgly. n
froml nt eri or. Thus, elements dkinrow 1 ofl nt eri or
are assigned the value 2. Providihgnd blank dimensions in
RL is more than a syntactic convenience, since they support
the construction of semantically meaningful operatiorthimi
region-independent functions.{j, operate on the south bor-
der ork! row of the call site's covering region). [1..n] A= B\ $(2)

The fourth assignment usk4, one of RL's predefined in- o -
dex arrays, to assign each elementdfs unique index value.
These arrayd (1, | 2, etc) give the programmer access to the
indices of the covering region. In particular, the value mag
| at a particular index is defined to be the value of the index
in thei" dimension. Arrayl | may be used wherever an array
of rank > i is expected. As another example, the following
statement assigns each element of aais position within
I nterior in row-major order.

end;

[1..m1..n] A= (B@orth + B&outh + B@ast

The scaleoperator (infix$) adjusts the stride in each di-

mension of a single array reference relative to the coveBng
ngion. Its left operand is an array to scale, and the rightaer
is a direction of the same rank. The new stride in each dimen-
sion is the product of the corresponding direction elemadt a
the stride in the covering region. The low element referdnce
is the same as the low element in the covering region. For ex-
ample, the following RL statement assigns the odd eleménts o
arrayB between 1 andr?to the consecutive elements of array
Abetween 1 and, inclusive.

Thepromotionoperator (prefix>) transforms a’-dimensional
array into ad-dimensional array by replicating alomlg of its
dimensions (where’ = d — d¢). A d-dimensional region—
called anoperator regior—is encoded in the operator. The
flood dimensions in this region (there must the of them)
specify which dimensions of the resulting array are to con-
tain replicated data. For example, the following RL state-
ment replicates elements 1 througihof 1-dimensional array
[Interior] A= (n* (11-1)) + 12 U across the columns of 2-dimensional arfay

[1..m1..n] A= $>%[,*] U

+ B@west)

As this example shows, operator regions may contain blank di Though all of RL's operators can be expressed using the
mensions to inherit from the covering region. Operatororgi remap operator, the specialized operators are not wittadueyv
serve as the covering region for the operand array, which may They provide a more concise and readable representation of
itself be a complex array expression. Because the operand ar certain common operations compared to the gereogerator.
ray expression for promotion has lesser rank than the aperat Moreover, the specialized operators serve as a more aecurat
region, the region formed by eliminating its flood dimension indicator of index locality and parallel cost, as discussed
covers the array operand expression. For example in the fol- Section 5.
lowing statement, elements 1 througiof U andV are added
together before performing the promotion. 4.3 Operator Summary
[1.mi] A= $>%[,*] (U+V) Figure 3 summarizes the semantics of each array operator.
A function, fop(...), is given for each operator that maps in-
The promotion operator can also be used to promote a dicesj = (js,..., jq), Of the rankd covering region to indices
subarray. This is expressed by specifying degenerate dimen j' = (j;,..., j,) of the operator's ranit' operand array.
sions in the operator rather than flood dimensions. For ex-
ample, the following RL statement copies iffecolumn of 2-
dimensional arra into columns 1 through of 2-dimensional
arrayA. 5.1

5 Discussion

Index Locality in RL

[1..m1l..n] A=$>%[,i] B At first glance, RL's array operators may appear to be gratu-
o]) itous. For example, why should a language support the dpecia

It is important to note that the implementation of promo- purpose @ and $ operators, when they can be expressed with
tion does not actually need to create a new array of increasedthe general-purpose # using simple functions of the index ar

rank (and increased storage requirements). Promotiorsimp rays|;? The answer is that RL's operators were selected to
provides a different way to reference data without changing emphasize different types of index locality.

memory requirements. Promotion expressions do not have - |ndex locality describes relationships between arrayciesi
values because they represent more elements than ardyactual These relationships are important in the context of pdralle
represented in memory. i _ _ computing because they translate directly to interpraressm-

Thedemotioroperator (prefix<) collapsesly dimensions munication. We have identified five types of index locality.
of an d'-dimensional array to produce ahdimensional ar- |dentical indices €.g, (1,1) and(1,1)) exhibit perfect local-

ray d = d —dy). A d'-dimensional operator region is en- ity Indices close to one other in the traditional Cartesiasesen
coded in the operator. The degenerate dimensions of the re-(e.g, (1,1) and (2,1)) exhibit spatial locality Indices that
gion (there must bely of them) specify which dimensions of are distant but which share common indices in one dimen-
the_operand array are to be collapsed. For exgmple, the fol- sjion €.9, (1,1) and(1,100)) are considered to hawdimen-
lowing RL statement assigns colurhof 2-dimensional array sjonal locality Inter-rank localityis exhibited by indices of

Ainto 1-dimensional array. different rank that share common coordinates{ (1,2) and
. (1,100,2)). Finally, two indices whose coordinates are sepa-
[1..n] U= 8$<3[,i] A rated by a multiplicative factor are considered to himoality

. . , of scale(e.g, (2,2) and(6,6)). These definitions can be triv-
As this example shows, the demotion operator's operator g1, extended to describe the locality of a pair of indexsset

region may use blank dimensions. Though the covering re- \ather than individual indices. Furthermore, note thatdes!

gion and the operator region have different rank, the operat may be related by a combination of locality types.

region’s blank dimensions will inherit from the correspiond Since index sets are used both to define and access arrays,
dimension in the covering region (determined by ignoring de j,yex |ocality directly correlates to locality of referengde-
generate dimensions in the operator region). pendent also on the data allocation scheme). This reldtijpns

The remap operator (infix#) allows for arbitrary refer- poyyeen index locality and locality of reference is espagcia
ences by permitting the programmer to specify a map fromin- jhortant in the realm of parallel computing, where logalit

dices of the covering region to indices of the operator' s ,tects the amount of communication (explicit or impligity
array. The operator's left operand is an array to remapgwhil g jireq between processors. RL thus emphasizes index local-

the right is a vector of integer indices whose corresponding i, through its region-based syntax and choice of array-oper
elements form an index into the operand array. The value of jic Siatements with complete localitye(all operations

each element of the resulting array is the data appearifisatt performed element-wise on identical indices) simply regui
index in the operand array. The ranks of the argument array, the region defining the index set with no other special array
integer arrays, and resulting array are all the same. Fanexa goerations. Other statements use the RL array operators to

ple, the following RL statement assigns each elentief of describe different types of index locality and to syntaaitic
Athe value of elemerttl (i, j),J(i, j)) of B. differentiate the different types of interprocessor comiva-
tion:

[1..m1..n] A=B\#(I,J)
e Statements with spatial locality use the shift operator to

As a more specific example, the following statement assigns modify indexing by a constant offset.
the transpose of arrdyto A. Note the use of predefined arrays « Dimensional locality is expressed using the dimension-
I 1andl 2. preserving instance of promotion.
e Inter-rank locality is expressed using the promotion and
[1..n,1..n] A= B\#(1211) demotion operators.

e Locality of scale is achieved using the scale operator.

code fragment]| signature rank relationshi j"value (L <i<d)
| gment[sig | P[]
fro-oplj) =j” [d=d =1
L@ ... faj,v) =1 d=d =itV
- g o] (i —9ow(ri))Vi + gow(ri) if s>0
[re] ... $v....) fs(j,v.re) =" | d=d Ii = { (Ji — Ohigh(ri))Vi + giow(ri) otherwise
. o o .| li ifdimensionr; is degenerate
>[ro] - f5(.r0) =] d=d'+dnfiood(fo) | Ji = { ji otherwise { = diooq(r,i))
. o o .| li ifdimensionr; is degenerate
c<Irol... f<(.lvr0’) fl d = d' — dndeged o) J.i = { ji__otherwise {= dueger(r, "))
A fe(.)=]" [d=d ji=x(1.J2,---.Jd)
Notation Functions
V= (v1,...,vg) : rankd' direction Hiood(r 1) = i non-flood dim. off
re=(rs,...,rq) : rankd covering region daegen T 1) = i non-degenerate dim. of
Fo=(r1,...,Tqg) : rankd operator region Onfiood(r) = no. of flood dims irr
rg =(ra,...,rq): rankd’ operator region dndegerr) = no. of degenerate dims in
X=(X1,...,xq) :d-arylistof rankd integer arrays g, (r = (I.h,sa)¥ |+ (a—I) mods
ghigh(r = (I) hvsv a)é h— (hf a) mods

Figure 3: Array operator summary. The first column gives aecfstdgment indicating the operator's use. The second column
summarizes the map function's argument signature for ggetator. The third column describes the relationship betweand
d'. The final column gives the value of an element of the resyitffraryj’ index.

e The absence of index locality is indicated by using the
catch-all remap operator, which can be used to arbitrar-
ily scramble index sets and which may lead to unstruc-
tured communication.

The result is that the RL operators serve as clear visuatanno
tions of a statement's index locality. This is a useful lagg

tions. Unlike APL, one of ZPL's chief design goals was to give
programmers an intuitive model for reasoning about the con-
currency and parallel costs of their programs. As a res@lt, Z
de-emphasizes general purpose operators that obscuge cost
Instead, ZPL explicitly defines how arrays are allocated and
provides operators that accurately reflect the cost of nuanip
lating arrays with respect to the allocation. This is known a

property because given a particular data allocation scheme Zp| "5 \WYSIWYG performance model [3].

both the programmer and the compiler have a clear means of

reasoning about the implementation and expense of a particu
lar piece of code. This simplifies analysis and optimizafan
both parties.

We can now see why RL enforces a stricter definition of
conformability than slice-based languages. In the termsmgi
abovea(i,1..n),b(1l..n,j),andc(1..n) donotex-
hibit perfect locality and must therefore use array operesti
to describe their relationship. This is particularly imiamt
in a parallel implementation when an absense of locality im-
plies interprocessor communication. In addition, manyalg
rithms naturally tend to exhibit index locality, due to thays
in which data is typically stored and accessed. Though con-
formability merely requires that array operands need tdbe t
same shape and size, there often exist additional logiced-co

lations between the operand indices due to the ways in which 7p

programmers organize and reference data—the indices may b
offset by a constant factor, scaled by different amountprer

jected from one dimension to another. Cases in which arrays

are accessed in completely arbitrary patterns are relaiive
frequent. To this end, the introduction of specific operator

emphasize the common case simplifies the expression of the

operation €.g, A@(1,1) rather tham#(1 1+1, | 2+1)) and

Arbitrary array indexing is difficult to parallelize effiqidy [5].

For example, the following Fortran 90 statement
A() = A(j);

is a simple assignment if tH& and jt" elements of A reside
on the same processor, but requires communication at a con-
siderably higher cost if they do not reside on the same pro-
cessor. Thus, in the general case this statement requines ru
time checks to determine whether to perform communication.
Worse, it is difficult for the programmer to reason about the
performance of the statement since different compilersHer
same language may compile the code differently. The ZPL
solution is to use regions and region operators, which pro-
vide syntactic cues to indicate when the compiler will geter
communication.
In order to emphasize data locality in the parallel context,
L maps alinteracting regiongdefined in [3]) to a concep-

€ual processor grid of the same rank igréd-alignedfashion,

mapping region indices to processor indices in the corredpo

ing dimension €.g, rows of a 2-dimensional region would be
mapped to rows of a virtual 2-dimensional processor grid). A
rays are mapped to processors according to the region map-
pings. This has the result of preserving perfect, spatidl an
dimensional index locality across the virtual processad' gr

makes code easier to write and to understand (both for humanstopology. When there are no parallel operators, perfealityc

and compilers).

5.2 ZPL: A practical parallel region-based language

ZPL is a real-world instance of a region-based programming
language that was designed for portable data parallel ctamnpu
tion. Like APL, ZPL was designed to support array computa-

exists, and the statement may be executed entirely in phrall
The use of the @ operator exploits spatial locality, potiyti
requiring relatively inexpensive nearest neighbor comicain

tion in the processor grid. The use of the promotiot) ¢p-
erator exploits dimensional index locality, potentialbquir-

ing data to be broadcast along one or more dimensions of the

processor grid. The remap (#) operator allows for competel
general data movement and thus does not exploit locality.

For practical reasons, ZPL includes a nhumber of features
and operators not included in this discussion, such as rdaske
computation, wrap and reflect operations for initializingla
maintaining boundary conditions, scan operations, récict
operations, and multi- regions, arrays and directions fior e
cient parallel support of multi-grid applications.

5.3 Relationship to Subscripting

Two array references in a subscript-based language are typi
cally considered conformable if the same number of array ele
ments are referenced in corresponding, non-degeneraenedim
sions of the references. Region-based programming ewsforce
a stricter meaning of conformability, because a singleoregi
selects the indices of all array references in a stateménis, T

it is the role of the array operators to map indices of the cov-
ering region to indices of the array operands, allowing ler t
expression of more general referencing. Despite the atrict
definition of conformability, region-based programmingis
less expressive. Additional operators are sometimes nejui

to make references conformable, emphasizing the type of lo-

tures, such aseshape, that are at odds with efficient paral-
lelization.

Several parallel languages have supported mechanisms for
storing and manipulating index sets. Parallaxis-Ill andae
two such examples, both designed to express a SIMD style
of computation [2, 15]. Both languages support dense multi-
dimensional index spaces that are used to declare parallel a
rays. Parallaxis-lll array statements are performed adver t
entire array, and therefore do not use index sets to describe
computation. & does use its index setshape}to designate
parallel computation over entire arrays. However, it evder
a tight correspondence between the shapes of the computatio
and the arrays being operated on. Due to this restrictien, it
shapes are more of a type modifier than a general index set
for expressing array computation. Both languages allow for
individual elements to be masked on and off. Neither pravide
support for strided index sets.

FIDIL is another parallel array language designed for sci-
entific computation [13] with support for more general index
sets calledlomains Domains need neither be rectangular nor
dense, and FIDIL supports computation over them using set-
theoretic union, intersection, and difference operatiofnke
role of domains is limited to describing the structure of ar-

cality. For concreteness, Table 2 summarizes a number of rays (nap$ and not for specifying computational references.

ways by which array references may conform without being
identical (column 1). For each, a Fortran 90 and APL example

statements are given (columns 2 and 3) and their correspond-

ing RL statement (column 4).

6 Related Work

The most prevalent alternative to region-based progragpmin
is array subscripting, as found in APL, Fortran 90, and Mat-
lab [7, 1, 6]. As we have argued, array subscripting is a more

Statements therefore operate either over the entirety af-an
ray, or by indexing into the array as in scalar languages.-Con
formability in FIDIL is somewhat more dynamic than in other
languages—operations are only performed on indices that are
present in both operators.

KeLP [4] is a C++ runtime library that is a descendent of
FIDIL. It supports shift, intersect, and grow operators eci+
angular index sets calleggions KeLP uses regions to ex-
press iteration spaces using a “for all indices in the region
control construct. It departs from the region-based prmogra

cumbersome means of expressing simple array operations andMing model described in this paper in that regions are used to

is no more powerful than a region-based approach. Most im-
portantly, these languages were not designed with pasatiel

in mind, thus it is very difficult for programmers to consis-
tently achieve good performance and reason about theistode
parallel overheads.

Matlab is the current most popular array language for sci-
entific computing, principally due to its interactive woekith
approach to application prototyping and development and it
extensive auxiliary library support. Besides being sulpscr
based, Matlab differs from ZPL in that it is designed to be a
serial, interpreted language, so it is highly dynamic. s
to compile it are hindered by dynamic array allocation artd da
types [8], and attempts to parallelize it are limited by thetf
that the language provides no support for managing locatity
communication costs [11] in parallel implementation.

SAC (Single Assignment C) is a strict, purely functional

enumerate indices which are then used to subscript arrays in
the standard way. As a result, it does not support array oper-
ators to emphasize index locality. Furthermore, sinceoregi

are not an inherent part of C++, region manipulation is Iéss e
egant, with no implicit support for dynamically scoped e

and dimension inheritance.

7 Conclusions

This paper has developed the concept of regions in the con-
text of parallel programming languages. Regions have advan
tageous properties that assist both programmers and ampil
writers.

Regions provide notational advantages, removing the re-
dundancy of applying identical or similar subscript speeifi
tions to each array operand. Rather, a set of indices is-speci

subset of the C programming language, extended with richer fied as a context in which conformant array computation is to

support for arrays [12]. Like regions, the WITH-loop con-
struct is used to limit the indices involved in a computation

be performed. Not only are the programs more succinct, the
software engineering precept that similar things shoudk lo

a statement or group of statements. Despite the fact that SAC similar is respected. Programs are easier to read and write,

provides simple array operations suchcag andr ot at e,
indexing is still required on array references in WITH-Isop

will have fewer errors, and be easier to debug.
Regions are an effective abstraction. They can be named,

Conversely, regions are dynamically scoped, so they may be allowing programmers to give them problem specific meaning.

separated from the statements to which they apply. As atresul

Further, the array operations such@snd$ that transform re-

a si_ngle_ region may apply to many nonadjgcent statements, re gions to reference related elements define these elemergs mo
sulting in more concise code. SAC requires repeated use of abstractly, in whole array terms. These higher-level cptxce

WITH-loops and repeated index range specification. Finally

permit the programmer to think globally, saying what the in-

SAC is not a parallel language; it encourages the use of fea- dex set should be, rather than how to realize that state -opera

tionally.

reference difference Fortran 90 APL RL

shift U(2: n+1) = W1:n)+W3:n+2) U[T+IN] —~WINJ+W[2+IN] | [1..n] U= Wg-1)+Wg1)

stride U(1:n) = W1:2*n:2) U[IN] < W[1+2x 1 N] [1..n] U= Ws(2)

rank change (promotion)| A(1:n,i) = U(1l:n) AlIN;IT « U[IN] [1..n,i] A=>[,*] U

rank change (demotion) | U(1: n) = A(1l:n,i) U[IN] « AlIN;I] [1..n] U=<[,i] A

dim. alignmentchange | A(1:n,i) = B(j,1:n) AlIN;1]+ B[J;IN] [1..n,i] A= B#(j,11)

vector subscripts (1-dim.] U(1:n) = WV(1:n)) U[IN] « W[V[IN]] [1..n] U= W(V)

vector subscripts (2-dim.) A(1:m1:n) = B(U(1:m),W1:n)) | AlN]« B[UIN];W[NI] [1..m1..n] A=B#>[,*1U >[*,1W

Table 2: Equivalent Fortran 90, APL, and RL statements thatain conformable, yet not identical references. All gsri this
table contain more thamelements in each dimension. In other words, these arraserefes refer to subarrays. ArraksndB are

2-dimensional and arrayg V, andWare 1-dimensional.

From a program analysis and performance point of view,

regions are ideal for parallel programming. Regions arééhe
sis for identifying parallelism, for allocating memory afat

planning out interprocessor communication. Using regions
the programmer and compiler can communicate at a high level
regarding how these performance sensitive features will be

have. These benefits have been demonstrated in ZPL.

(6]

(7]

(8]

Duane Hanselman and Bruce Littlefield. Mastering
MATLAR Prentice-Hall, 1996.

Kenneth E. Iverson.A Programming Language John
Wiley and Sons, 1962.

S. C. Johnson and C. Mohler. Compiling MATLAB. In
Proceedings of the USENIX Symposium on Very High

We have neutralized the one potential liability of regions,

that the higher level of expression with its somewhat srict
form of conformability is somehow overly constraining rela

tive to slice notation. Regions were shown to be as expressiv

as array slice notation.

Our choice to restrict regions to a regular, rectangular in-
dex set was made in order to ensure an efficient parallel im-
plementation and clear performance model. Masks (not de-

scribed in this paper) are a mechanism for selecting arbitra
subsets of indices from these rectangular sets. In futurk,wo
we intend to generalize regions to describe less regulaxind
sets for efficient sparse computation. The challenge witbbe
do so without sacrificing the efficiency and clear perforneanc
model of the current scheme.

Level Languages (VHL| pages 119-27, Santa Fe, New
Mexico, October 1994. USENIX Association.

[9

—_—

Calvin Lin and Lawrence Snyder. ZPL: An array sublan-
guage. In Uptal Banerjee, David Gelernter, Alexandru
Nicolau, and David Padua, editord/orkshop on Lan-
guages and Compilers for Parallel Computjngages
96-114. Springer-Verlag, 1993.

[10] Bruce J. MacLennanPrinciples of Programming Lan-

guages Saunders College Publishing, 2nd edition, 1987.

[11] L. De Rose, K. Gallivan, E. Gallopoulos, B. Marsolf,

and D. Padua. FALCON: A MATLAB interactive re-

References

[1] Jeanne C. Adams, Walter S. Brainerd, Jean T. Martin,

Brian T. Smith, and Jerrold L. WagenerFortran 90
Handbook McGraw-Hill, 1992.

(2]

Thomas Braunl. Parallaxis-11I: A language for struetd
data-parallel programming. IRroceedings of the IEEE

First International Conference on Algorithms and Ar-

chitectures for Parallel Processingages 43-52. IEEE,
April 1995.

[12]

structuring compiler. In C. H. Huang, P. Sadayappan,
U. Banerjee, S. Gelernter, A. Nicolau, and D. Padua, ed-
itors, Proceedings of the 8th Iternational Workshop on
Languages and Compiler for Parallel Computjrmgages
269-88, Columbus, Ohio, August 1995. Springer-Verlag.

Sven-Bodo Scholz. On programming scientific applica-
tion in SAC — a functional language extended by a sub-
system for high-level array operations. In Werner Kluge,
editor, Proceedings of the 8th International Workshop
on the Implementation of Functional Languages (IFL
'96), pages 85-104, Bad Godesberg, Germany, Septem-
ber 1996. Springer-Verlag.

(3]

(4]

(5]

Bradford L. Chamberlain, Sung-Eun Choi, E Christopher
Lewis, Calvin Lin, Lawrence Snyder, and W. Derrick
Weathersby. ZPL's WYSIWYG performance model.
In Proceedings of the Third International Workshop on
High-Level Parallel Programming Models and Support-
ive Environmentspages 50-61. IEEE, March 1998.

S. J. Fink, S. R. Kohn, and S. B. Baden. Efficient run-
time support for irregular block-structured applications
Journal of Parallel and Distributed Computing998. To
appear.

Raymond Greenlaw and Lawrence Snyder. Achieving
speedups for APL on an SIMD distributed memory ma-
chine. International Journal of Parallel Programming
19(2):111-127, April 1990.

[13] Luigi Semenzato and Paul Hilfinger. Arrays in FIDIL. In
Robert Grossman, editdBymbolic Computation: Appli-
cations to Scientific Computingages 155-169. SIAM,
1989.

[14] Lawrence Snyder. Programming Guide to ZPL
MIT Press (in press—available at publication date at
ftp://ftp.cs.washington.edu/pub/orca/docs/gpide.ps),
1999.

[15] C* Programming Guide, Version 6.0.2Thinking Ma-

chines Corporation, Cambridge, Massachusetts, June

1991.

