
Regions: An Abstraction for Expressing Array Computation

Bradford L. Chamberlain E Christopher Lewis Calvin Lin† Lawrence Snyder

University of Washington, Seattle, WA 98195-2350
†University of Texas, Austin, TX 78712fbrad,echris,snyderg@cs.washington.edu, lin@cs.utexas.edu

Abstract
Most array languages, such as Fortran 90, Matlab, and APL,
provide support for referencing arrays by extending the tradi-
tional array subscripting construct found in scalar languages.
We present an alternative approach that exploits the concept
of regions—a representation of index sets that can be named,
manipulated with high-level operators, and syntacticallysepa-
rated from array references. This paper develops the concept
of region-based programming and describes its benefits in the
context of an idealized array language calledRL. We show
that regions simplify programming, reduce the likelihood of
errors, and enable code reuse. Furthermore, we describe how
regions accentuate the locality of array expressions and how
this locality is important when targeting parallel computers.
We also show how the concepts of region-based programming
have been used in ZPL, a fully-implemented practical paral-
lel programming language in use by scientists and engineers.
In addition, we contrast region-based programming with the
array reference constructs of other array languages.1 Introduction
Since the earliest programming languages, array references
have had subscripts associated with them. This notation, which
was inherited from linear algebra, is natural and convenient for
scalar languages since they operate on single values at a time.
In contrast, array languages support the atomic manipulation
of multiple array elements, so they typically extend traditional
subscripting to a more complex form. APL [7], the first array
language, supports the use of integer vectors in each subscript
position, computing the outer product of the indices in eachdi-
mension to determine the elements referenced. Fortran 90 [1]
uses a simplified variation on this syntax to support common
reference patterns using triple or “slice” notation to describe a
regular subset of elements. Both languages allow the subscript
to be elided when referring to all elements of an array.

Though array language subscripting is a natural extension
of scalar subscripting, array languages exhibit an important
property that constrains subscripts. Operands in an array ex-

To appear in the ACM SIGAPL/SIGPLAN Conference on Array
Programming Languages, June 1999, Scranton, Pennsylvania.

[lo..hi,lo..hi] A = B + C
(a)

A[S; S] B[S; S] + C[S; S 1+LO+ ιHI-LO-1]
(b)

A(lo:hi, lo:hi)=B(lo:hi,lo:hi)+C(lo:hi,lo:hi)
(c)

Figure 1: Different representations of the same array language
computation in (a) RL and ZPL, (b) APL, and (c) Fortran 90
and Matlab.

pression must beconformable, meaning that the subarrays ref-
erenced must have the same shape and size.1 Conformability
ensures that there are corresponding elements in each operand
of an array expression so that its evaluation is well-defined.
Conformability results in a strong correspondence betweenthe
subscripting expressions of array operands. Specifically,they
will often be identical and almost always be similar. This
property, which we refer to asindex locality, follows naturally
from the fact that programmers tend to organize and reference
data in logical, constrained, and meaningful ways. Index lo-
cality motivates an alternative means of array reference using
regions.

This paper describes a region-based approach for express-
ing array computations. A region is a source-level index set
that prefixes a statement to specify default indices for its array
references. Array operators that modify the default indices can
be applied to array expressions, resulting in different access
patterns. In this way,region-based programming syntactically
separates array indexing from array references.

In this paper, we present region-based programming and
its benefits using a simple, idealized array language calledRL.
RL provides a vehicle for discussing region-based program-
ming in general terms. As an example of region use in RL, Fig-
ure 1(a) shows a 2-dimensional region (in brackets) that cov-
ers an array statement. The statement specifies that elements
of an n� n sub-array ofB andC (wheren = hi� lo+ 1)
are summed and assigned to the corresponding elements of ar-
ray A. Semantically equivalent statements are given for APL
in Figure 1(b) and for Fortran 90 and Matlab in Figure 1(c).
From this trivial example, regions may appear to be a minor

1Though this is a common definition of conformability, it is not universal.
Virtually all variations, however, at least require that the number of elements be
the same.

1

syntactic variation on the other forms of indexing. However,
we explain how region-based programming provides a pow-
erful abstraction that has advantages related to notation,code
reuse, and performance analysis.

This paper also describes how the ZPL parallel program-
ming language is based on the region concept. ZPL is a real-
world programming language that is publicly available on the
world-wide web2 and is in use by scientists and engineers [14].
We describe decisions made in the design of ZPL that not only
support efficient parallel implementations, but also provide a
performance model that allows programmers to easily reason
about parallel overheads—an uncommon feature in parallel
programming languages.

This paper makes two primary contributions. The first is
an evaluation of region-based programming as an approach to
array language indexing. The second is a discussion of how
an efficient parallel programming language can be designed
around the region construct. We detail the properties of region-
based programming and enumerate its benefits. We give for-
mal definitions of region and array operators and describe how
their use enables the source-level identification of index local-
ity, thereby improving programmers' understanding of their
codes' performance on parallel computers. Furthermore, we
compare the region-based representation to the conventional
subscripted form. Although the region-based ZPL language
has been described before [9], this is the first discussion of
regions as an abstract programming language concept.

Section 2 describes the advantages of region-based pro-
gramming. In Section 3, we give a formal definition for re-
gions and describe RL's support for region declarations and
operators. In Section 4, we introduce RL's array operators and
describe how they are used to express general array computa-
tions. In Section 5, we describe how regions highlight index
locality and provide benefits for parallel computing. We also
discuss the relationship between RL and ZPL, and we compare
the expressive power of the region-based approach with sub-
scripting. In the final sections we describe related work and
give conclusions.2 Bene�ts of Region-based Programming
This section provides an overview of the benefits of region-
based programming.Notational Bene�ts
Regions eliminate redundancy.Factoring the common por-
tions of a (potentially compound) statement's array references
into a single region eliminates the redundancy of subscript
specification, as illustrated by Figure 1. Though subscripted
languages typically allow a subscript to be elided when refer-
encing all the elements of an array, interior and boundary ele-
ments of an array are often treated separately, necessitating the
use of subscripts. As a result, a region-based representation is
more concise, easier to read, and less error prone. As an in-
formal measure of conciseness, consider the example given in
Table 1. Stripped of all indexing constructs, the ZPL and For-
tran 90 versions of the SPEC CFP92 swm256 benchmark are
similar in size. However, comparing the complete programs,
Fortran 90 is considerably larger, devoting more than half of
its characters to indexing, as compared to ZPL's 27%.

Regions accentuate the commonalities and differences among
array references.Because the common portions of references

2http://www.cs.washington.edu/research/zpl/

are factored into a region, all that is left at the array references
is an indication of how they differ. This applies the common
language design principle that similar things should look sim-
ilar, and different things should look different [10]. For ex-
ample, the following RL statement contains four referencesto
arrayA, each shifted in one of the cardinal directions. It is
clear exactly how arrayA is being referenced in each operand.

[1..m,1..n] Temp = A@(-1,0) + A@(1,0) + A@(0,-1) + A@(0,1)}

The subscripted equivalent of this code requires closer scrutiny
to discover the same relationship in its operands, let aloneto
verify its legality.

Temp(1:m,1:n) = A(0:m-1,1:n) + A(2:m+1,1:n) + A(1:m,2:n+1)

Regions can be named.By naming regions, programmers
can give meaning to index sets. It is difficult to associate
meaning with unnamed indices, just as it is difficult to asso-
ciate meaning with a memory address without using a variable
name. For example, the nameTopFace is far more illustra-
tive than[0,1:n,1:n]. Providing the ability to name index
ranges (as in APL) or even entire slices does not yield the same
benefit, because a programmer must potentially name a great
number of similar things. For example, the five distinct slices
in the code fragment above would require five different names.

Regions encode high-level information that can be manip-
ulated by operators.While subscript-based languages allow
arithmetic operators to be applied to individual dimensions of
a subscript, RL provides operators that apply to the index set
as a whole. Regions can be defined in terms of other regions,
which is conceptually simpler than repeatedly constructing re-
lated but different index sets. For example, RL'sof operator
assists in the clear definition and interpretation of boundary
regions: given a regionCube = [1..n,1..n,1..n] and
a direction vectortop = (-1,0,0), the regionTopFace
above can be defined using the expressiontop of Cube.
Using region operators, a change to one region is reflected in
all regions that are defined in terms of it, thus localizing mod-
ifications to the code.Code Reuse Bene�ts
By separating the specification of array indices from the spec-
ification of computation, regions result in code that is more
general and more reusable than subscripted code. For exam-
ple, regions make it trivial to write statements or procedures
that can operate on arrays of arbitrary size, while subscripted
languages require the programmer to pass around and explic-
itly manipulate array bound information in order to achieve
the same generality. Furthermore, regions can be applied to
blocks of statements, including entire procedures, so the in-
dices for entire blocks of code can be easily changed. In par-
ticular, scalar procedures can be triviallypromotedto operate
on arrays of any size and shape by simply specifying a re-
gion at the call site and passing in actual parameters of the
appropriate rank. Moreover, changing a region-based program
to operate on higher dimensional arrays can be a simple mat-
ter of changing the region declarations. The array computa-
tions themselves may not need to change, or they may need to
change in minor and obvious ways, depending on the charac-
teristics of the algorithm. In contrast, an array language such
as Fortran 90 would require modifications to every array ref-
erence.

2

language total characters non-indexing characters indexing overhead
Fortran 90 3154 1513 52%
ZPL 1957 1421 27%

Table 1: Character counts for the SPEC CFP92 swm256 benchmark written in ZPL and Fortran 90.Total charactersindicates
the total number of non-whitespace characters in the codes once they are stripped of variable declarations and I/O.Non-indexing
charactersindicates the number of characters remaining once subscripting (in Fortran 90) and region/direction specification (in
ZPL) are removed.Indexing overheadindicates the percentage of characters that are devoted to array indexing.Performance Analysis Bene�ts
Perhaps the biggest advantage of region-based programming
is its potential for aiding in performance analysis. The useof
special operators to highlight correlations between each array
operand's reference pattern emphasizes index locality. This
has great benefit in the parallel realm where data locality plays
a crucial role in determining performance. By supporting such
operators and by clearly defining its data allocation policy, a
parallel region-based language such as ZPL can enable pro-
grammers to reason about the parallel execution of their codes
using straightforward syntactic cues. As a result, program-
mers and compilers can locate optimization opportunities by
looking at the array operators used within a program, thereby
avoiding complex analysis of subscripting expressions. These
benefits are discussed in further detail in Section 5.3 Regions
In RL, a region is a rectangular index set of arbitrary rank and
stride, useful for defining arrays and array computations. This
section gives a formal definition of regions, explains how they
are declared in RL, and describes RL's operators for manipu-
lating them.3.1 Formal Region De�nition
Each dimension of a region is defined by a 4-tuplesequence
descriptor, r = (l ;h;s;a), wherel andh represent the low and
high bounds of the sequence,s is the sequence's stride, anda
encodes the alignment of the sequence. A sequence descriptor,
r, is interpreted as defining a set of integers,S(r), as follows:

S(r) = fxjl � x� h andx� a (mods)g (1)

For example, the descriptor(1;6;2;0) describes the set of even
integers between one and six, inclusive:f2;4;6g.

A d-dimensional regionr is defined as ad-ary sequence of
sequence descriptorsr1 : : : rd, wherer i represents the indices
of the region'sith dimension:

r = hr1; r2; : : : ; rdi
The index set,I(r), defined by the region is simply the cross-
product of the integers specified by each of its dimensions:

I(r) = S(r1)�S(r2)� : : :�S(rd)

For example, the index set of the 2-dimensional regionh(1;6;2;0);(1;6;2;1)i would be described as follows:

I(h(1;6;2;0);(1;6;2;1)i) = S(1;6;2;0)�S(1;6;2;1)= f2;4;6g�f1;3;5g= f(2;1);(2;3);(2;5);(4;1);(4;3);(4;5);(6;1);(6;3);(6;5)g3.2 Basic Region Declarations
Since dense regions constitute the common case in array-based
languages, RL adopts the following as its most basic region
specification:

R = [l1..h1, l2..h2, ..., ld..hd]

This style of declaration is used to define regions with triv-
ial stride and alignment. Adegenerate dimension—one with
just a single index—can be declared by simply specifying the
index (e.g., [3,1..n]). Note that although RL could sim-
ply allow programmers to express regions in a sequence de-
scriptor format, the more abstract syntax is clearer, improving
readability. In RL, the specification above defines the formal
region:

r = h(l1;h1;1; l1);(l2;h2;1; l2); : : : ;(ld;hd;1; ld)i
Since the stride is always set to 1, the complete integer range
l i : : :hi will be used for dimensioni. RL's region operators
(described in the next section) are used to modify the stride
and alignment values of a region. Although a stride of value
1 makes the alignment term in a basic region inconsequential,
setting it to the range's low bound results in a consistent and
meaningful interpretation when region operators are used to
modify its stride and bounds.3.3 Region Operators
A set of prepositional operators—of, in, at, andby—are de-
fined for the sequence descriptors. Each of these operators
combines an integer value,δ, and a sequence descriptor to pro-
duce a new sequence. The operators are defined to transform
the sequences as follows:

δ of (l ;h;s;a) = 8<: (l +δ; l �1;s;a) if δ < 0(l ;h;s;a) if δ = 0(h+1;h+δ;s;a) if δ > 0
(2)

3

δ in (l ;h;s;a) = 8<: (l ; l +(�δ�1);s;a) if δ < 0(l ;h;s;a) if δ = 0(h� (δ�1);h;s;a) if δ > 0
(3)(l ;h;s;a) at δ = (l +δ;h+δ;s;a+δ) (4)(l ;h;s;a) by δ = (l ;h; jδj �s;a) (5)

In short, theof andin operators modify the sequence bounds
relative to the existing bounds, leaving the stride and align-
ment unchanged (of describes a range adjacent to the original
range, whereasin describes a range interior to the previous
range). Theat operator translates the sequence bounds and
alignment of the sequence. Theby operator is used to scale
the stride of the sequence, leaving the bounds and alignment
unchanged.

Although there are certainly other region operators that
could be useful to a programmer, those listed here were se-
lected as a basis set since they support common array refer-
ence paradigms and are closed over our region notation. For
example, RL does not support the set-theoretic union and dif-
ference operators due to the increased overhead of storing and
iterating over non-rectangular index sets.

RL applies the prepositional operators to regions by fac-
toring theδ offsets for each dimension into a vector called
a direction. The following code specifies example directions
and a region in RL:

south = (1,0)
east = (0,1)
se = (1,1)
se2 = (2,2)

R = [1..m,1..n]

Using RL's prepositional region operators, new regions canbe
specified using regionR and directions:

EasternBoundary = east of R
SouthernInterior= south in R
ShiftedSE = R at se
OddElements = R by se2

The prepositional operators are evaluated for regions by
distributing each component of the direction to its correspond-
ing sequence descriptor and applying the prepositional oper-
ator. For example, theat operator would be distributed as
follows:

r at (δ1;δ2) = h(l1;h1;s1;a1);(l2;h2;s2;a2)i at (δ1;δ2)= h(l1;h1;s1;a1) at δ1;(l2;h2;s2;a2) at δ2i= h(l1+δ1;h1+δ1;s1;a1+δ1);(l2+δ2;h2+δ2;s2;a2+δ2)i
Having defined the prepositional region operators, we can now
evaluate the RL regions defined above (see Figure 2 for illus-
trated interpretations):

I(east of R) = (0;1) of h(1;m;1;1);(1;n;1;1)i= h0 of (1;m;1;1);1 of (1;n;1;1)i= h(1;m;1;1);(n+1;n+1;1;1)i
I(south in R) = (1;0) in h(1;m;1;1);(1;n;1;1)i= h1 in (1;m;1;1);0 in (1;n;1;1)i= h(m;m;1;1);(1;n;1;1)i

I(R at se) = h(1;m;1;1);(1;n;1;1)i at (1;1)= h(1;m;1;1) at 1;(1;n;1;1) at 1i= h(2;m+1;1;2);(2;n+1;1;2)i
I(R by se2) = h(1;m;1;1);(1;n;1;1)i by (2;2)= h(1;m;1;1) by 2;(1;n;1;1) by 2i= h(1;m;2;1);(1;n;2;1)i3.4 Flood Dimensions

RL also supports the concept offlood dimensionsto represent
lower-dimensional arrays as if they were higher-dimensional.
Flood dimensions are represented by the sequence descriptor
(�∞,∞,0,0). While this specialized descriptor doesn' t make
strict mathematical sense by equation (1) above, it is used to
represent a dimension with a single set of defining values that
are replicated across an infinite index range. Flood dimen-
sions are expressed in RL region specifications using an aster-
isk. For example, the following two regions would be used to
represent 1-dimensional vectors perpendicular to one another
in a 2-dimensional space:

Row = [* ,1..n]
Col = [1..n,*]

Flood dimensions are included in RL because they provide a
means of expressing interactions between arrays of (conceptu-
ally) different rank without relying on explicit indexing.Their
utility becomes even more pronounced in parallel region-based
languages like ZPL, due to the performance implications of
aligning arrays in a distributed context.4 Computing with Regions
This section explains how regions are used to represent array
computations in RL. We describe how regions specify the ex-
tent of array computations and then define RL's operators that
modify these indices for individual array expressions.4.1 Extent Speci�cation with Regions
In RL, every array operand must be enclosed within aregion
scopeof matching rank, known as itscovering region. These
region scopes prefix RL statements and specify the base set
of indices named by their array references. Region scopes
are dynamically scoped, allowing for the creation of region-
independent functions and libraries. The following RL code
fragment illustrates several properties of region scoping. As-
sume thatInterior=[1..m,1..n], south=(1,0), and
arraysA, B, andU are 2-, 2-, and 1-dimensional, respectively.

4

(e) region R at se (f) region R by se2(d) region south in R
se, and se2

(b) directions east, south,(a) region R (c) region east of R

R RR

Figure 2: Illustrations of the region and direction declarations from Section 3.3. Note that the prepositional operators give intuitive
meaning to the regions they define.

[Interior] begin
A = 0;
[south in "] A = 1;
[1,] A = 2;
[1..q] U = I1;
A = A + B;

end;

This fragment applies the 2-dimensional region scopeInterior
to a compound statement, providing a default set of indices for
the 2-dimensional array references contained within. For ex-
ample, the first assignment will zero out them� n subarray
of array A as specified byInterior. Similarly, the fifth
will increment the same elements ofA by their correspond-
ing elements inB. The second and third assignments are lo-
cally covered by region scopes of rank 2, thereby eclipsing
Interior as the cover for their 2-dimensional array refer-
ences. The fourth assignment zeroes a 1-dimensional array,
and therefore requires a 1-dimensional region cover.

The region scopes prefixing the second and third assign-
ments demonstrate a region's ability to inherit information from
an enclosing region. The second assignment's region scope is
2-dimensional (due to its reference tosouth) and uses the
" symbol as a means of referring to the enclosing region of
matching rank, namelyInterior. The result is that ele-
ments ofA in the southernmost row ofInterior will be
assigned the value 1. The next region scope omits a dimension
specification, indicating that the dimension should be inher-
ited from the covering region of matching rank, namely1..n
fromInterior. Thus, elements ofA in row 1 ofInterior
are assigned the value 2. Providing" and blank dimensions in
RL is more than a syntactic convenience, since they support
the construction of semantically meaningful operations within
region-independent functions (e.g., operate on the south bor-
der orkth row of the call site's covering region).

The fourth assignment usesI1, one of RL's predefined in-
dex arrays, to assign each element ofU its unique index value.
These arrays (I1, I2, etc.) give the programmer access to the
indices of the covering region. In particular, the value of array
Ii at a particular index is defined to be the value of the index
in the ith dimension. ArrayIi may be used wherever an array
of rank� i is expected. As another example, the following
statement assigns each element of arrayA its position within
Interior in row-major order.

[Interior] A = (n * (I1-1)) + I2

4.2 Array Operators
In the examples of the previous section, every statement re-
sulted in an elementwise operation over its operand arrays,
due to the statement-level granularity of the region scopes. RL
uses explicit array operators to express more complex array
references whose indices vary from those of the covering re-
gion. This section defines the RL array operators, which are
used to transform the covering region's indices when access-
ing their array operands. The result of any operator can be
used as the operand to any other, and except where noted, ar-
ray operators have an l-value.

The shift operator (infix@) translates the portion of its
operand array that is referenced. Its left operand is the ar-
ray to shift, and the right operand is a direction vector of the
same rank that specifies the magnitude and direction of the
translation in each dimension. For example, the following RL
statement assigns the nearest neighbor average of the elements
of arrayB as specified by the covering region into arrayA.
Assume that the following directions are defined:north =
(-1,0),south = (1,0),east = (0,1), andwest = (0,-1).

[1..m,1..n] A = (B@north + B@south + B@east + B@west)

The scaleoperator (infix$) adjusts the stride in each di-
mension of a single array reference relative to the coveringre-
gion. Its left operand is an array to scale, and the right operand
is a direction of the same rank. The new stride in each dimen-
sion is the product of the corresponding direction element and
the stride in the covering region. The low element referenced
is the same as the low element in the covering region. For ex-
ample, the following RL statement assigns the odd elements of
arrayB between 1 and 2n to the consecutive elements of array
A between 1 andn, inclusive.

[1..n] A = B\$(2)

Thepromotionoperator (prefix>) transforms ad0-dimensional
array into ad-dimensional array by replicating alongdf of its
dimensions (whered0 = d� df). A d-dimensional region—
called anoperator region—is encoded in the operator. The
flood dimensions in this region (there must bedf of them)
specify which dimensions of the resulting array are to con-
tain replicated data. For example, the following RL state-
ment replicates elements 1 throughm of 1-dimensional array
U across the columns of 2-dimensional arrayA.

[1..m,1..n] A = $>$[,*] U

5

As this example shows, operator regions may contain blank di-
mensions to inherit from the covering region. Operator regions
serve as the covering region for the operand array, which may
itself be a complex array expression. Because the operand ar-
ray expression for promotion has lesser rank than the operator
region, the region formed by eliminating its flood dimensions
covers the array operand expression. For example in the fol-
lowing statement, elements 1 throughm of U andV are added
together before performing the promotion.

[1..m,i] A = $>$[,*] (U+V)

The promotion operator can also be used to promote a
subarray. This is expressed by specifying degenerate dimen-
sions in the operator rather than flood dimensions. For ex-
ample, the following RL statement copies theith column of 2-
dimensional arrayB into columns 1 throughnof 2-dimensional
arrayA.

[1..m,1..n] A = $>$[,i] B

It is important to note that the implementation of promo-
tion does not actually need to create a new array of increased
rank (and increased storage requirements). Promotion simply
provides a different way to reference data without changing
memory requirements. Promotion expressions do not have l-
values because they represent more elements than are actually
represented in memory.

Thedemotionoperator (prefix<) collapsesdd dimensions
of an d0-dimensional array to produce and-dimensional ar-
ray (d = d0 � dd). A d0-dimensional operator region is en-
coded in the operator. The degenerate dimensions of the re-
gion (there must bedd of them) specify which dimensions of
the operand array are to be collapsed. For example, the fol-
lowing RL statement assigns columni of 2-dimensional array
A into 1-dimensional arrayU.

[1..n] U = $<$[,i] A

As this example shows, the demotion operator's operator
region may use blank dimensions. Though the covering re-
gion and the operator region have different rank, the operator
region's blank dimensions will inherit from the corresponding
dimension in the covering region (determined by ignoring de-
generate dimensions in the operator region).

The remap operator (infix#) allows for arbitrary refer-
ences by permitting the programmer to specify a map from in-
dices of the covering region to indices of the operator's operand
array. The operator's left operand is an array to remap, while
the right is a vector of integer indices whose corresponding
elements form an index into the operand array. The value of
each element of the resulting array is the data appearing at this
index in the operand array. The ranks of the argument array,
integer arrays, and resulting array are all the same. For exam-
ple, the following RL statement assigns each element(i; j) of
A the value of element(I(i; j);J(i; j)) of B.

[1..m,1..n] A = B\#(I,J)

As a more specific example, the following statement assigns
the transpose of arrayB toA. Note the use of predefined arrays
I1 andI2.

[1..n,1..n] A = B\#(I2,I1)

Though all of RL's operators can be expressed using the
remap operator, the specialized operators are not without value.
They provide a more concise and readable representation of
certain common operations compared to the general#-operator.
Moreover, the specialized operators serve as a more accurate
indicator of index locality and parallel cost, as discussedin
Section 5.4.3 Operator Summary

Figure 3 summarizes the semantics of each array operator.
A function, fop(: : :), is given for each operator that maps in-
dicesj = h j1; : : : ; jdi, of the rankd covering region to indices
j0 = h j 01; : : : ; j 0d0 i of the operator's rankd0 operand array.5 Discussion5.1 Index Locality in RL
At first glance, RL's array operators may appear to be gratu-
itous. For example, why should a language support the special-
purpose @ and $ operators, when they can be expressed with
the general-purpose # using simple functions of the index ar-
raysIi? The answer is that RL's operators were selected to
emphasize different types of index locality.

Index locality describes relationships between array indices.
These relationships are important in the context of parallel
computing because they translate directly to interprocessor com-
munication. We have identified five types of index locality.
Identical indices (e.g., (1;1) and(1;1)) exhibit perfect local-
ity. Indices close to one other in the traditional Cartesian sense
(e.g., (1;1) and (2;1)) exhibit spatial locality. Indices that
are distant but which share common indices in one dimen-
sion (e.g., (1;1) and(1;100)) are considered to havedimen-
sional locality. Inter-rank locality is exhibited by indices of
different rank that share common coordinates (e.g., (1;2) and(1;100;2)). Finally, two indices whose coordinates are sepa-
rated by a multiplicative factor are considered to havelocality
of scale(e.g., (2;2) and(6;6)). These definitions can be triv-
ially extended to describe the locality of a pair of index sets
rather than individual indices. Furthermore, note that indices
may be related by a combination of locality types.

Since index sets are used both to define and access arrays,
index locality directly correlates to locality of reference (de-
pendent also on the data allocation scheme). This relationship
between index locality and locality of reference is especially
important in the realm of parallel computing, where locality
affects the amount of communication (explicit or implicit)re-
quired between processors. RL thus emphasizes index local-
ity through its region-based syntax and choice of array oper-
ators. Statements with complete locality (i.e., all operations
performed element-wise on identical indices) simply require
the region defining the index set with no other special array
operations. Other statements use the RL array operators to
describe different types of index locality and to syntactically
differentiate the different types of interprocessor communica-
tion:� Statements with spatial locality use the shift operator to

modify indexing by a constant offset.� Dimensional locality is expressed using the dimension-
preserving instance of promotion.� Inter-rank locality is expressed using the promotion and
demotion operators.� Locality of scale is achieved using the scale operator.

6

code fragment signature rank relationship j0 value (1� i � d0)
. . . fno-op(j) = j0 d = d0 j 0i = j i
. . .@v . . . f@(j;v) = j0 d = d0 j 0i = j i +vi

[rc] . . .$v . . . f$(j;v;rc) = j0 d = d0 j 0i = � (j i �glow(ri))vi +glow(r i) if si > 0(j i �ghigh(ri))vi +glow(r i) otherwise

. . .>[ro] . . . f>(j;ro) = j0 d = d0+dnflood(ro) j 0i = � l i if dimensionr i is degenerate
j i0 otherwise (i0 = dflood(r; i))

. . .<[ro0] . . . f<(j;ro0) = j0 d = d0�dndegen(ro0) j 0i = � l i if dimensionr i is degenerate
j i0 otherwise (i = ddegen(r; i0))

. . .#(x) . . . f#(j;x) = j0 d = d0 j 0i = xi(j1; j2; : : : ; jd)
Notation

v = hv1; : : : ;vd0 i : rankd0 direction
rc = hr1; : : : ; rdi : rankd covering region
ro = hr1; : : : ; rdi : rankd operator region
ro0 = hr1; : : : ; rd0 i: rankd0 operator region
x = hx1; : : : ;xdi : d-ary list of rankd integer arrays

Functions
dflood(r; i) = ith non-flood dim. ofr
ddegen(r; i) = ith non-degenerate dim. ofr
dnflood(r) = no. of flood dims inr
dndegen(r) = no. of degenerate dims inr
glow(r = (l ;h;s;a))= l +(a� l) mods
ghigh(r = (l ;h;s;a))= h� (h�a) mods

Figure 3: Array operator summary. The first column gives a code fragment indicating the operator's use. The second column
summarizes the map function's argument signature for each operator. The third column describes the relationship betweend and
d0. The final column gives the value of an element of the resulting d0-ary j0 index.� The absence of index locality is indicated by using the

catch-all remap operator, which can be used to arbitrar-
ily scramble index sets and which may lead to unstruc-
tured communication.

The result is that the RL operators serve as clear visual annota-
tions of a statement's index locality. This is a useful language
property because given a particular data allocation scheme,
both the programmer and the compiler have a clear means of
reasoning about the implementation and expense of a particu-
lar piece of code. This simplifies analysis and optimizationfor
both parties.

We can now see why RL enforces a stricter definition of
conformability than slice-based languages. In the terms given
above,a(i,1..n), b(1..n,j), andc(1..n) do not ex-
hibit perfect locality and must therefore use array operations
to describe their relationship. This is particularly important
in a parallel implementation when an absense of locality im-
plies interprocessor communication. In addition, many algo-
rithms naturally tend to exhibit index locality, due to the ways
in which data is typically stored and accessed. Though con-
formability merely requires that array operands need to be the
same shape and size, there often exist additional logical corre-
lations between the operand indices due to the ways in which
programmers organize and reference data—the indices may be
offset by a constant factor, scaled by different amounts, orpro-
jected from one dimension to another. Cases in which arrays
are accessed in completely arbitrary patterns are relatively in-
frequent. To this end, the introduction of specific operators to
emphasize the common case simplifies the expression of the
operation (e.g., A@(1,1) rather thanA#(I1+1,I2+1)) and
makes code easier to write and to understand (both for humans
and compilers).5.2 ZPL: A practical parallel region-based language
ZPL is a real-world instance of a region-based programming
language that was designed for portable data parallel computa-
tion. Like APL, ZPL was designed to support array computa-

tions. Unlike APL, one of ZPL's chief design goals was to give
programmers an intuitive model for reasoning about the con-
currency and parallel costs of their programs. As a result, ZPL
de-emphasizes general purpose operators that obscure costs.
Instead, ZPL explicitly defines how arrays are allocated and
provides operators that accurately reflect the cost of manipu-
lating arrays with respect to the allocation. This is known as
ZPL's WYSIWYG performance model [3].

Arbitrary array indexing is difficult to parallelize efficiently [5].
For example, the following Fortran 90 statement

A(i) = A(j);
is a simple assignment if theith and j th elements of A reside
on the same processor, but requires communication at a con-
siderably higher cost if they do not reside on the same pro-
cessor. Thus, in the general case this statement requires run-
time checks to determine whether to perform communication.
Worse, it is difficult for the programmer to reason about the
performance of the statement since different compilers forthe
same language may compile the code differently. The ZPL
solution is to use regions and region operators, which pro-
vide syntactic cues to indicate when the compiler will generate
communication.

In order to emphasize data locality in the parallel context,
ZPL maps allinteracting regions(defined in [3]) to a concep-
tual processor grid of the same rank in agrid-alignedfashion,
mapping region indices to processor indices in the correspond-
ing dimension (e.g., rows of a 2-dimensional region would be
mapped to rows of a virtual 2-dimensional processor grid). Ar-
rays are mapped to processors according to the region map-
pings. This has the result of preserving perfect, spatial and
dimensional index locality across the virtual processor grid's
topology. When there are no parallel operators, perfect locality
exists, and the statement may be executed entirely in parallel.
The use of the @ operator exploits spatial locality, potentially
requiring relatively inexpensive nearest neighbor communica-
tion in the processor grid. The use of the promotion (>) op-
erator exploits dimensional index locality, potentially requir-
ing data to be broadcast along one or more dimensions of the

7

processor grid. The remap (#) operator allows for completely
general data movement and thus does not exploit locality.

For practical reasons, ZPL includes a number of features
and operators not included in this discussion, such as masked
computation, wrap and reflect operations for initializing and
maintaining boundary conditions, scan operations, reduction
operations, and multi- regions, arrays and directions for effi-
cient parallel support of multi-grid applications.5.3 Relationship to Subscripting
Two array references in a subscript-based language are typi-
cally considered conformable if the same number of array ele-
ments are referenced in corresponding, non-degenerate dimen-
sions of the references. Region-based programming enforces
a stricter meaning of conformability, because a single region
selects the indices of all array references in a statement. Thus,
it is the role of the array operators to map indices of the cov-
ering region to indices of the array operands, allowing for the
expression of more general referencing. Despite the stricter
definition of conformability, region-based programming isno
less expressive. Additional operators are sometimes required
to make references conformable, emphasizing the type of lo-
cality. For concreteness, Table 2 summarizes a number of
ways by which array references may conform without being
identical (column 1). For each, a Fortran 90 and APL example
statements are given (columns 2 and 3) and their correspond-
ing RL statement (column 4).6 Related Work
The most prevalent alternative to region-based programming
is array subscripting, as found in APL, Fortran 90, and Mat-
lab [7, 1, 6]. As we have argued, array subscripting is a more
cumbersome means of expressing simple array operations and
is no more powerful than a region-based approach. Most im-
portantly, these languages were not designed with parallelism
in mind, thus it is very difficult for programmers to consis-
tently achieve good performance and reason about their codes'
parallel overheads.

Matlab is the current most popular array language for sci-
entific computing, principally due to its interactive workbench
approach to application prototyping and development and its
extensive auxiliary library support. Besides being subscript-
based, Matlab differs from ZPL in that it is designed to be a
serial, interpreted language, so it is highly dynamic. Attempts
to compile it are hindered by dynamic array allocation and data
types [8], and attempts to parallelize it are limited by the fact
that the language provides no support for managing localityor
communication costs [11] in parallel implementation.

SAC (Single Assignment C) is a strict, purely functional
subset of the C programming language, extended with richer
support for arrays [12]. Like regions, the WITH-loop con-
struct is used to limit the indices involved in a computationfor
a statement or group of statements. Despite the fact that SAC
provides simple array operations such ascat androtate,
indexing is still required on array references in WITH-loops.
Conversely, regions are dynamically scoped, so they may be
separated from the statements to which they apply. As a result,
a single region may apply to many nonadjacent statements, re-
sulting in more concise code. SAC requires repeated use of
WITH-loops and repeated index range specification. Finally,
SAC is not a parallel language; it encourages the use of fea-

tures, such asreshape, that are at odds with efficient paral-
lelization.

Several parallel languages have supported mechanisms for
storing and manipulating index sets. Parallaxis-III and C� are
two such examples, both designed to express a SIMD style
of computation [2, 15]. Both languages support dense multi-
dimensional index spaces that are used to declare parallel ar-
rays. Parallaxis-III array statements are performed over the
entire array, and therefore do not use index sets to describe
computation. C� does use its index sets (shapes) to designate
parallel computation over entire arrays. However, it enforces
a tight correspondence between the shapes of the computation
and the arrays being operated on. Due to this restriction, its
shapes are more of a type modifier than a general index set
for expressing array computation. Both languages allow for
individual elements to be masked on and off. Neither provides
support for strided index sets.

FIDIL is another parallel array language designed for sci-
entific computation [13] with support for more general index
sets calleddomains. Domains need neither be rectangular nor
dense, and FIDIL supports computation over them using set-
theoretic union, intersection, and difference operations. The
role of domains is limited to describing the structure of ar-
rays (maps) and not for specifying computational references.
Statements therefore operate either over the entirety of anar-
ray, or by indexing into the array as in scalar languages. Con-
formability in FIDIL is somewhat more dynamic than in other
languages—operations are only performed on indices that are
present in both operators.

KeLP [4] is a C++ runtime library that is a descendent of
FIDIL. It supports shift, intersect, and grow operators on rect-
angular index sets calledregions. KeLP uses regions to ex-
press iteration spaces using a “for all indices in the region”
control construct. It departs from the region-based program-
ming model described in this paper in that regions are used to
enumerate indices which are then used to subscript arrays in
the standard way. As a result, it does not support array oper-
ators to emphasize index locality. Furthermore, since regions
are not an inherent part of C++, region manipulation is less el-
egant, with no implicit support for dynamically scoped regions
and dimension inheritance.7 Conclusions
This paper has developed the concept of regions in the con-
text of parallel programming languages. Regions have advan-
tageous properties that assist both programmers and compiler
writers.

Regions provide notational advantages, removing the re-
dundancy of applying identical or similar subscript specifica-
tions to each array operand. Rather, a set of indices is speci-
fied as a context in which conformant array computation is to
be performed. Not only are the programs more succinct, the
software engineering precept that similar things should look
similar is respected. Programs are easier to read and write,
will have fewer errors, and be easier to debug.

Regions are an effective abstraction. They can be named,
allowing programmers to give them problem specific meaning.
Further, the array operations such as@ and$ that transform re-
gions to reference related elements define these elements more
abstractly, in whole array terms. These higher-level concepts
permit the programmer to think globally, saying what the in-
dex set should be, rather than how to realize that state opera-
tionally.

8

reference difference Fortran 90 APL RL
shift U(2:n+1) = W(1:n)+W(3:n+2) U[1+ ιN] W[ιN] + W[2+ ιN] [1..n] U = W@(-1)+W@(1)
stride U(1:n) = W(1:2*n:2) U[ιN] W[1 + 2� ι N] [1..n] U = W$(2)
rank change (promotion) A(1:n,i) = U(1:n) A[ιN;I] U[ιN] [1..n,i] A = >[,*] U
rank change (demotion) U(1:n) = A(1:n,i) U[ιN] A[ιN;I] [1..n] U = <[,i] A
dim. alignment change A(1:n,i) = B(j,1:n) A[ιN;I] B[J;ιN] [1..n,i] A = B#(j,I1)
vector subscripts (1-dim.) U(1:n) = W(V(1:n)) U[ιN] W[V[ιN]] [1..n] U = W#(V)
vector subscripts (2-dim.) A(1:m,1:n) = B(U(1:m),W(1:n)) A[ιN] B[U[ιN];W[ιN]] [1..m,1..n] A = B#(>[,*]U,>[*,]W)

Table 2: Equivalent Fortran 90, APL, and RL statements that contain conformable, yet not identical references. All arrays in this
table contain more thann elements in each dimension. In other words, these array references refer to subarrays. ArraysA andB are
2-dimensional and arraysU, V, andW are 1-dimensional.

From a program analysis and performance point of view,
regions are ideal for parallel programming. Regions are theba-
sis for identifying parallelism, for allocating memory andfor
planning out interprocessor communication. Using regions,
the programmer and compiler can communicate at a high level
regarding how these performance sensitive features will be-
have. These benefits have been demonstrated in ZPL.

We have neutralized the one potential liability of regions,
that the higher level of expression with its somewhat stricter
form of conformability is somehow overly constraining rela-
tive to slice notation. Regions were shown to be as expressive
as array slice notation.

Our choice to restrict regions to a regular, rectangular in-
dex set was made in order to ensure an efficient parallel im-
plementation and clear performance model. Masks (not de-
scribed in this paper) are a mechanism for selecting arbitrary
subsets of indices from these rectangular sets. In future work,
we intend to generalize regions to describe less regular index
sets for efficient sparse computation. The challenge will beto
do so without sacrificing the efficiency and clear performance
model of the current scheme.References
[1] Jeanne C. Adams, Walter S. Brainerd, Jean T. Martin,

Brian T. Smith, and Jerrold L. Wagener.Fortran 90
Handbook. McGraw-Hill, 1992.

[2] Thomas Bräunl. Parallaxis-III: A language for structured
data-parallel programming. InProceedings of the IEEE
First International Conference on Algorithms and Ar-
chitectures for Parallel Processing, pages 43–52. IEEE,
April 1995.

[3] Bradford L. Chamberlain, Sung-Eun Choi, E Christopher
Lewis, Calvin Lin, Lawrence Snyder, and W. Derrick
Weathersby. ZPL's WYSIWYG performance model.
In Proceedings of the Third International Workshop on
High-Level Parallel Programming Models and Support-
ive Environments, pages 50–61. IEEE, March 1998.

[4] S. J. Fink, S. R. Kohn, and S. B. Baden. Efficient run-
time support for irregular block-structured applications.
Journal of Parallel and Distributed Computing, 1998. To
appear.

[5] Raymond Greenlaw and Lawrence Snyder. Achieving
speedups for APL on an SIMD distributed memory ma-
chine. International Journal of Parallel Programming,
19(2):111–127, April 1990.

[6] Duane Hanselman and Bruce Littlefield.Mastering
MATLAB. Prentice-Hall, 1996.

[7] Kenneth E. Iverson.A Programming Language. John
Wiley and Sons, 1962.

[8] S. C. Johnson and C. Mohler. Compiling MATLAB. In
Proceedings of the USENIX Symposium on Very High
Level Languages (VHLL), pages 119–27, Santa Fe, New
Mexico, October 1994. USENIX Association.

[9] Calvin Lin and Lawrence Snyder. ZPL: An array sublan-
guage. In Uptal Banerjee, David Gelernter, Alexandru
Nicolau, and David Padua, editors,Workshop on Lan-
guages and Compilers for Parallel Computing, pages
96–114. Springer-Verlag, 1993.

[10] Bruce J. MacLennan.Principles of Programming Lan-
guages. Saunders College Publishing, 2nd edition, 1987.

[11] L. De Rose, K. Gallivan, E. Gallopoulos, B. Marsolf,
and D. Padua. FALCON: A MATLAB interactive re-
structuring compiler. In C. H. Huang, P. Sadayappan,
U. Banerjee, S. Gelernter, A. Nicolau, and D. Padua, ed-
itors, Proceedings of the 8th Iternational Workshop on
Languages and Compiler for Parallel Computing, pages
269–88, Columbus, Ohio, August 1995. Springer-Verlag.

[12] Sven-Bodo Scholz. On programming scientific applica-
tion in SAC — a functional language extended by a sub-
system for high-level array operations. In Werner Kluge,
editor, Proceedings of the 8th International Workshop
on the Implementation of Functional Languages (IFL
'96), pages 85–104, Bad Godesberg, Germany, Septem-
ber 1996. Springer-Verlag.

[13] Luigi Semenzato and Paul Hilfinger. Arrays in FIDIL. In
Robert Grossman, editor,Symbolic Computation: Appli-
cations to Scientific Computing, pages 155–169. SIAM,
1989.

[14] Lawrence Snyder. Programming Guide to ZPL.
MIT Press (in press—available at publication date at
ftp://ftp.cs.washington.edu/pub/orca/docs/zplguide.ps),
1999.

[15] C* Programming Guide, Version 6.0.2. Thinking Ma-
chines Corporation, Cambridge, Massachusetts, June
1991.

9

