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Many challenges in software quality can be tackled with dynamic analy-

sis. However, these techniques are often limited in their efficiency or scalability

as they are often applied uniformly to an entire program. In this thesis, we

show that dynamic program analysis can be made significantly more efficient

and scalable by first performing a static data flow analysis so that the dynamic

analysis can be selectively applied only to important parts of the program. We

apply this general principle to the design and implementation of two different

systems, one for runtime security policy enforcement and the other for software

test input generation.

For runtime security policy enforcement, we enforce user-defined poli-

cies using a dynamic data flow analysis that is more general and flexible than

previous systems. Our system uses the user-defined policy to drive a static

data flow analysis that identifies and instruments only the statements that may

be involved in a security vulnerability, often eliminating the need to track most

objects and greatly reducing the overhead. For taint analysis on a set of five

vii



server programs, the slowdown is only 0.65%, two orders of magnitude lower

than previous taint tracking systems. Our system also has negligible overhead

on file disclosure vulnerabilities, a problem that taint tracking cannot handle.

For software test case generation, we introduce the idea of targeted

testing, which focuses testing effort on select parts of the program instead

of treating all program paths equally. Our “Bullseye” system uses a static

analysis performed with respect to user-defined “interesting points” to steer

the search down certain paths, thereby finding bugs faster. We also introduce

a compiler transformation that allows symbolic execution to automatically

perform boundary condition testing, revealing bugs that could be missed even

if the correct path is tested. For our set of 9 benchmarks, Bullseye finds

bugs an average of 2.5× faster than a conventional depth-first search and finds

numerous bugs that DFS could not. In addition, our automated boundary

condition testing transformation allows both Bullseye and depth-first search

to find numerous bugs that they could not find before, even when all paths

were explored.
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Chapter 1

Introduction

Software quality is important to today’s computing environment. Buggy

and unreliable programs have caused billions in losses annually [76], the loss

of expensive space probes [75], and even the death of radiation therapy pa-

tients [64]. Moreover, flaws in common operating systems, web browsers, and

servers have allowed malicious hackers to gain unauthorized access to numer-

ous systems, enabling further attacks, fraud, and identity theft [65]. Thus,

improving software quality is a critical part of improving computing today

and will become even more important in our increasingly interconnected fu-

ture.

To find and fix bugs and vulnerabilities, developers need powerful tools

at their disposal. Many of the most powerful tools are based on dynamic

analysis, where the program being debugged or fixed is augmented so that it

can be analyzed as it runs. For example, Valgrind [78] analyzes every memory

operation performed by a program and is used by millions of programmers

to find and fix memory leaks and buffer overflows. Tools like Pin [67] enable

programmers to write their own analyses. Dynamic taint tracking systems

have been used to protect programs from attacks [92, 33, 80, 84, 99, 34].

Directed [44, 45] and concolic [87] test input generators automatically generate

inputs to test programs.

Unfortunately, dynamic analyses often suffer from significant inefficien-
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cies. Valgrind routinely experiences 10-100× overhead [78]. Software taint

tracking systems also suffer from excessively high overheads. Test input gen-

erators can be slow to find bugs. To continue to make improvements in soft-

ware security and quality, the efficiency and flexibility of these tools must be

improved.

The cause of these inefficiencies is that the dynamic analysis performs

many computations that are redundant or not actually needed for the task at

hand. For example, dynamic taint tracking systems track taintedness on ob-

jects that are never involved in any attack, and directed test input generators

generate numerous test cases that do not reveal any faults. If these inefficien-

cies could be reduced or eliminated, the dynamic analysis would be improved

greatly.

In this thesis, we will show how dynamic analyses can be dramat-

ically improved by first performing a static data flow analysis. By over-

approximating or anticipating the desired dynamic behavior, static analysis

can disable dynamic analysis on large swaths of the program, focusing anal-

ysis effort on the remainder and greatly improving the effectiveness of the

system.

This thesis will focus on two specific areas within dynamic analysis:

runtime security policy enforcement and automated test case generation.

1.1 Runtime Security Enforcement

The first major thrust of this thesis is runtime security enforcement. A

major challenge today is to secure servers from attacks. Servers for businesses,

governments, and even private individuals are attacked regularly, resulting in

2



significant financial loss or serious breaches of national security. To make

matters worse, many of these applications were written without security in

mind or with simpler security models than today’s needs demand. Securing

these programs is an enormous but important undertaking. Thus, providing

tools to help secure legacy code and defend servers against attacks is a critical

part of protecting our electronic infrastructure.

Attacks on servers are made possible by flaws in the server program

that allow an attacker to manipulate it into behaving in unintended ways. To

prevent these attacks, we must ensure that the program cannot violate some

security policy at runtime. One way to enforce policies is runtime monitoring,

where additional code runs alongside the original program and monitors its

execution, stepping in to prohibit actions that violate some given security

policy.

One highly promising runtime monitoring technique is dynamic taint

tracking. In dynamic taint tracking, input from untrustworthy sources is

marked as tainted. The taint tracking system propagates taint information

as data is copied and used throughout the program, using this taint informa-

tion to ensure that tainted data is never used for certain sensitive operations.

Taint tracking has been used to address a wide variety of security problems,

including buffer overflows [92, 33, 80, 84, 99, 34] and web application vulner-

abilities [95, 81, 99, 34].

Unfortunately, current taint tracking systems are limited in their capa-

bilities. Most taint tracking systems, especially hardware-based systems [92,

33, 34], are not general and cannot be easily extended to handle more complex

information flow problems without rewriting significant portions of the system

or redesigning key data structures. As a result, current taint tracking systems

3



cannot be used for other important issues like file disclosure attacks or en-

forcement of a labeled security model. Thus, to move beyond memory errors

and to support higher-level policies, we need a more general system than taint

tracking.

Moreover, software-based taint tracking systems are needlessly ineffi-

cient. Current state-of-the-art taint tracking systems [99, 84] have brought

the overhead for I/O-bound applications from 37× [80] down to an average

of only 5%, but for more computationally intensive applications, the average

overhead is still 75% or higher. Much of this overhead exists because the sys-

tem tracks taintedness for all memory used by the program. However, the

number of instructions and the amount of data involved in any given attack

is miniscule compared with the rest of the program [79]. To leverage this ob-

servation, the best current taint tracking systems reduce the amount of data

that is tracked by applying conventional intraprocedural compiler optimiza-

tions. However, these optimizations miss opportunities because they do not

reason about interprocedural flows and because they do not reason about the

semantics of taint. For example, while a dependence analysis can eliminate

tracking on scalar variables that can never be tainted [99], it cannot eliminate

tracking on objects that are tainted but can never be misused. Eliminating

such unnecessary tracking can therefore eliminate a significant amount of the

overhead.

As part of this thesis, we have developed a system that addresses both

of these shortcomings by coupling a rich declarative policy specification with

a deep whole-program analysis that greatly reduces runtime overhead. We ad-

dress generality by basing our system on data flow analysis [57]. Our system

can handle any problem that can be conservatively modeled by typestate [91],
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which includes taint analysis as its simplest case. Users supply a problem

definition and a security policy to our compiler, which then produces an en-

hanced version of the original source program that performs a dynamic data

flow analysis [54] to enforce the specified policy.

Our use of dynamic data flow analysis as an enforcement mechanism

also addresses the second issue of efficiency. Our compiler uses the user-

supplied problem definition to perform a static whole-program data flow anal-

ysis on the source program to determine where dynamic analysis is actually

required. In many cases, this is a very small fraction of the entire program,

or none at all, if the program contains no vulnerabilities. By adding code to

perform dynamic analysis only at places where it is actually required, our sys-

tem adds a minimal amount of additional code and tracks significantly fewer

objects than current taint tracking or dynamic data flow analysis systems.

We will discuss the details of our dynamic data flow analysis and its

accompanying static analysis in Chapter 3. We describe our evaluation of the

dynamic data flow analysis system in Chapter 4.

1.2 Efficient Software Testing

The second major thrust of this thesis is in software testing. Testing

is the usual way that software functionality and correctness is verified. An

effective testing system is one that helps find bugs quickly or provides higher

assurance of the absence of bugs. A test case generator is a system that

generates test inputs to a program to aid in software testing.

A major obstacle to testing programs of any significant size is the ex-

ponential number of possible paths through the program. It is simply not
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possible to test every path. Therefore, software test case generators adopt a

variety of approaches to limit their scope. Most methods are based on the

small input hypothesis [70], which assumes that for any given bug, there exists

a small input that makes the bug manifest. Bounded exhaustive testing [18]

systems find bugs by systematically generating all non-equivalent inputs up

to a certain size or by exploring all paths up to a certain length. This explo-

ration consumes considerable time and testing resources and does not readily

find bugs that manifest only on larger inputs.

To address these shortcomings, directed testing [44, 87] has been pro-

posed as an alternative means of exploring program behaviors. A directed

test case generator starts with an initial path and proceeds to explore paths

in the program in a depth-first manner by calculating branch conditions for

the current path, altering the conditions, and generating a new input that

forces execution to a different path. This path-oriented exploration allows the

testing system to explore much longer paths than with bounded exhaustive

testing. However, there is still no guarantee or assurance that the system will

explore paths that lead to bug-inducing inputs. Assuming the competent pro-

grammer hypothesis [2], which states that a program written by a competent

programmer will be mostly correct, directed testing systems will spend signif-

icant time generating inputs that do not reveal flaws, limiting their scalability

and bug-finding efficiency.

Both of these current approaches share one thing in common: all paths

are treated equally. These approaches carry with them inherent inefficiencies

when applied to the task of fault identification in large programs. The num-

ber of paths in a larger program is enormous. Moreover, the overwhelming

majority of possible paths reflect correct execution and will not reveal faults.
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Lacking guidance as to where faults may appear in programs, test input gener-

ators spend most of their time generating inputs that produce correct behavior

rather than incorrect behavior. Thus, efficient testing for bug-finding requires

guidance about which paths are more likely to reveal bugs.

As part of this thesis, we have implemented and evaluated a system,

Bullseye, that implements targeted testing, a new automated testing technique

that focuses testing resources on only select parts of programs. Targeted test-

ing utilizes testing resources more efficiently by focusing efforts on select areas

of the program instead of treating the testing space uniformly, thereby increas-

ing the efficiency and scalability of testing systems by increasing the relevance

of generated inputs. Our key insight is that paths and statements in the pro-

gram should not be treated equally. If it is possible to identify a set of paths

or locations of greater importance, a test case generator can explore paths

that are more relevant while ignoring the remainder of the program. By using

static analysis to compute information flow relations in the program, Bullseye

can guide test input generation towards paths that most affect or are most

affected by points of interest in the program.

Bullseye starts from a given set of program statements and objects

which we call interesting points. Bullseye then analyzes the flow of data

through the program to determine both what the points of interest affect and

what affects the points of interest. The directed test case generator then uses

this information to guide testing along paths that are relevant to the points of

interest, generating test cases that better target the points of interest. In our

evaluation, we use Bullseye as though it were a part of a change management

system, with program edits as points of interest. Other possible sources for

interesting points include static error checkers, profilers, or even programmer
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hunches.

In addition, this thesis identifies a broader problem facing all test gener-

ators based on symbolic execution—the path inadequacy problem—which can

prevent test input generators from finding faults even if they find the correct

path. To address this problem, we introduce a method for performing auto-

mated boundary condition testing by encoding conditions in the control flow

graph. This technique can be used in conjunction with targeted testing or

independently as part of any other symbolic execution system. Our technique

enables both directed and targeted testing to find numerous bugs that they

could not find before.

We describe the details of our test input generator and static analysis

in Chapter 5, as well as our boundary condition testing solution. We evaluate

Bullseye against directed testing in Chapter 6.

1.3 Theme: Analyzing the Flow of Data for Selective

Analysis

Although the areas of runtime monitoring and test case generation

seem very different, the solutions that we have developed all rely on the same

fundamental insights:

• Systems that perform a dynamic analysis often spend considerable time

performing analysis on parts of the program that are not important to

the goal; eliminating this unnecessary work by selectively performing the

analysis is essential for highly efficient and scalable systems.

• Analyzing the flow of data in a program allows tools to determine what

is important and thereby selectively apply the dynamic analysis.
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In this thesis, we have applied these two principles to runtime moni-

toring and test case generation. For monitoring, we used data flow analysis to

describe and enforce security policies, including existing taint-based policies.

Static data flow analysis reduces the amount of dynamic data flow analysis to

a small fraction of the program, resulting in a much more efficient dynamic

system. For test case generation, our static analysis allows our directed test

case generator to prioritize specific locations and objects in the program. As

a result, Bullseye produces inputs that focus on this subset of the program

rather than treating all program paths equally. In both cases, analyzing the

flow of data allows the tool to model the problem and to narrow the focus to

a small fraction of the space.

Although we have only explored these two areas in this thesis, we believe

that these principles are broadly applicable. The basic idea of performing a

heavyweight analysis in only select locations in a program has already been

used successfully in a client-driven pointer analysis for error checking [50]. Our

work builds on these ideas and this codebase and extends it to dynamic data

flow analysis and software testing.

1.4 Contributions

This thesis makes the following contributions:

• We implement a system for performing general typestate-based dynamic

data flow analysis on C language programs. This system uses static data

flow analysis to determine where dynamic analysis may be required and

eliminates unnecessary instrumentation everywhere else.
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• We evaluate the effectiveness of our dynamic data flow analysis system

against current taint tracking systems. Our evaluation shows that our

system can match or improve upon the overhead of the best current

taint tracking systems, sometimes by multiple orders of magnitude, thus

demonstrating that dynamic data flow analysis is an efficient mechanism

for implementing existing taint-based solutions.

• We demonstrate that our dynamic data flow analysis system is more

general than taint tracking systems by applying it to a problem that

taint tracking cannot handle.

• We introduce the idea of targeted testing, a new testing paradigm that

complements existing coverage-based techniques and can be applied or-

thogonally to a wide range of existing test case generators.

• We introduce a new metric, mutant kill speed, that measures the speed

at which a fault can be identified by a testing system. This new metric

allows us to quantify the speed at which bugs can be found by a testing

system, as opposed to the thoroughness of the test suite at the end.

• We implement a system, Bullseye, for targeted automated test case gen-

eration. Bullseye demonstrates how a standard concolic execution sys-

tem can be extended to support targeted testing.

• We develop a technique that allows symbolic execution systems to per-

form automated boundary condition testing by encoding boundary con-

ditions in the program’s control flow graph. Our solution can be used

in conjunction with targeted testing as well independently. Our bound-

ary condition testing technique finds numerous bugs that prior symbolic

execution systems could not find before except through chance.
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• We evaluate the effectiveness of the Bullseye system, demonstrating that

the original baseline concolic execution testing system shows significant

improvements in fault identification speed when targeted testing tech-

niques are used. We use Bullseye to reveal flaws in benchmarks and

real-world example codes. We evaluate our boundary condition test-

ing technique, measuring the improvement in fault coverage as well as

the slowdowns incurred, and offer insights and explanations into these.

Finally, we discuss new insights into test input generation and future

directions for software testing.

The remainder of this thesis will proceed as follows. First, we will dis-

cuss related work in Chapter 2. Next, we will discuss the two projects that

comprise this thesis. In Chapter 3, we discuss the design and implementation

of our dynamic data flow analysis system and its accompanying static analysis.

We evaluate this system in Chapter 4 on server programs, compute-intensive

programs, and different security policies. Chapter 5 discusses the implementa-

tion of Bullseye, our test input generator, covering our additions to test input

generation, the static analysis that guides Bullseye, and boundary condition

testing. In Chapter 6, we evaluate the Bullseye system against directed test-

ing, with and without boundary condition testing, as well as explore the effects

of heuristic parameters and static analysis. Finally, we finish with thoughts

on the future of dynamic analysis and other concluding remarks in Chapter 7.
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Chapter 2

Related Work

In this chapter, we provide a brief overview of related work. As the

fields of software security and testing are extremely broad, we cannot provide

a comprehensive list of work in this area, but we cover a sampling of work that

is most relevant thematically and technically to the design and implementation

of our dynamic data flow analysis and software testing systems.

This chapter is organized around topics in related work. First, we

discuss data flow analysis in Section 2.1, providing background in the data

flow analysis that both our dynamic data flow analysis and Bullseye build

upon. Next, we discuss static analysis and its applications to error checking

and policy enforcement in Section 2.2. In Section 2.3 we discuss approaches to

runtime monitoring for security. Next, in Section 2.4, we discuss dynamic taint

tracking systems and compare and contrast them with our dynamic data flow

analysis system. In Section 2.5 we discuss work in software testing evaluation

with an emphasis on coverage criteria. In Section 2.6, we cover path-based

test input generators, which we build off of to create the Bullseye test system.

Finally, in Section 2.7, we discuss change impact management and its relation

to Bullseye.
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2.1 Data Flow Analysis

Both Bullseye and our dynamic data flow analysis are based on data

flow analysis [57] and both are implemented on top of the Broadway static

data flow analysis system [47]. Although their end uses are different, the static

analysis components of each share a common iterative data flow analysis and

data dependence analysis [73].

The static component of our dynamic data flow analysis system per-

forms a sound but incomplete analysis; that is, if it indicates that there are

no problems, then there are in fact no problems. However, it may report false

positives. Moreover, while the other static program checkers discussed in Sec-

tion 2.2 typically leave it to the user to fix any potential problems, our system

inserts code to perform a dynamic analysis that guards against problems with-

out requiring the developer to manually fix every reported vulnerability. Other

systems that combine static and dynamic analysis require significant manual

assistance [55], while ours is automated.

For software testing, our use of static data flow analysis is a key differ-

entiator. Prior work in dynamic testing systems [62] focuses on control flow;

while this may allow the test system to reason about paths towards a partic-

ular statement, it cannot reason about the effects of changes on variables. To

capture the effects of changes to variables, a data dependence analysis is re-

quired. Prior research in thin slicing [89] suggests that data dependencies are

more useful than control flow when reasoning about bugs and software faults.

The static analysis component of Bullseye thus makes extensive use of data

flow analysis to properly reason about the interaction between statements and

variables.
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2.2 Static Analysis

Static analysis refers to a family of techniques that analyzes a program

(in either source or binary form) and attempts to derive information about the

possible runtime behaviors of the program. Static analysis can be used for a

wide variety of applications, including compiler optimizations and lightweight

program verification. Static analyses differ widely in the properties that they

can check for and in their soundness and completeness.

Static analysis has been widely used for error checking [88, 40, 6, 50, 96].

Systems range across the spectrum in configurability and depth of analysis. At

the simple end of the spectrum, there are source code scanners that look for

syntactic patterns common to programmer errors and coding style violations

[40]. These systems typically rely on a simple set of hardcoded rules and look

for syntactic patterns in source code. Rarely do they perform any rigorous

analysis, and as such are necessarily unsound and incomplete, nor do they

typically offer significant mechanisms for customization.

More sophisticated error checkers read user-defined analysis problems

from annotation files and perform interprocedural analysis. The Metal sys-

tem [6] uses user-provided state machines with machines associated with vari-

ables and state transitions driven by program syntax. It has successfully found

errors in production code, including the Linux kernel [6, 12]. Type systems

and type qualifiers [88, 42] provide a simple way for programmers to express

analyses as in-line annotations, using type checking and type inference to find

possible violations. The Broadway system [50] uses user-provided declarative

problem specifications to perform a whole-program data flow analysis and has

also found numerous bugs in real code. Our dynamic data flow analysis system

builds directly off of Broadway and uses the same annotation language.
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Static analysis can construct models of program behavior that can

then be enforced dynamically. For example, control [61, 1] and data flow in-

tegrity [23] ensure that the program never deviates from statically computed

models of control or data flow. That is, the program statically computes the

control or data flows that are possibly legitimate and inserts extra guards

to ensure that only these legitimate control or data flows are used at run

time. However, these systems restrict dynamic program behavior to an over-

approximation of possible legal behavior, which allows false negatives. Our

dynamic data flow analysis over-approximates during static analysis but en-

forces the policy exactly during dynamic analysis, thereby avoiding both false

positives and false negatives.

Finally, our techniques for vulnerability analysis and test generation

bear some similarities with model checking [26]. Model checking proves pro-

gram correctness by demonstrating that no incorrect path through the pro-

gram is feasible. Model checking can reveal bugs by producing a counterex-

ample when the constraints cannot be satisfied. However, model construction

is difficult task, requiring significant time and effort by experts even for simple

models, limiting widespread use [38]. Model checking can even miss simple

bugs due to model simplification [38]. For dynamic data flow analysis, we use

data flow analysis as a lightweight proxy for model checking, with any impre-

cision or ambiguity resolved by our dynamic data flow analysis at runtime.

For security purposes, this combination of static and dynamic analysis yields

similar guarantees to more rigorous systems while remaining scalable and easy

to use, with the tradeoff of moving part of the verification problem to runtime.
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2.3 Runtime Monitoring

Runtime monitoring refers to the class of solutions that improve the

security and integrity of a system by monitoring the behavior of the program

at runtime, stepping in to take action to prevent events that violate some

security policy. These solutions differ significantly in how they model and

enforce program behavior. For example, some systems only enforce memory

safety, while others enforce policies based on control flow or taintedness. We

now discuss representative examples of such solutions briefly.

Runtime monitoring is used in many current systems for preventing

buffer overflow attacks and invalid memory accesses [7, 32, 31, 14, 9]. These

techniques ensure that certain implicit language semantics (such as the in-

tegrity of the stack) and other low-level artifacts are maintained. They do

not handle program behavior beyond such memory errors. While effective at

stopping many attacks, these techniques do not allow for meaningful user con-

figurability or detection of more subtle errors. Techniques that address only

low-level memory errors are unnecessary in languages that already enforce

memory safety, but these programs can and do contain errors and vulnerabil-

ities. For example, information flow errors and simple bugs can and do occur

in programs written in memory-safe languages such as Java.

There are several systems, most notably Inlined Reference Monitors [39]

that check user-defined policies presented in the form of logical statements over

events in the program [39, 27]. Unfortunately, their own designers admit that

the system is difficult and cumbersome to use [39]. They are ill suited to prob-

lems that depend on the flow of information and dynamic allocation, including

problems as simple as taint tracking, because they encapsulate everything in

global state variables. [39].
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Finally, language-based solutions for information flow and security have

also been proposed [74, 86, 56]. These systems typically attempt to guaran-

tee as much program safety as possible at compile time but include a small

runtime monitoring component. While these systems can provide strong guar-

antees with respect to information flow non-interference or memory and type

safety, they require significant developer effort to rewrite or redesign current

programs. Our dynamic data flow analysis system is applicable to current

code and does not require additional effort from the application developer.

2.4 Dynamic Taint Tracking

Our dynamic data flow analysis is a generalization of dynamic taint

tracking [95, 80, 81, 92, 33, 24, 29, 99, 84, 63], which has been used to protect

against buffer overflows, stack smashing, and format string attacks, and which

covers attacks previously addressed separately by ad-hoc solutions [32, 31,

9, 30]. Dynamic taint tracking associates a bit of information with objects

and memory addresses, encoding taintedness or nontaintedness. At runtime,

taint tracking marks inputs and any derived copies as tainted and ensures

that tainted data is never used in certain places. Much of the previous work

in taint tracking has used specialized hardware [92, 33] or dynamic binary

instrumentation frameworks [80, 29, 84].

Dynamic data flow analysis was first proposed for identifying uninitial-

ized variables in 1979 [54]. Although static data flow analysis [57] has been

widely used for decades by compilers to perform optimizations, work in dy-

namic data flow analysis has largely focused on uninitialized variables [54] or

dynamic flow relations [62, 3, 77, 29]. Moreover, most existing systems for dy-

namic data flow analysis make little or no use of the corresponding static data
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flow analysis, resulting in excessive overhead [77]. We implement a general

dynamic data flow analysis system that can handle typestate properties while

using the corresponding static analysis to achieve low overhead.

The closest existing works to ours are Taint-Enhanced Policy Enforce-

ment by Xu, et al. [99] and GIFT [63]. Xu, et al. use a compiler to insert

taint tracking code into programs. By using highly tuned tag representations

and Linux-specific memory management techniques, they are able to bring the

overhead of taint tracking for I/O-bound server programs to an average of only

5%. However, their performance on compute-bound applications is consider-

ably worse, with an average overhead of 75%. Their system is also designed

specifically for taint tracking. In contrast, our dynamic data flow system can

be applied to any typestate problem and is platform-independent.

GIFT [63] is a “General Information Flow Tracking” framework that

uses a compiler to automatically add code to propagate and check tags asso-

ciated with data. GIFT handles a wide range of dynamic data flow problems.

However, GIFT policy specifications are provided in the form of code transfor-

mation patterns; the user essentially tells GIFT how to rewrite the existing pro-

gram to incorporate calls to the GIFT runtime, much like an aspect-oriented

programming system. GIFT then performs some program slicing in an at-

tempt to reduce the added code, but these efforts are largely ineffective [63].

Our system uses declarative specifications that define an analysis to the com-

piler, with the policy framed in terms of predicates on analysis results. Thus,

GIFT only tells the compiler what to add, not what it means. As a result, our

system can eliminate many calls that GIFT could not, because our data-flow

slicing algorithm can reason about the semantics of the runtime analysis.

Our dynamic data flow analysis system can also be used as a tool

18



to weave cross-cutting security functionality into programs in the manner of

aspect-oriented programming [59]. The cross-cutting nature of security in ap-

plications is well-known [94]. Most aspect-oriented programming systems allow

the user to implement aspects as simple transformations and code insertion

(termed advice) over syntactic elements such as method calls in the program

(termed the pointcut). However, our system features a radically different point-

cut and coding model that is based on declaratively specifying a dynamic data

flow analysis. Although data flow pointcuts have been proposed as a means

to make taint tracking possible in aspect-oriented programming [71] and as-

pect systems have been extended to expose compiler analyses to the pointcut

definition [72, 5], both of these approaches retain the transformation-oriented

development model. Programmers still implement aspects as additional code

that is inserted at statically computed locations. In contrast, our approach is

closer to declarative programming. Programmers using analysis-based aspects

implement cross-cutting functionality by providing problem-specific informa-

tion to a general analysis framework. Finally, current approaches do not per-

form an interprocedural flow-sensitive data flow and pointer analysis and are

thus much less precise.

2.5 Software Testing and Coverage

Much software testing research has focused on coverage criteria. A

suite of test inputs is said to cover a program if the inputs collectively sat-

isfy a given coverage criteria. Commonly used coverage criteria [13] include

branch coverage (where the goal is to ensure that every branch is tested) and

statement coverage (where the goal is to ensure that every statement is exe-

cuted at least once). Most evaluations of software testing techniques focus on
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measuring improvements in the coverage criteria, with the presumption that

higher coverage indicates a higher quality test suite. The “gold standard” for

coverage criteria is all-paths coverage, where the goal is to ensure that every

single possible path through the program is tested. While all-paths is gener-

ally not achievable, the other coverage criteria can be thought of a subsets or

approximations to all-paths.

In addition to the traditional coverage criteria, there is a significant

body of work on data flow coverage criteria [85, 43]. The data flow coverage

criteria expands on coverage to include criteria based on the uses and defini-

tionss [73] in a program. For example, the “all-defs” criteria [85] seeks to cover

every path between a def of a variable and some subsequent use, which can be

further refined by distinguishing between computation uses (such as addition)

and predicate uses (such as the conditional in a branch).

A somewhat different spin on measuring test suite quality can be found

with mutation testing [2]. In mutation testing, mutants are generated by syn-

tactically modifying the program. The quality of a test suite is then measured

by measuring the percentage of the mutants that it can kill by distinguishing

the difference between the original and the mutant; a test suite that can kill

all of the mutants is said to be mutation adequate. While there are questions

about whether automatically generated or hand-seeded mutants are represen-

tative of real-world bugs [4], mutation testing directly measures the ability of

a test suite at bug-finding, in contrast to coverage criteria, which only attempt

to measure the thoroughness of the test suite.
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2.6 Path-Based Test Case Generation

Dynamic testing techniques [62, 46] are a family of techniques that

involve executing (typically symbolically) the program in a restricted fashion to

find the path constraints force execution to reach any given point in execution.

By solving these constraints, the system can generate an input that forces

execution to proceed down a particular path. Although the path constraints

allow the testing system to target specific statements in a program, current

dynamic testing systems have only been applied to coverage [46, 62], where

the goal is to generate one input for every statement or branch in the program,

thus achieving statement or branch coverage.

The closest work to Bullseye is Directed Automated Random Testing

(DART) [44]. DART exhaustively explores the space of possible program be-

haviors (as opposed to program inputs) in a depth-first manner by generating

inputs that cause the program to execute along different paths. A similar

system, EXE [100, 21], explores in a breadth-first manner by forking concrete

and symbolic execution at each branch. These systems can be extended to

support pointer-based data structures as well [87]. All of these explore the

space of program paths essentially blindly. In contrast, Bullseye uses static

analysis to provide guidance to DART so that it preferentially explores paths

that are more likely to contain bugs or are otherwise more “interesting” for

the tester.

It is well-known that directed testing with a depth-first search can

be inefficient. Recent work has focused on alternative search patterns for di-

rected testing. Some simpler search patterns use random sampling and random

restarts [17] to alleviate problems that can occur if the initial input is nowhere

near a bug, but these solutions do not fundamentally alter the depth-first
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search aside from introducing more randomness. The bug-finding effective-

ness of these techniques is not known as they were evaluated with the goal of

achieving branch coverage.

White-box fuzz testing [45] uses a generational search pattern. Starting

from the initial input, paths that differ by changing one branch form the first

generation, paths that differ from the first generation by a branch form the

second generation, and so on. This changes the search pattern to an expanding

“beam” centered around the original input.

Heuristics are often used by existing systems to target common bugs

such as overflows [21]. The test generator can use some hardcoded heuris-

tics that can opportunistically attempt to solve for things like buffer overflows

and integer overflows at every available opportunity. In fact, this technique is

necessary to prevent breadth-first searches from exponentially exploding [21]

by finding these errors early. While useful for finding these specific low-level

errors in systems code, they do not help find higher-level bugs in the applica-

tion logic because these bugs are necessarily program-dependent and domain-

specific. The closest heuristic yet employed to our targeted testing approach is

one evaluated in the Crest system [17], which uses the distance in the control

flow graph to currently uncovered branches to guide the search. However, the

evaluation of Crest only examines the effectiveness of heuristics at improving

branch coverage, not fault identification.

In addition to simple idiom-finders, more flexible heuristics can be used.

The Pex tool [98] uses fitness functions applied to paths to evaluate the on-

going search and uses path-searching techniques to seek paths that maximize

the fitness function. This allows for considerably more flexibility in the search

depending on which heuristic function is used. However, they do not inves-

22



tigate heuristics based on static analysis data, which is the key idea behind

targeted testing and our bullseye system.

2.7 Change Impact Management and Data Flow

Recent advances in change management have focused on the impact

of program changes on test suites. Orso, Shi, and Harrold have developed

a technique for efficiently computing a subset of the regression test suite to

rerun to test a program change [82], avoiding the need to rerun the entire

test suite each time the program changes. Similar change impact analysis

techniques can be used to recompute important metrics such as branch and

statement coverage for the suite after a change without rerunning the entire

test suite [25].

Another thread in recent work on symbolic test case generation focuses

on explicitly solving for differences between program versions. This can be ac-

complished by first constructing a model of the program that captures which

states and outputs are semantically equivalent, symbolically executing both

versions of the program and tracking their state, and finally explicitly solving

a formula that computes an input that forces the two versions into different

final states, thus revealing a program deviation [20]. This technique has been

used successfully to identify differences between different implementations of

common protocols, but requires two complete versions of a program and sig-

nificant user guidance.

Our work is complementary; Bullseye generates new test cases geared to

expose differences between versions, while regression test selection techniques

filter out existing test cases that do not show differences between versions.

Aside from the program deviation work [20] there has been much less work on
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generating new inputs in response to changes versus selecting subsets of old

inputs.
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Chapter 3

Dynamic Data Flow Analysis

In this chapter, we describe an extensible compiler-based system that

simultaneously advances the state of the art in improving both the overhead

and the generality of dynamic taint tracking. The performance of our system is

an order of magnitude better than any previous software taint tracking system

while remaining portable and fully general to typestate problems.

Our system uses a combination of static and dynamic data flow analysis

to enforce user-specified policies. The dynamic analysis tracks tag values that

are used to enforce the policy. The static analysis identifies which statements

in the program are necessary for computing the tag values at potential pol-

icy violations and eliminates tracking and instrumentation from statements

and objects that are provably not involved in policy violations. This com-

bination results in dramatically lower overheads than previous systems while

maintaining generality.

3.1 Solution Overview

In this section, we will provide a high-level overview of our system. Our

system is motivated by two design goals: the need for a more general model

than simple dynamic taint tracking and the need to eliminate redundant and

wasteful tracking to improve performance. After discussing these goals, we
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Traditional Tainted Data Attacks
Format String Attacks
SQL Injection
Command Injection
Cross-Site Scripting
Privilege Escalation
Other Security Problems
File Disclosure Vulnerabilities
Labeled Security Enforcement
Role-Based Access Control
Mandatory Access Control
Accountable Information Flow

Table 3.1: A sampling of the kinds of problems that our system can handle.
Taint tracking can only handle the top set of problems.

will provide a description of the architecture of our system before proceeding

to more technical details.

3.1.1 Goal: Generalizing Taint Tracking

While dynamic taint tracking has been proven to be an effective mech-

anism for handling many basic types of attacks, it cannot handle more sophis-

ticated problems in its basic form. Table 3.1 shows some of the attacks that

taint tracking can handle. It also lists several more complex problems that

taint tracking cannot handle below the line.

The general idea of taint tracking can be easily extended to more com-

plex problems. In essence, taint tracking works by attaching symbolic tags to

the concrete data in the program at runtime. These tags represent states or

values for some property of the data. Actions in the program can tag values

or propagate existing tags and security decisions are made by examining tag

26



values at certain locations. These extensions give the system the power to

handle all of the problems in Table 3.1. Such a more general model is a logical

extension from taint tracking and has been termed General Information Flow

Tracking (GIFT) [63] in prior work.

Our policies use a simple and flexible dynamic model similar to Gen-

eral Information Flow [63]. Our system associates symbolic tags with data

objects at runtime, it updates the tags as the program executes, and it en-

forces policies based on the tag values. Unlike prior systems, our system is

explicitly based on data flow analysis [57], a technique for computing facts

about data by observing how it flows through the program. This design allows

our system to both statically check for and dynamically guard against policy

violations from the same specification. A static data flow analysis computes

an approximate solution that holds over all possible executions of the program

because a fully precise solution is undecidable [57]. In contrast, a dynamic

data flow analysis [54] computes precise facts but only about the current exe-

cution. These complementary characteristics allow our system to use a static

data flow analysis, discussed in Section 3.5, to compute a conservative solu-

tion at compile time and to refine the result at runtime to enforce a policy

efficiently and precisely.

To perform the dynamic data flow analysis that actually enforces the

policy, our compiler inserts into the source program calls to a small runtime

library that manages tag information, as well as any required checks necessary

to enforce the policy. Since nothing in our system is specific to taint tracking,

our system and our optimizations apply to all general information flow tracking

problems.
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3.1.2 Goal: Eliminating Unnecessary Tracking

Performing a general dynamic data flow analysis by inserting calls

naively into the program invariably leads to unacceptably high overheads.

To understand why existing taint tracking systems are inefficient and have

high overheads, consider the code in Figure 3.1. This code contains a for-

mat string vulnerability where a tainted buffer is printed. Assuming a policy

that uses taint analysis to guard against format string attacks, current taint

tracking systems, including those that perform some static analysis, would

track taintedness on all buffers in this example, as well as anything that the

process function touches and anything that those variables affect, leading to

high overheads.

Fortunately, very little tracking is actually required. Our system can

prove that tracking on buf1 is not required because it is never passed to

printf or any other sensitive function. Additionally, if tracking on buf1 is

not required, neither is tracking on otherbuf because buf1 receives its value

only from otherbuf. We also do not need to track anything in the call to

process(buf1) because none of its results is used by printf. Moreover, we

do not need to track the original input buffer because we know that it is

always tainted; it is sufficient to simply mark buf as tainted at the call to

memcpy. Finally, we do not need to track anything else that process(buf)

can affect if none of the resulting values are misused.

The keys to removing unnecessary tracking are an interprocedural static

analysis that leverages semantic information about the security policy, a so-

phisticated interprocedural pointer analysis to perform policy-specific opti-

mizations, and a dependence analysis to reason about the scope of possible

vulnerabilities. Without semantic information about the policy, our system
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char input[1024];

char buf[1024];

char otherbuf[1024];

char buf1[1024];

...

read_from_network(input);

read_from_network(otherbuf);

...

memcpy(buf, input, 1024);

memcpy(buf1, otherbuf, 1024);

process(buf);

process(buf1);

...

printf(buf);

Figure 3.1: A simple example illustrating the benefits of our static analysis.
Current systems must track all objects, while our static analysis can eliminate
tracking on all except buf.

could not distinguish possible violations from safe events. Without a precise

pointer analysis, our system could not account for flows between objects in an

effective manner. Without a dependence analysis that builds on the pointer

analysis and knowledge of the policy, our system could not determine which

objects are involved in possible vulnerabilities. Moreover, all of these analyses

must be interprocedural to eliminate flows among functions. These ideas drive

the implementation of our solution.

3.1.3 Solution Architecture

Figure 3.2 shows the overall architecture of our system. The input

is an untrusted program. The output is an enhanced program that enforces

some specified security policy, which is selected by the end-user at compile
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time. Our implementation is built on the Broadway [49, 47] data flow analysis

engine and the C-Breeze [48] source-to-source translator for C programs.

The policy itself is defined in an annotation file that describes the policy

and the effects of standard library calls on the policy. Thus, the policy is

entirely separate from the data flow tracking mechanism, so in addition to the

existing security policies that we have already defined, new security policies

can be specified without modifying either the compiler or the runtime system.

In Section 3.2, we discuss how we use the Broadway annotation language to

implement two different policies.

At runtime, our policies are enforced with the aid of a simple dynamic

data flow analysis library, discussed in Section 3.3. This library is linked to

the transformed code and provides mechanisms for tracking the propagation

of the flow values specified in the policy at runtime. Calls to the library are

inserted by our system according to a set of transformation rules, discussed in

Section 3.4.

The key innovation of our system is the static analysis that we use

to prevent the system from inserting instrumentation everywhere. The static

analysis uses a lightly modified interprocedural data flow analysis combined

with a client-driven pointer analysis to build data structures that our data

flow slicing algorithm traverses. We discuss the specifics of our static analysis

in Section 3.5.

The remainder of this chapter discusses the components of our system

in more detail.
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Source Code Enhanced Program

Policy Specification

Broadway Compiler

Static Vulnerability Analysis

Dependence Analysis

Our System

Figure 3.2: The overall structure of our system. The compiler takes a source
program and a security policy and produces an enhanced version of the pro-
gram that enforces the policy by performing dynamic data flow analysis.

3.2 Policy Specification

In most taint tracking systems, the semantics of taint analysis are hard-

coded into the system. Because our system is designed to handle general data

flow problems, our system instead factors out the semantics of the analysis

and policy to an external file that contains annotations describing the prop-

erty to analyze, the policy to enforce, and the effects of library procedures on

the property. This file contains the same information that would have been

hardcoded into a compiler-based taint tracking system, but it provides the

capability to extend our system to other problems without changing the core

analysis. Unlike in-lined annotations, our annotations define an analysis that

is independent of the input program, enabling reuse across many programs. A

typical user does not have to write any annotations to use an existing policy.

The creation of new policy files is a careful activity that is only necessary when

defining a new analysis or security policy.

Our system uses the Broadway declarative annotation language [49, 47],

which has been previously used for static error checking [50] and library-level
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optimizations [51]. The annotation file tells the compiler how to perform a

specific data flow analysis by supplying the specifics for the rules in Section 3.4.

The rules fall into three categories:

• Defining the Lattice. The lattice for each typestate property must

be defined. The tags used at runtime correspond to the flow values,

while the lattice itself defines the meet function that specifies how flow

values should be combined when used together in arithmetic and other

operations.

• Describing Effects of Library Calls. The compiler also needs to

know how the various library calls affect tag values. For each external

function that affects the flow values, a brief summary annotation must

be provided that describes how the function can affect the flow values of

globals and arguments.

• Defining Security Policies. Lastly, the compiler needs to be given the

definition of policy violations. Violations are defined as predicates over

flow values that are checked at procedure boundaries, most commonly a

check on the flow value of an argument. By default, violations trigger our

default error handler, which logs the violation and blocks the operation,

but the user can supply a custom error recovery function, which can be

application-specific.

3.2.1 Example: Specifying Taintedness

To illustrate how the Broadway annotation language is used, we will

now show how a well-known taint tracking problem, format string attacks, can

be expressed.
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property Taint : { Tainted, { Untainted } }

initially Untainted

Figure 3.3: Defining taintedness in the Broadway annotation language

The first step is to define taintedness as a property of data. To de-

fine the taint analysis with the Broadway annotation language, we use the

specification in Figure 3.3. This specification defines a lattice (or property)

called Taint with two flow values (or tags), Tainted and Untainted. It also

defines a lattice order that puts Untainted higher than Tainted, so when

tainted and untainted data are combined, the result is tainted. (In other

words, meet(Tainted, Untainted) = Tainted.) The initially clause defines

Untainted to be the default flow value. Note that in the original Broad-

way annotation language, the initial value is optional, but our dynamic data

flow analysis requires that an initial value be specified as we assume that all

freshly-allocated memory and any untracked variables default to this value.

Next, we must also provide summaries for library functions and system

calls that affect taintedness. This defines how taintedness is introduced into

the system. Figure 3.4 shows the specification that declares that data received

from the network (via the recv library call) are always tainted.

Here, the on entry keyword describes function parameters and gives

a name, buffer, to the object pointed to by buf. This is important as it is

not the pointer that is being tainted by recv, but rather the buffer that it

points to. The Broadway annotation language uses the --> arrow notation

to describe pointer relations among arguments, including multiple indirection,

allowing us to precisely specify which object is which in a chain of pointer

relations.
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procedure recv(s, buf, len, flags)

{

on_entry { buf --> buffer }

analyze Taint { buffer <- Tainted }

}

Figure 3.4: Defining sources of taintedness in Broadway

The analyze keyword describes the effect of the function on flow val-

ues. Here, the previously-defined name buffer is used, and we specify that

the object named buffer (which is the object pointed to by buf) becomes

Tainted.

The compiler must also reason about the propagation of tainted data.

For the source program, this flow is inferred automatically from the lattice,

but for library functions for which the compiler does not have source code,

this information can be provided by specifications. For example, the strdup

function copies a string, and with it, whatever taintedness the string had.

Figure 3.5 shows the specification for the strdup library function.

Here, the on exit keyword is the counterpart to on entry, describing

pointer relations at function exit. This example specifies that strdup returns

a pointer to string copy and that string copy should have whatever taint-

edness that string has.

Finally, to track the unsafe use of tainted data, we specify that certain

functions such as printf should not accept tainted strings as their format

strings, preventing format string attacks [30]. The specification for printf is

shown in Figure 3.6. Here, the error keyword signals to the compiler that

special action is required when the condition is met, invoking the default error

handler if none is supplied.
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procedure strdup(s)

{

on_entry { s --> string }

on_exit { return --> string_copy }

analyze Taint { string_copy <- string }

}

Figure 3.5: Defining taint propagation via library calls in Broadway

procedure printf(format, args)

{

on_entry { format --> format_string }

error if (Taint: format_string could-be Tainted)

"Error: tainted format string!"

}

Figure 3.6: Defining format string vulnerabilities in Broadway

3.2.2 Example: Specifying File Disclosure

Dynamic data flow analysis is not limited to taint-like problems. To

illustrate the flexibility of our system, we also apply it to file disclosure vul-

nerabilities. File disclosure can occur when a remote user can connect and

download the contents of arbitrary files, thus improperly revealing sensitive

information. This vulnerability can be present when a program behaves unin-

tentionally like an FTP server; that is, if the remote user can specify the name

of a file whose contents are then sent over the network. Note that sending

data from files not directly specified by the user is fine, as is sending responses

constructed from user input. In essence, file disclosure is a simple privacy

protection problem where the goal is to ensure that untrusted users cannot

directly specify data to access. These attacks are not well-studied on C pro-

grams because overwrite attacks account for the majority of C vulnerabilities.
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However, these vulnerabilities are common among web applications written

in scripting languages such as PHP, Python, and Perl. Thus, our techniques

remain relevant and applicable to safe languages.

File disclosure cannot be modeled with only taint tracking because taint

tracking does not distinguish between the source of data and the trustedness

of data. A taint tracking system could disallow the transmission of tainted

data, but such a policy would also prevent legitimate echoes of network input.

The taint tracker could also disallow transmission of any file data, but such a

policy also eliminates legitimate transfers and would even prevent most query

services from operating. To model file disclosure accurately, the system must

track both the trustedness (whether the data is under attacker control) and

the origin (whether the data comes from a file) of data within the system.

We will now show how file disclosure attacks can be prevented with

a security policy in our system. To define file disclosure attacks with the

Broadway annotation language, we must define both trust and origin of data,

as shown in Figure 3.7. The trustedness of data is defined in a manner similar

to taintedness and allows us to distinguish between trust levels corresponding

to the program itself, local inputs, and remote inputs. The origin of data is

determined by the kind of data source.

For the file disclosure problem, only File is relevant, but this definition

allows reuse for other policies that wish to distinguish between other sources.

The initial value of Program indicates that the data comes from within the

program and not any external source.

In both cases, the lattice is flat, with elements merging to an implicit

bottom element in the lattice.
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property Trust : { Remote, External, Internal }

initially Internal

property Kind : { File, FileSystem, Client, Server,

Pipe, Command, StandardIO, Environment,

SystemInfo, NameServer, Program }

initially Program

Figure 3.7: Defining the lattice for file disclosure vulnerabilities

The trustedness of a socket depends on whether it is a local Unix socket

or an actual remote network socket. In this case, our system uses the actual

concrete type of the socket as it is not always possible to know the precise type

of a socket until runtime. To allow for this, the body of an analyze statement

allows for simple conditions, as shown in Figure 3.8.

In many cases, it is possible to evaluate these conditions at compile

time, as most calls to socket will use one of the constants like AF UNIX. If it is

not possible to determine this value at compile time, the value is determined

dynamically at run time, with the appropriate additional code added by our

system.

Functions that deal with I/O must mark their Kind and Trust appropri-

ately. In Figure 3.9, when a file is opened with fopen, the file handle has Kind

File and the Trust of the filename used to open it. Similarly, data read from

files has the Kind and Trust of the file handle. The corresponding specifica-

tions are analogous to taint tracking, but with two distinct properties instead

of one.

Finally, we define what a violation of the policy is in Figure 3.10. A file

disclosure attack can occur when File data from a file with Remote trustedness
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procedure socket(domain, type, protocol)

{

analyze Kind { IOHandle <- Server }

analyze Trust {

if (domain == AF_UNIX)

IOHandle <- External

default

IOHandle <- Remote

}

on_exit { return --> new IOHandle

return --> null

}

}

Figure 3.8: Trust and Kind assignments for socket open calls. Broadway allows
flow values to be assigned from the concrete values of function parameters.

procedure fopen(path, mode)

{

on_entry { path --> path_string

mode --> mode_string }

access { path_string, mode_string }

modify { Disk }

on_exit { return --> new file_structure --> new IOHandle

return --> null

}

analyze Kind { IOHandle <- File }

analyze Trust { IOHandle <- path_string }

}

Figure 3.9: Trust and Kind assignments for fopen calls
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procedure write(fd, buf_ptr, size)

{

on_entry {

fd --> IOHandle

buf_ptr --> buffer

}

access { buffer }

modify { IOHandle, Disk }

error if (Trust : buffer could-be Remote && \

Kind : buffer could-be File && \

Trust : IOHandle could-be Remote && \

Kind : IOHandle could-be Server

"ERROR file access violation detected"

}

Figure 3.10: Policy for preventing file disclosure vulnerabilities. Both the
Trust and Kind of outbound data are checked before information is written to
a network socket

is sent to a server socket with Remote trust (indicating that it was initiated

by a remote user).

This policy can now be used to guard against file disclosure attacks.

It is easily extendable to cover other forms of information disclosure. For

example, the system can be prevented from transmitting information about

the filesystem (such as the presence or absence of certain files) in addition to

the file data itself by adding a few lines to the policy file.

3.2.3 Other Problems

Although we focus on the above two problems in this thesis, our system

can be used to enforce a wide variety of problems. Lattices are a natural model
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for many security problems [10, 35, 16]. For example, multilevel security can

be implemented with a lattice representing hierarchical levels, such as Unclas-

sified, Classified, or TopSecret, along with properties representing categories,

such as Army, Navy, etc. Library I/O functions would be annotated to call

a user-provided helper function to read the appropriate label from the file,

while the annotations for operations like string copy would remain essentially

identical to those for taint tracking or file disclosure. For additional infor-

mation on the Broadway language and its capabilities, please refer to prior

work [49, 50, 47].

3.3 Dynamic Data Flow Analysis Runtime Library

At runtime, the security policy is enforced by means of additional

compiler-inserted code in the program. This instrumented program makes

use of dynamic typestate information to enforce the policy. To accomplish

this, the system relies on a small library that provides facilities for tracking

the flow values associated with bytes of memory at runtime.

At a high level, the library provides two basic functions. First, the

program can request that a region of memory be tagged with a certain flow

value. Second, the program can query the flow value associated with some

byte of memory. All higher level operations, including any actual enforcement

checks, are performed by the code inserted into the program.

At the implementation level, our runtime system is quite different from

most existing taint tracking systems. Rather than maintaining a “giant array”

to track flow values, we adopt a sparse representation. We will now discuss

the particulars of our implementation.
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3.3.1 Flow Values

Many existing taint tracking systems are designed specifically around

taint and similar properties that only require one bit of information. These

systems cannot be easily extended to handle more complex properties without

serious invasive modifications and potentially serious memory consumption

issues. In contrast, our system is designed to be fully general to typestate

properties and does not place any restrictions on the size or number of flow

values.

The flow values defined in the security policy are normally represented

by simple integer values. The actual integer type is set at compile time. By

default, the runtime uses 32-bit integers; however, it can be compiled to use in-

tegers of different sizes and even chars to save memory. The only requirement

is that the flow value type be sufficient to represent all possible flow values

for the property; if the property contains more than 255 flow values, chars

cannot be used. The value -1 (for signed integers) or MAXINT (for unsigned

integers) is reserved by the system can cannot be used to represent a value.

The runtime treats flow values as opaque numbers. Any operations that

depend on the meanings of the flow values, such as meet operations or policy

checks, are handled at a higher level by the inserted code, not the runtime

library itself.

The concrete integer values for the flow values are assigned on a per-

lattice basis, starting from 1. If multiple lattices are used by the analysis,

elements from different lattices may have the same integer value. This is not

a problem because the lattices themselves are kept in separate trees, so there

can never be a value collision across lattices.
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3.3.2 Memory Representation

Most software taint tracking systems employ large bit vectors to track

taint information about memory regions. For example, one system [99] simply

uses a 1gb address range that is otherwise unused in 32-bit Linux and uses

simple arithmetic to convert from real addresses to locations in the bit vector.

However, these methods, while simple, are extremely wasteful of memory, es-

pecially when the actual taint information is sparse. Moreover, reserving large

amounts of memory is detrimental to performance; the previously-mentioned

example [99] depends on an OS-specific memory convention to avoid the per-

formance penalty of malloc’ing 1GB of memory at program start. Without

this trick, the performance of their system is “unacceptable” [99].

For our dynamic data flow analysis runtime, we have developed a sparse

representation for tracking tag information, loosely inspired by the tree-like

structures previously used by Chilimbi for memory leak profiling [53]. Our

tree is structured as follows:

• The root node of the tree represents the entire range of the address space

(4GB in a 32-bit system). Every interior node in the tree has the same

number of children, from 16 to 128 in powers of two. The default is a

16-ary tree. The interior nodes represent the corresponding fractions of

the parent’s address space. For example, if we are using a 16-ary tree,

each child of the root node represents 1/16th of the entire address space

(256mb in a 32-bit system).

• The leaf nodes represent fixed-size power-of-two address ranges, defined

at compile time. They contain a pointer to a conventional bit vector that
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stores typestate information. For example, a leaf node representing a 16-

byte range will contain a pointer to a bit vector containing 16 flow value

entries. The size represented by the leaf nodes must consume whatever

remains of the address space that is not represented by the interior nodes.

For a 32-bit system, a 16-ary tree has 7 levels, with the last 4 of the 32

bits represented by a leaf node with 16 bit vector entries.

• Each interior node contains a slot for a stored flow value. If all memory

addresses represented by the node have the same flow value, it is stored

here and no children are created. Thus, large address ranges with the

same flow value are stored high in the tree rather than duplicated across

the leaf nodes.

• The tree is sparse; interior nodes are created on demand as needed. Most

pointers to child nodes will actually be null because of this.

• The root node stores the default flow value. Queries to addresses not

explicitly represented in the sparse tree are presumed to be in virgin

territory and thus must contain the default flow value.

Because our model explicitly assumes a default flow value, tree nodes

for a memory region do not need to be created unless a non-default flow value

is stored. When this occurs, the runtime creates the minimum number of

nodes necessary to capture the information, invalidating flow values stored in

interior nodes as necessary. For example, marking a 16KB page-aligned region

might not require the creation of any leaf nodes, as the information can be

stored in interior nodes, while marking a 1-byte region requires creating all

nodes along the path to the corresponding leaf node, plus the bit vector for

the leaf node marked up appropriately.
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Each property used by the dynamic data flow analysis has its own

separate tree. Thus, if there are two properties in play, there are two separate

trees, one for each property. This engineering choice keeps the implementation

simple and fast for the one-property case. However, for analysis problems

with multiple properties that share common addresses, it results in duplicated

bookkeeping information in the interior nodes. Although we have not found

it to be necessary, multiple properties can be manually combined by the user

into a single property, at the expense of having a more complex meet function.

3.3.3 Compiler API

The dynamic data flow runtime provides a simple API that allows in-

strumented programs to update and query flow values associated with memory

ranges. All functions take a property argument to identify the property (lat-

tice) that the call will be operating on; the remainder of the arguments are

specific to the function. The functions are shown in Table 3.2.

Note that the runtime does not have any concept of the user-defined

lattice, the meet function, or any other such niceties. These facilities are im-

plemented with multiple calls to the runtime. For example, a meet typically

results in two or more lookup queries, followed by the actual meet, followed

by an insert call. This additional complexity is not a serious issue in practice.

Unlike static data flow analysis, where lattice operations are used constantly

to combine and merge information from multiple paths or contexts, a dynamic

data flow analysis does not need to merge information. Therefore, the over-

whelming majority of meets in a static data flow analysis become simple copy

operations in a dynamic data flow analysis. It is only when the lattice is used to

represent hierarchical information that a dynamic meet is necessary, and this
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Function Description
insert(prop, base, size, val) Marks the address range start-

ing at base of size bytes with
the flow value val

lookup(prop, addr) Returns the flow value associ-
ated with the byte at address
addr.

copy flowval(prop, base, src, sz) Copies the flow values starting
at address src for sz bytes to
the corresponding region start-
ing at base.

check flowval(prop, addr, val) Checks if the flow value at addr
is val.

error handler(msg) Raises an error with message
msg.

Table 3.2: Dynamic data flow analysis API calls. All functions take a property
prop as the first argument and are prefixed by ddfa.

is handled by compiling down lattice operations during code transformation.

The ddfa error handler function calls the error handler with a mes-

sage and indicates that a policy violation has occurred. We supply a default

implementation that logs the violation and blocks the call; however, users can

supply their own remediation call instead via the Broadway language’s code

replacement mechanism if different error handling is desired.

In addition, the API provides several convenience functions for han-

dling C-style null-terminated strings, shown in Table 3.3. These convenience

functions are thin wrappers around calls to the normal functions with a little

extra code to derive size information from C strings. These string functions

are meant to accompany calls to the C string functions that do not take length

arguments; the functions that do take length/size arguments use the normal
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Function Description
insert stringz(prop, str,

val)

Marks the address range of the null-
terminated string starting at ad-
dress str with flow value val

copy stringz(prop, str, src) Copies flow values from source
string src to destination string str.

Table 3.3: String-specific functions in the dynamic data flow runtime. These
functions handle C-style null-terminated strings for which the length cannot
be known statically.

API functions. For example, a strcpy’s actions on flow values can be updated

by ddfa copy stringz. Note that these functions do preserve information

even when the original C code overflows buffers. For example, when strcpy

copies a large string into a string too small to contain it, ddfa copy stringz

will ensure that the flow values of addresses past the end of the smaller string

are correctly clobbered with the flow values of the larger string. This is essen-

tial for detecting C string bounds errors; otherwise, values that overrun buffers

would be magically sanitized, which is highly undesirable.

One particularly common operation is translated down into a loop con-

taining API calls. This operation is querying whether any element in a buffer

contains a certain flow value. This must be translated as a loop that steps

through the buffer byte by byte until it has found a byte that has the value or

until it reaches the end of the buffer. The versions for fixed-size buffers and C

strings differ only in their termination condition.

Finally, a few additional functions are present for initialization and

memory performance statistics. The initialization call is a one-time call in-

serted at the beginning of the program, while the statistics calls return basic

information on memory usage.
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3.4 Code Instrumentation

To use the map to track flow values at runtime, the compiler instru-

ments the original program with calls to functions that manage the map. This

process is straightforward.

3.4.1 Elementary Transformations

Like most compilers, our system first transforms C to a simpler inter-

mediate representation before performing analysis and transformations. At

this level, the compiler only needs to consider assignments, basic operators,

pointer dereferences, and function calls. Our transformation for inserting code

is as follows:

• Constants are given the default flow value.

• Assignments transfer the flow value of the source to the target.

• Operators (such as arithmetic operators and array accesses) have the

flow value of the meet of the operands. The meet operator in data flow

analysis combines flow values based on their position in the lattice [57].

• Any address or pointer dereference that is used or assigned to acts on

the corresponding entry in the map.

• In keeping with C’s call-by-value semantics, function calls transfer flow

values to the arguments in the function body, and function calls return

any flow values through the return value.

Several examples of applications of these rules are shown in Table 3.4.

In these cases, the instrumentation added is typically inserted after the original
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Original Code Instrumented Added
x = constant; ddfa insert(prop, &x, sizeof(x), default);

x = y; ddfa copy flowval(prop, &x, &y, sizeof(y));

x = a + b; tmp1 = ddfa lookup(prop, &a);

tmp2 = ddfa lookup(prop, &b);

ddfa insert(prop, &x, sizeof(x),

meet(prop, tmp1, tmp2));

foo(arg); ddfa copy flowval(prop, stackptr+off, &arg,

sizeof(arg));

return b; ddfa copy flowval(prop, ret addr, &b, sizeof(b));

Table 3.4: Example code transformation patterns for dynamic data flow anal-
ysis

line of code in question, except in the case of security checks, which must be

inserted before.

Note that function call and return necessarily involve compiler-specific

information. Because C functions are call-by-value and values are copied, the

runtime must mark the addresses on the stack corresponding to the arguments

with the appropriate flow values. That way, when the flow values of function

arguments on the stack are queried inside the callee, the correct flow values will

be associated with those addresses. These particulars may vary by compiler,

architecture, and calling convention. However, in practice, this is almost never

necessary after static analysis as virtually all policy annotations operate on the

flow values of pointed-to objects rather than pointers themselves, so passing

the flow values of the pointers or scalars is rarely needed.

These rules are analogous to the standard rules for applying data flow

analysis [57] and remain the same for the wide variety of security problems

that lattices naturally model [35]. When applied to taintedness, these rules are
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the same code insertion rules used by other compiler-based systems [99, 63].

However, our additional analysis and optimizations often allow us to remove

considerable amounts of instrumentation. These rules track explicit flows,

which are information flows that occur because of assignments or arithmetic

operations. Like taint tracking systems, our system does not track implicit

flows [92, 33, 80, 99, 84, 63]. Tracking implicit flows can lead to extremely

high false positive rates, sometimes over 90% [60], rendering it impractical for

deployed systems.

3.4.2 Policy-Specific Transformations

The basic transformations are sufficient for most operations on source

code that simply move data around. However, most programs utilize library

functions to manipulate data and any policy of interest will have policy checks

on certain function calls. These actions and checks must also be added by

code transformation.

Policy checks are perhaps the simplest to implement. The error if

annotation contains a condition that is directly translated to the equivalent C

code. References to named variables are directly translated to the appropriate

lookup calls. For example, consider the printf function and its corresponding

annotation for format string attacks shown in Figure 3.6. The corresponding

code added to a printf call is shown in Figure 3.11

Because the Broadway annotation language does not provide a facility

for denoting the size of null-terminated nature of arrays, our system uses a fixed

set of rules to cover the Standard C Library. Since printf is known to take

null-terminated format strings, a loop is inserted that checks every character

in format that printf itself would read. The could-be check is translated to
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char * tmp_fmt = format;

error_caught = 0;

while(*tmp_fmt) {

if(ddfa_check_flowval(_PROP_TAINT, tmp_fmt, _TAINT_TAINTED)) {

error_caught = 1;

break;

}

tmp_fmt++;

}

if(! error_caught)

printf(format);

else

ddfa_error_handler("Error: tainted format string!");

Figure 3.11: Code added to guard against format string attacks.

use the ddfa check flowval call in the obvious manner. Finally, if an error is

caught, an error handler is called; otherwise, the original printf call proceeds.

For functions that use fixed-size buffers instead of C strings, the loop bound

is the size of the buffer, but the remainder of the code is the same.

Our default error-handler logs the error and associated information for

further analysis. If desired by the end user, this error handler can be replaced

with remediation code by using the Broadway annotation language’s code

substitution annotation, allowing the user to substitute arbitrary C code at

the callsite where a possible policy violation is found. The generated code

remains the same except that the call to ddfa error handler is replaced by

a block containing the user-supplied code.

Annotations for functions that manipulate flow values but contain no

security checks are done similarly. In many of these cases, the string-handling

convenience functions provided by the runtime library greatly simplify the code
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dest = strdup(s);

ddfa_copy_stringz(_PROP_TAINT, dest, s);

Figure 3.12: Code added for strdup and similar string/buffer propagation
operations

Broadway operator Dynamic comparison
a is-exactly b a==b
a is-atleast b meet(a, b)==b
a is-atmost b meet(a, b)==a
a could-be b a==b

Table 3.5: Translation of Broadway lattice comparison operations to dynamic
flow value comparisons

that must be inserted. For example, consider the annotation for strdup for

format string attacks in Figure 3.5. The translation into code is quite simple

and is shown in Figure 3.12.

Finally, we must note that the comparison operators for flow values are

interpreted in a slightly different way in a dynamic setting than in a static

setting. Table 3.5 illustrates how lattice element (flow value) comparisons are

rendered in the instrumented code. In most cases, the translation is completely

straightforward. Equality comparisons are translated to ddfa lookup calls or

their loop-based equivalents for buffers and strings. When the meet operator is

required, we perform the meet operation by a simple series of if-else branches

that test every combination of flow values in the lattice and store the result in

a temporary.

Finally, Broadway includes a could-be operator that queries whether

an object could have a certain flow value in cases where the flow value may
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not be definitively known or otherwise obscured by static approximations due

to control flow merges. Since there are no approximations to flow values at

runtime due to control flow merges, this annotation is equivalent to an equality

test and is translated as such. In other words, the could-be operator was

created to (statically) reason about possible ambiguity. However, because

there is no ambiguity at runtime, it can be treated as a simple test.

3.5 Static Analysis

To avoid the cost of tracking all objects at runtime, our compiler stat-

ically performs an interprocedural data flow analysis that identifies program

locations where policy violations might occur. Starting from these possible

violations, a subsequent interprocedural analysis identifies statements in the

program that affect the flow values—and therefore the policy decision—at

these violations. Other statements do not require instrumentation because

they cannot affect the relevant flow values and thus cannot affect policy en-

forcement decisions. This analysis is supported by a fast and precise pointer

analysis, which is critical because a less precise pointer analysis would identify

many more program locations as possibly violating the specified policy [50],

leading to higher runtime overhead.

At a high level, the static analysis phase consists of two main steps.

First, a static vulnerability analysis is performed, identifying possible viola-

tions of the security policy. This first phase uses the client-driven pointer

analysis and error checker [50]. Second, the statements that can affect dy-

namic checks at these possible vulnerabilities are identified by a process we

term data flow slicing.

We will now discuss these steps in detail in the following subsections.
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3.5.1 Static Vulnerability Analysis

The first step is to statically check the program to identify all possible

violations of the security policy as defined by the annotations [50]. If the

compiler can prove that there are no such violations in the program, no further

analysis or code insertion is required. However, in cases where the compiler

identifies possible violations, additional analysis is needed to determine where

instrumentation should be inserted.

To perform this first step, our system uses the Broadway static analysis

system [47] to perform an iterative data flow analysis. At a high level, the

following steps are performed:

• The policy specification file is read and the appropriate representations

of the abstract properties and the analysis are instantiated within Broad-

way.

• The source code is read and lowered into a dismantled form.

• An initial flow- and context-insensitive pointer analysis is performed.

• The data flow analysis is performed to find possible violations.

• Based on the results of the data flow analysis, objects and contexts where

loss of precision due to the pointer analysis may have affected results are

selected for a higher-precision analysis. The pointer analysis is rerun

with these objects and contexts analyzed flow- and context-sensitively.

• The data flow analysis is run again, producing a final list of possible

violations.
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Note that both the data flow analysis and pointer analysis are per-

formed twice. This is a consequence of using the client-driven pointer analysis

algorithm [50]. Although seemingly redundant, what the extra analysis phases

give us is an analysis with a customized pointer precision policy, giving the

static analysis the same effective precision as a very precise analysis but at

only a fraction of the cost.

Our implementation utilizes Broadway’s existing pointer analysis and

data flow analysis framework largely as-is, with a few modifications that we

will now discuss.

3.5.1.1 Iterative Data Flow Analysis

Broadway performs a standard iterative data flow analysis. The specific

implementation details are discussed in prior work [47]. Our dynamic data flow

analysis system does not modify Broadway’s existing data flow analysis system

except in the following two respects.

The first change allows us to perform a trace whenever a possible vul-

nerability is found. By default, Broadway only reports errors and performs

no special actions. To hook into Broadway, we add a mechanism that al-

lows the error checker to call a tracing function whenever a candidate error

is encountered. This is implemented by adding an additional field pointing

to an instance of the Diagnostic class to Broadway’s enumerated properties

(enumProperty). When the property analyzer finds a possible policy violation,

it calls a trace function belonging to the Diagnostic instance associated with

the property. This provides a convenient entry point for our data flow slic-

ing algorithm as it is guaranteed to be invoked immediately on discovery of a

possible policy violation.
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The second change allows us to perform traces in terms of the defini-

tions and uses of flow values rather than concrete values. By default, the avail-

able use-def information in Broadway is defined in terms of concrete variables,

not flow values. However, our tracing algorithm, described in Section 3.5.2,

is defined in terms of flow values. We modify Broadway’s property analyzer

to build use-def chains in terms of flow values. This is implemented by in-

strumenting the data flow analysis transfer functions. For example, when the

transfer function evaluates the statement a = b, it assigns the flow value of b

to a, merging values as necessary. Our extension also notes that there is a use

of b’s flow value at this location and that it flows into a. This information is

collected in a pair of complementary structures, uses2defs and defs2uses.

Most importantly, these relations describe the flow of flow values, not concrete

values. Thus, our trace bypasses cases where the concrete values change but

the flow value does not, such as when a variable is incremented.

These extensions cause the data flow analysis to build use-def and def-

use chains in terms of the data flow analysis, in addition to all other structures

that it previously built. This collected information is used by the data flow

slicing algorithm that is invoked on error detection.

3.5.1.2 Pointer Analysis

A significant obstacle to interprocedural program analysis is the use of

pointers. To reason precisely about the flow of data, the compiler must know

which objects a pointer could point to. The limited scalability of pointer

analysis has stymied previous attempts to apply interprocedural analysis to

dynamic taint tracking [63], so interprocedural analysis is not commonly used.

Our system uses a scalable and precise client-driven pointer analysis [50,
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47]. The client-driven analysis is able to match the precision of a fully flow- and

context-sensitive pointer analysis without requiring significantly more analysis

time than a fast and imprecise flow- and context-insensitive analysis. Unlike

most pointer analyses, the client-driven analysis cannot be used as a stand-

alone pointer analysis. Instead, it requires a client that uses the results of the

analysis, which in our system is the static data flow analysis that identifies

possible policy violations.

At a high level, the client-driven pointer analysis operates as follows:

• A fast but imprecise (flow- and context-insensitive) pointer analysis is

performed. Merge points where precision is lost are noted in a depen-

dence graph.

• The client data flow analysis is performed. In our case, the analysis is the

typestate analysis that determines if there are possible policy violations.

• The objects and statements involved in a possible violation are compared

with the precision-monitoring dependence graph. This allows the com-

piler to determine which precision-losing actions may have affected the

results of the data flow analysis. The variables whose flow-insensitivity

and procedures whose context-insensitivity may have affected the data

flow analysis are marked for increased precision.

• The pointer analysis is restarted with these marked objects and con-

texts analyzed flow- and context-sensitively, while the remainder of the

variables and contexts are analyzed at the original precision.

• The data flow analysis is performed again using the results of the new

mixed-precision pointer analysis.
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By identifying locations where imprecision in the pointer analysis af-

fects the precision of the client’s results, the client-driven analysis is able to

selectively increase precision for the pointer analysis in places where it will

improve the results of the client analysis. Because the amount of extra preci-

sion is typically small [50], the client-driven analysis is able to avoid analyzing

pointer relations that do not affect the client, dramatically improving scala-

bility without sacrificing precision with respect to the client.

Our system is able to leverage a client-driven pointer analysis because

our security policies are expressed in terms of a simple typestate data flow

analysis. Similar extensible dynamic data flow analysis systems like GIFT [63]

that define their policies procedurally lack a suitable data flow analysis client

and therefore cannot use a client-driven analysis.

Finally, we note that the client-driven approach does not impact the

soundness of the pointer analysis. Precise pointer analysis is an undecidable

problem, so almost all pointer analyses, including Broadway’s, compute a con-

servative over-approximation of the actual result. In particular, our pointer

analysis is sound under the assumption that displacements between objects

are undefined, a necessary assumption common to C pointer analyses [8].

3.5.2 Data Flow Slicing

The previous static vulnerability analysis identifies possible vulnerabil-

ities by location and memory object. Our system must ensure that all the

dynamic checks that are required to prevent possible vulnerabilities are per-

formed correctly. We refer to the process of computing the statements that

require instrumentation as data flow slicing, by analogy with program slic-

ing [97].
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The goal of data flow slicing is to determine the backwards slice of the

program that can affect the data flow analysis at the point where slicing begins.

Many concrete statements that would be included in a normal program slice

can be excluded in a data flow slice. For example, incrementing a variable

changes its concrete value but not its flow value. Thus, it must be included

in a normal program slice, while it does not need to be included in a data

flow slice as no flow values have changed. Similarly, conditionals are required

in a normal program slice but not in a data flow slice because elementary

conditions in the original program neither use nor affect any flow values even

though subsequent statements on either arm of the conditional may contain

statements that do affect flow values.

3.5.2.1 Data Flow Slicing: Definition

Abstractly, a data flow slice can be thought of as a program slice on

an abstracted version of the program that includes only data flow operations.

Such an abstracted program does not include assignments that do not affect

flow values or any branch conditionals, while preserving the same control flow

graph. A backwards slice through this “program,” therefore, includes state-

ments that update any flow values that may subsequently be used by the

slicing start point, but not any control flow such as conditionals, which only

use concrete values instead of flow values, nor any statements that affect flow

values that do not contribute to the flow values relevant at the slicing start

point.

More formally, we define a data flow slice with respect to some object

o at some program location l to be the set S of statements and locations that

affect a set O of objects, computed by a transitive closure as follows:
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• l is in S and o is in O.

• If statement s′ defines the flow value of some v ∈ O, then s′ is in S.

• If statement s ∈ S uses the flow value of some o′, then o′ is in O.

It is simple to see that the data flow slice S, by construction, captures

any update to a flow value that could possibly affect the flow value of o at l. A

statement can affect flow values only by defining them. If statement s affects

the flow value of object o at location l, it is by definition in the data flow slice,

and statements that affect o at l through intermediate assignments are also

included because the data flow slice is a transitive closure. Our policies define

security checks in terms of predicates on flow values at specific statements.

Thus, the set of statements that can affect the typestate information used in

the security check at a possible violation must be contained within the data

flow slice.

This definition of data flow slices is similar to thin slices [89] except

that producer statements, seeds, and direct uses are all defined in terms of

flow values in the data flow analysis rather than concrete variables. The data

flow slice can be thought of as a thin slice on an abstract program consisting

only of operations on flow values.

3.5.2.2 Computing the Data Flow Slice

Our implementation leverages information computed during the static

data flow analysis phase. Recall from Section 3.5.1.1 that whenever a data

flow transfer function is executed, our system notes the flow of flow values

from the right hand side to the left hand side. This information is used to aid

our traversal.
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When a possible policy violation is detected by Broadway, our tracing

function is invoked. The tracing function begins computing the transitive

closure of the data flow slice as follows:

• The error checker invokes trace with the location l involved in the pos-

sible violation and an initial set of objects O that the predicate at l

uses.

• For each o ∈ O, our system find the corresponding use u of o’s flow value.

• Next, our system looks up the corresponding def d that defines the flow

value used by u by using the uses2defs map constructed during data

flow analysis. The statement s where d is located is added to S.

• From d, which is the left-hand side of an assignment (either a true as-

signment or a φ-function in SSA form), we look up the corresponding

right-hand side uses {u0..un
} These are the uses of the flow values used

in computing the flow value that d defines for s.

• For each of these uses, the process of looking up the corresponding def

is repeated.

This is simply a standard traversal of the use-def chains constructed

during static data flow analysis. The only difference is that the uses and defs

are in terms of flow values, not concrete values.

3.5.2.3 Slice Truncation

Our data flow slicing implementation incorporates a small optimization

that truncates slices when values are definitely known. Consider the example
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code in Figure 3.1. Starting from the possible vulnerability at the call to

printf, we find the call to memcpy that copies input to buf as well as the

call to read from network that taints input. Ordinarily, the runtime will

mark input as tainted when read from network is called and will then copy

input’s taintedness into buf at the call to memcpy. However, we can statically

prove that at the call to memcpy, input is always tainted. There is no need

to actually look up input’s taintedness during the memcpy as it is invariant.

Therefore, there is no need to track the taintedness of input as it is never

needed, and so we can eliminate any instrumentation on read from network.

We may simply mark buf as tainted at the call to memcpy and still produce

exactly the same behavior at printf as a fully-instrumented program.

We implement slice truncation by examining the cardinality of the pos-

sible flow values set for each object in question. Broadway, in addition to

computing the flow value for a variable, also maintains a set of all possible flow

values that variable could be at that point. For example, consider a lattice re-

sembling the taxonomic hierarchy of animals, with the obvious meet function.

Here, Vertebrates and Invertebrates would both be Animals. Mammals and

Reptiles would both be Vertebrates, Cats and Dogs would both be Mammals,

and so on. If Broadway must merge information about Cats and Dogs, their

meet (and therefore the flow value) would be Mammal, but Broadway also

notes that the possible values are Cats and Dogs, and not Koalas or Bears.

Because Broadway maintains this extra information during data flow

analysis, we may easily determine if Broadway is absolutely certain of a flow

value. If the size of the could-be set is one, then under all possible executions,

the flow value computed must be the actual flow value. In other words, the dy-

namic flow value at that particular location is invariant. Because Broadway’s
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data flow analysis is sound and conservative, we may safely truncate the trace

at this point and simply insert a call that sets the flow value to the computed

constant.

This optimization has an interesting side effect: At times, the tags of

some addresses will not be up-to-date. For example, a buffer could be tainted,

sanitized, tainted again, and then used. If the buffer is always tainted again,

slice truncation would not include the original tainting and untainting. If the

program were to query the taintedness of the buffer during the early stage, the

runtime system may very well report that the buffer is in the default untainted

state when it is in fact tainted. Although this behavior is curious, it cannot

affect the result of any security checks as the static data flow analysis has

already proven that there is no possible vulnerability involved during the initial

taint/untaint phase. By the time execution reaches the possible violation,

however, the taintedness of the buffer will have been updated to the correct

tainted value, and the check will function correctly. Thus, our system is as

secure as a system with full tracking, but avoids the performance penalty of

keeping all tags up to date at all times.

3.6 Security Discussion

We now examine the security-related assumptions and advantages of

our system.

3.6.1 Trusted Computing Base

As with other software taint tracking solutions, our system increases the

size of the TCB, in our case adding the compiler to the TCB. Although there

are security implications [93] to trusting the compiler, the additional trust
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required by our approach is mitigated by two factors. First, in typical modern

environments, the compiler (usually gcc or some other widely used compiler)

is already trusted to compile server programs. Second, our source-to-source

translator relies on the user’s already trusted compiler for generating binary

code. The changes and modifications that our system makes to programs are

thus transparent and human-readable, making it difficult to insert undetected

malicious code. Thus, our system requires minimal additional trust beyond

that which is already present in most deployed systems.

Like any system based on user-defined policies, the policies themselves

are also a part of the trusted computing base. If the annotations that summa-

rize the effects of external functions are incorrect or incomplete, the system

may miss important data flow. Such an error is analogous to a bug or omission

in a hardcoded taint tracking system. Fortunately, frequently-used external

code resides in libraries like the C Standard Library that are relatively robust

and whose semantics are well-understood, and we have found that providing

accurate annotations for these functions is straightforward.

3.6.2 Attacks Detected

Our system is capable of detecting attacks that depend on the prop-

agation of data through the system. More specifically, we can enforce any

typestate policy, which includes traditional taint-based attacks as well as gen-

eral information flow tracking [63]. These attacks include those that do not

overwrite control data or violate data flow integrity and thus are problems

even in safe languages.

In our evaluation, we enforce a taint-based policy that prevents for-

mat string attacks, similar to the format string policies used by existing taint
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tracking systems, such as TaintCheck [80], as well as interpreters with taint

tracking modes [95, 81]. In addition, our system can enforce a policy that

prevents attacker-controlled data leaks such as file disclosure vulnerabilities;

this policy cannot be enforced precisely by an ordinary taint tracking system.

Our system only guarantees that violations of the specified policy do not

occur. This situation is shared by all enforcement mechanisms—for example,

a memory-safe database server can still be compromised by an SQL injection

attack because such attacks do not violate memory safety. The soundness

of our analysis prevents any attacks that violate the policy. However, if it

is possible for the attacker to gain control through an attack that does not

violate the policy, it may be possible to compromise the application.

3.6.3 Alternate Attack Channels

Like other taint tracking systems, we do not concern ourselves with

implicit flows. Implicit flows occur when control flow influences the possi-

ble values of data. For example, information may be implicitly passed along

branches of the form if(x==0) y=1; else y=0; which allows the user to in-

fluence the value of y by modifying the value of x. Taint tracking systems

usually do not consider y tainted even if x is tainted. Although such cases

result in implicit information flows that are theoretically exploitable, the ma-

jority of attacks depend on direct flow of data [33, 24], which our system does

guard against.

Our system also does not defend against attacks that are not based

on information flows in program code. For example, distributed denial of

service attacks can harm systems without creating any individually anomalous

information flows. Information can also be leaked via covert timing channels,

64



which we also do not detect, although our requirement for source code limits

the ability of malicious developers to introduce malicious code. Finally, our

solution only defends against attacks, not arbitrary memory errors. A buggy

program can still experience segmentation faults and other errors using only

untainted data.

3.6.4 Defending the Enforcement Mechanism

The design of our system makes it difficult in practice for an attacker

to subvert the enforcement mechanism itself. First, like other compiler-based

systems [99, 63], the original program is written before the enforcement code is

added, so the original program cannot directly access enforcement data. More-

over, unlike taint tracking systems that track taintedness using stack-allocated

variables or fixed addresses [99], all of our structures are dynamically allocated

on the heap and concealed behind function calls. Pointers to enforcement data

never appear in application code, so the attacker cannot obtain a pointer to

our enforcement data without sophisticated heap attacks. Thus, the attacker

will not be able corrupt enforcement data without first hijacking the program

by exploiting some vulnerability that the user’s security policy does not guard

against. Attacks that the user’s policy do guard against are prevented.

For additional protection, our mechanism can be easily combined with

various defenses against memory errors. For example, address space random-

ization [15] or heap randomization [11] can be used to defend our system

against corruption attacks.
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Chapter 4

Evaluating Dynamic Data Flow Analysis

In this chapter, we will discuss our evaluation of our dynamic data

flow analysis system. Our evaluation is guided by a desire to answer several

important questions:

• Can our system enforce policies comparable to existing taint tracking

systems?

• Can our system generalize to problems that existing taint tracking sys-

tems cannot handle?

• Does our dynamic data flow analysis system successfully prevent real

attacks?

• What is the performance overhead of our system for typical security-

sensitive server programs?

• Because server programs are often I/O-bound, what is the overhead of

our system on compute-intensive benchmarks where overheads and la-

tency cannot be masked by I/O?

• How difficult is it to annotate libraries for analysis?

We answer these questions in the remainder of this chapter. We demon-

strate that our system is comparable to existing taint tracking systems by
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enforcing a standard taint-based security policy that guards against format

string attacks. We show that our system is more general by also applying it

to file disclosure vulnerabilities, a problem that cannot be solved with taint

alone. We evaluate our system on both server programs and compute-intensive

benchmarks, and verify that all known attacks are prevented. Finally, we dis-

cuss qualitatively the difficulty of annotating library calls.

4.1 Taint Analysis for Server Programs

We first evaluate our system against current taint tracking systems.

Does the static analysis reduce the overhead of performing taint tracking on

server applications? Are the absolute overheads sufficiently low to make de-

ployment practical? Do the overheads scale with the size of the programs?

4.1.1 Benchmark Program Selection

For our evaluation of dynamic data flow analysis for taint tracking

on server programs, we apply our system to five commonly-used open source

server programs: pfingerd, muh, wu-ftpd, BIND, and apache. These programs

are, respectively, a finger daemon, an IRC proxy, an FTP server, a name server,

and a web server. Several are widely deployed and typically run in privileged

mode, so their robustness and integrity are critical. These programs, the

versions we used, and their size in terms of lines of preprocessed code, are

shown in Table 4.1.

These programs were selected in part because our static data flow anal-

ysis identified potential vulnerabilities in them. Our test programs were se-

lected from a suite of open-source server programs that were previously used

for static program checking research [50]. For nine other programs in this suite,
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Program Version LOC
pfingerd 0.7.8 30K
muh 2.05c 25K
wu-ftpd 2.6.0 64K
bind 4.9.4 84K
apache 1.3.24 67K

Table 4.1: Programs used to evaluate taint tracking.

our compiler analysis determines that there are no improper uses of tainted

data and therefore no instrumentation whatsoever is required. These programs

include BlackHole, privoxy, sqlite, and pureftpd, and indeed there are no

known applicable tainted-data attacks against our tested versions in the CVE

database. For these nine programs, our system does not modify the program

and therefore exhibits 0% runtime overhead and 0% code expansion. Only a

system that performs a static interprocedural taint analysis can achieve these

overheads. We have chosen to exclude these nine programs from our results

and to instead focus on those programs that have possible vulnerabilities, but

these results nevertheless highlight an important advantage of our approach.

We use our system to produce a modified version of each program that

contains additional code to perform dynamic taint tracking. In our tables,

we refer to this version as DDFA. The actual analysis time, while not negligi-

ble, is no worse than four minutes for apache, our second-largest benchmark

with nearly 67K lines of code, and thus does not pose a serious obstacle to

deployment.
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4.1.2 Policy and Environment

We evaluate our system with a taint checking policy that prevents the

use of tainted format strings in exploitable functions. This strict policy is

similar to that enforced in the TaintCheck system [80].

Since our system is a source-to-source translator, we compile the en-

hanced C programs using gcc-3.3 on Linux with whatever the default com-

piler options and optimization levels were that were supplied by the original

developers of the benchmark programs. The programs are then run on a 2.4

GHz Pentium 4 with 1GB of RAM, running Linux 2.6.17. For each bench-

mark, we use the program’s documentation and examples to run the program

with a reasonable configuration.

Since all of these applications are server applications, we must minimize

the effects of the network and the benchmarking software when measuring

performance. Because the workload generator itself can impose a noticeable

burden on the system, the workload generator, which sends requests to the

server application, is run on a separate computer. Both computers are located

on the same 100mbps network to minimize the effects of network latency, and

all experiments were conducted during periods of low activity.

Because these measurements are inherently subject to some degree of

unpredictability, we report results averaged over a large number of runs. For

our experiments, each workload is run 100 times and the result reported is the

arithmetic mean of the 100 trials.

69



4.1.2.1 pfingerd

The pfingerd daemon is a finger daemon, allowing users to request

simple information about other users. Our workload generator simply “fingers”

a user repeatedly. Our metric for performance is response time, as measured

in milliseconds.

4.1.2.2 muh

The muh program is an IRC proxy. Users can use muh to stay logged in

to an IRC channel even when they are away. Our sample workload consists of a

scripted login, a series of message retrieval operations, and a logoff. The metric

for performance is the total elapsed time to complete this short sequence of

operations.

The format string vulnerability present in muh is due to how muh stores

and presents messages received while the user is away. A malicious attacker

can send a specially crafted string as a message to the victim user. If the victim

is not currently logged in, muh stores the message verbatim on local storage.

Later, when the user logs in and retrieves his messages, muh displays the stored

messages without appropriately sanitizing format characters, resulting in a

compromise of muh.

4.1.2.3 wu-ftpd

The wu-ftpd server is one of the more popular FTP servers but has

a long history of bugs and security vulnerabilities. In fact, the first format

string attack discovered was the one present in the version of wu-ftpd that we

evaluated.
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As wu-ftpd is a file server, our primary performance metric is download

throughput. Our server is set up to serve several files with sizes uniformly

distributed among 4KB, 8KB, 16KB, and 512KB. The contents of these files

are completely random. The benchmarking program connects to the server

and begins downloading these files, one at a time, randomly, and the rate in

MB/s is measured after a minute of sustained downloading.

4.1.2.4 bind

The bind (also called named for “name daemon”) nameserver is one of

the most widely used DNS nameserver programs in the world.

Since DNS requests are small, our performance metric is response time,

measured in milliseconds. Our workload generator produces a stream of DNS

requests for domains for which the test nameserver is authoritative. The work-

load generator does not request other names, as that can cause bind to contact

other nameservers (who can then contact other nameservers) in an attempt

to fulfill the request; this behavior can significantly pollute the performance

results by introducing significant dependencies on the latency of networks and

nameservers beyond our control.

The particular format string attack in bind is somewhat harder to

exploit. The attacker needs to control a nameserver that is authoritative for

some domain. This poisoned nameserver then returns bogus IP addresses for

its requests and reports its own hostname as something containing format

specifiers. When bind performs a lookup on this domain, it notes the bad

nameserver’s hostname (format specifiers and all), notices that the IP address

returned is invalid, and logs the fact that a bad address was returned using

syslog with an unsanitized format string, which is the bad nameserver’s name.
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For our security evaluation, we set up a separate nameserver on a third machine

controlling a bogus domain, and then modified the victim copy of bind to

direct requests to the bad nameserver.

4.1.2.5 apache

The apache webserver is perhaps the most commonly used web server

in the world. Configuring apache can be complex, as it comes with many

modules, most of which are optional, and has numerous other modules that

can be installed independently.

Our configuration of apache is configured minimally, with only what

is necessary to serve static files. All other settings are left unaltered from the

default configuration file.

The workload generator for apache is nearly identical with wu-ftpd,

using the same sets of files and the same measurement techniques, but using

HTTP instead of FTP. Performance is based on throughput, in MB/sec.

4.1.3 Policy Annotation Burden

We now briefly evaluate the burden of providing the policy annota-

tions that are required by our system. Our annotations can be thought of

as consisting of three types: (1) pointer annotations, which describe pointer

relations; (2) analysis annotations, which define a data flow analysis; and (3)

policy annotations, which use the results of the data flow analysis to enforce a

policy.

Pointer annotations are common to all policies because they describe

the pointer relations of the arguments of each function, specifying what the
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function accesses and modifies; this information is used by the pointer analysis.

Once a library has been annotated—in our case the Standard C library—

pointer annotations need not be rewritten unless the library interface changes.

For the Standard C library, there are pointer annotations for 116 procedures,

with a median size of 3 lines and an average size of 4.68 lines.

Analysis and policy annotations can differ for different security policies.

For the format string policy, there are 44 annotations of these types, with a

median size of 6 lines each and an average size of 5.75 lines each. However, the

vast majority of these are essentially duplicates. For example, the annotations

for each member of the printf family of functions are essentially identical.

When these “copy-and-paste” duplicates are eliminated, the total number is

only 21. For the file disclosure policy, there are 65 such annotations, with

a median size of 7 lines each and an average size of 6.52 lines. Again, the

majority of these are essentially duplicates. When these are accounted for,

there are only 36 unique annotations.

To understand the difference between analysis and policy annotations,

we now discuss several different use cases. In the simplest case, the desired

policy exists and there is no need to touch any annotation file. In other cases, a

security expert may wish to modify an existing policy, for example, by calling

a sanitization function when a violation is detected. Here, only the policy

annotations require changes to account for the sanitization code. Finally, in

the most invasive case, a new data flow analysis must be defined, in which case

new analysis and policy annotations must be written.

The annotations themselves are not difficult to write. Our annotation

files only use seven major constructs, so the language is easy to understand.

All of these constructs are shown in the example in Section 3.2.1, and the
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Program Version Exploit Ref Detected
pfingerd 0.7.8 NISR16122002B Yes
muh 2.05c CAN-2000-0857 Yes
wu-ftpd 2.6.0 CVE-2000-0573 Yes
bind 4.9.4 CVE-2001-0013 Yes

Table 4.2: Evaluation of our system’s ability to detect actual attacks. All
attacks are detected successfully.

annotations shown are representative of the kind that must be written. In any

case, the information provided by the annotations is required by any policy-

enforcing system; in our system such information is specified by annotation

files rather than being embedded in the code.

Furthermore, we believe that it is incorrect to conceive of the policy

file as an extra burden that existing taint tracking systems do not have. A

taint tracking system must know how taintedness propagates and where the

taint sources and sinks are. In most systems, this information is hardcoded

in the system. In contrast, rather than hardcoding this information, we move

this information to an external policy file. Moreover, our system allows us to

add new policies, which themselves need not be based on taint, far more easily

than any system where the policy and analysis problem are hardcoded.

Conclusion Policy annotation files are not overly burdensome to create.

Their reusability means that end users do not necessarily have to write their

own policies.
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4.1.4 Security Evaluation

We next evaluate our system’s ability to detect attacks. Four of our

benchmark programs contain known vulnerabilities that are exploitable. For

example, pfingerd improperly trusts hostnames, while muh does not properly

check format strings when reading or writing log files. The SITE EXEC format

string vulnerability in wu-ftpd is actually the first discovered format string

vulnerability [30]. BIND improperly writes requests to syslog when an author-

itative nameserver is malicious. Our particular configuration of apache (core

only without optional modules) does not contain any known format string

vulnerabilities; it is included because our static analysis was not able to com-

pletely eliminate that possibility.

To test whether our system correctly detects the use of tainted data,

we send malicious input to the instrumented programs. Table 4.2 shows the

vulnerable programs, shows the vulnerability in question, and indicates that

in each case our system successfully detects these attacks. In each case, it

detects that tainted data is about to be used improperly and identifies the

potentially malicious data.

The case of muh deserves special attention. The vulnerability exists

because muh writes logged messages verbatim to disk. Later, when a user

requests log information, muh reads the message back from disk and prints

it directly using printf. Thus, if the original message contained dangerous

format specifiers, muh could be compromised when the message is printed back.

If the policy is to trust local files, then this attack will go undetected, which

can be a serious problem in servers that cache data on disk. Several taint

tracking systems trust local files by default [80, 84] and therefore miss this

vulnerability; their performance when applying our more aggressive policy is
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Program Original DDFA Code Overhead
pfingerd 49655 49655 0%
muh 59880 60488 1.01%
wu-ftpd 205487 207997 1.22%
bind 215669 219765 1.90%
apache 552114 554514 0.43%
Average Code Expansion 0.91%

Table 4.3: The static code expansion required for dynamic taint tracking, as
measured by compiled binary size (bytes).

unknown but likely to be worse due to the greater presence of tainted data.

Our system can enforce this stronger policy without fear of incurring significant

additional overhead because our interprocedural analysis can frequently prove

that most uses of local file data are safe.

Conclusion Our dynamic data flow analysis system can effectively prevent

real attacks on server programs. Our system can handle problems comparable

to those handled by existing taint tracking systems.

4.1.5 Code Expansion

Because our system adds instrumentation to the source program, it

introduces some static code expansion over unmodified code. Significant ex-

pansion of code size can have a negative impact on instruction cache perfor-

mance, storage requirements, and more. Does our system result in unaccept-

ably bloated applications?

We measure this expansion by comparing the sizes of the original and

modified binary executables, with the same compiler options in the default

makefiles for unmodified versions of the program, which results in the sys-
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tem libraries being dynamically linked. This measurement is inclusive of the

dynamic data flow analysis runtime library, which is compiled with each ap-

plication instead of being dynamically linked.

We use the binary code size because it provides a more accurate mea-

sure of code overhead than source code size. This is because the binary code

size includes the effects of standard compiler optimizations. Measuring code

expansion in terms of lines of code or similar metrics can be very deceptive

as not all lines are equal (both in terms of complexity and impact on per-

formance) and many lines of the instrumented code are subject to standard

compiler optimizations and can be eliminated.

From Table 4.3, we see that the average code expansion for our bench-

marks is less than 1%. In several cases, the compiled binary size does not

actually increase because the added code falls in the padding that gcc adds.

To place our results in context, LIFT with hot path optimizations can at least

double the size of the code due to the need to maintain separate “fast” and

“check” copies [84], while compiler-based systems like GIFT [63] report 30-60%

increases in binary size.

Conclusion Our dynamic data flow analysis system increases code size in

server programs by a minimal amount.

4.1.6 Runtime Overhead

The tracking of data flows incurs a runtime cost. In prior software taint

tracking systems, this cost can be quite significant. If an even more complex

software dynamic data flow analysis system is to be practical, the overhead

must be kept to an acceptable level.
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Program Original DDFA Runtime Overhead
pfingerd 3.07s 3.19s 3.78%
muh 11.23ms 11.23ms 0.0%
wu-ftpd 2.745MB/s 2.742MB/s 0.10%
bind 3.580ms 3.566ms -0.38%
apache 6.048MB/s 6.062MB/s -0.24%
Average Overhead 0.65%

Table 4.4: Runtime overhead for performing dynamic taint tracking on server
programs. This table shows the response time or throughput overhead for our
DDFA system running on a 100mbps ethernet network.

For our set of server programs, we measure this cost by measuring

server response time or throughput, as appropriate for the particular program.

For example, for file servers, the end-user experience is most impacted by

the throughput during file downloads. For information-providing services like

finger or DNS, the response time is most critical.

As shown in Table 4.4, our solution has an average overhead of 0.65%.

In all instances, the overhead is lost within the noise. In fact, in three in-

stances, average server performance actually improves by small amounts when

we perform taint tracking. This improvement may be due to differences in

memory layout induced by our runtime system and the resulting effect on

cache performance. As a point of comparison, the previous fastest compiler-

based and dynamically optimized systems report server application overhead

of 3-7% [99] and 6% [84], respectively—one order of magnitude higher.

Conclusion Our dynamic data flow analysis system adds negligible overhead

to common server programs.
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Program Code Expansion Overhead
gzip 0.0% 51.35%
vpr 0.0% 0.44%
mcf 0.0% -0.32%
crafty 0.36% 0.25%
Average 0.09% 12.93%

Table 4.5: Runtime overhead for performing dynamic taint tracking on
compute-bound programs. These versions of the SPECint benchmarks were
modified to introduce a format string vulnerability.

4.2 Taint Analysis for Compute-Bound Applications

Measuring performance overhead on server programs only paints an in-

complete picture of the true costs of dynamic data flow analysis. In many cases,

the overhead is partially or completely masked by latencies in the network and

other I/O, even when efforts are taken to minimize latency. Thus, the cost of

performing a dynamic analysis on an application that is more compute-bound

than I/O-bound may well be significantly higher.

We evaluate our system’s performance on compute-bound applications

by applying the same format string policy to four SPECint 2000 benchmarks,

with all inputs marked as tainted. However, we found that the applications

tested did not contain format string vulnerabilities. As a result, our static

error detection phase found no possible policy violations and thus did not add

any additional code. Therefore, the true overhead of our system is 0% for

these benchmarks.

However, we still wished to measure the overhead of our system. We

added additional buffers, spurious flows, and unchecked format string uses un-

til our static analysis could no longer eliminate the “vulnerability” completely.
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The four benchmarks that we use were chosen because it was possible to inject

realistic format string vulnerabilities into them, a task that proved challenging

for the other SPECint benchmarks. To ensure that these injected vulnerabili-

ties are realistic and representative of real vulnerabilities, we use the following

guidelines in selecting the locations for the artificial vulnerabilities.

• We choose locations where actual printf/scanf calls are being made,

ensuring that our injected vulnerability appears at a location where it

might be possible.

• We preferentially choose calls that operate on character data, eliminating

unrealistic vulnerabilities, such as the use of integers as format strings.

• Finally, we check that our injected vulnerability is not eliminated by our

static analysis.

Table 4.5 presents our results with the standard SPEC workloads. In

all of the benchmarks, we demonstrate significant performance improvements

over current software-based systems. The average overhead of 12.9% improves

upon the best previously reported averages of 75-260% [99, 84]. Furthermore,

in most cases, our system’s overhead for compute-bound applications is essen-

tially zero even when the application does contain vulnerabilities. Thus, our

approach is less adversely affected by CPU-intensive programs than all current

software-based techniques.

The gzip benchmark is a worst case for taint tracking systems [92,

99, 84, 34] due to its complex behavior and sensitivity to memory bandwidth.

It operates on character data extensively and propagates tainted data every-

where, reducing the flows that our system can statically eliminate and neg-

atively impacting performance. Nevertheless, our system’s overhead of 51%
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Program Code Expansion Response time
pfingerd 0% 0%
muh 2.67% 2.13%
bind 0.10% -1.38%
Average 0.92% 0.25%

Table 4.6: Servers augmented by our system to guard against file disclosure
vulnerabilities exhibit negligible overhead and code expansion.

represents a significant improvement over prior software systems, with over-

heads of 106% for a compiler-based system [99] to over 600% for dynamic

instrumentation [84], and our result compares favorably with the 31% over-

head for the most recent hardware-based solution [34].

Conclusion Although our performance is negatively impacted when the

overheads are not masked by I/O, our average overhead is significantly bet-

ter than previous systems, with our worst overheads being comparable to the

previous best. Moreover, these overheads are only incurred when we forced

non-existent vulnerabilities into our system that our static analysis could not

completely eliminate, so our true overhead for these benchmarks is 0%.

4.3 File Disclosure Attacks

In addition to taint tracking, we evaluate our system’s ability to prevent

file disclosure attacks, as discussed in Section 3.2.2. Table 4.6 shows our results.

For pfingerd, our static analysis was able to determine that it contained no

FTP-like behaviors and therefore no instrumentation was required. For muh

and bind, our system was unable to rule out this possibility and therefore had

to insert a small amount of additional code. However, the delay in response
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time was so small as to not be consistently measurable. We omit the wu-ftpd

and apache benchmarks as the behavior described in the file disclosure policy is

entirely normal behavior for these two programs; thus, it would be nonsensical

to enforce such a policy on these two programs.

These results highlight the advantages of our system. First, in some

cases all instrumentation can be eliminated, giving 0% overhead. Second, in

the cases where some tracking is required, our analysis is able to keep the

additional code to a minimum, imposing only a small or negligible overhead.

Finally, this example shows that without rewriting the compiler or its static

analysis, our system can be applied to complex problems that taint tracking

cannot directly handle.

Conclusion Our system can handle problems more complex than those that

existing taint tracking systems can handle. Moreover, more complex policies

do not necessarily result in higher overhead because the static analysis can

prune away safe regions.

4.4 Discussion

We will now briefly discuss the key elements and insights that make

our dynamic data flow analysis so successful.

4.4.1 Synergistic Dynamic and Static Analyses

One of the keys to success of our system is the fact that data flow anal-

ysis can be performed both statically and dynamically with minimal changes.

In many other domains, a dynamic analysis does not always have a corre-

sponding static analysis, and if a suitable static analysis does exist, it is often
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sufficiently different that both must be implemented and accounted for sepa-

rately. In contrast, our system requires one to specify only one analysis—the

dynamic analysis—and the corresponding static analysis is automatically con-

structed and performed.

We believe this is a significant advantage and is inherent to data flow

analysis. A static data flow analysis is essentially the same as a dynamic data

flow analysis except that it is performed at compile time and extra operations,

known as phi-functions [73], must be inserted to handle control flow merges,

calling contexts, and other ambiguous places. The dynamic analysis is simply

the static analysis performed on a running program, but with flow values

being associated with memory addresses rather than abstract objects and with

no need at all for phi-functions because control flow is never ambiguous at

runtime.

In contrast, a similar system that does not use data flow analysis to

specify policies cannot leverage our techniques for high performance. Our dy-

namic data flow analysis could be implemented using the GIFT system [63].

However, GIFT requires the user to specify the policy in terms of code trans-

formations that manipulate tag values. Because of this, it can be difficult or

impossible to derive the corresponding conservative static analysis that ap-

proximates the dynamic analysis specified by the GIFT code transformations.

As a result, their overheads are dramatically higher than ours. Thus, we be-

lieve we have demonstrated the value of specifying policies in terms of data

flow analysis: it allows for both dynamic enforcement and static checking, and

this particular combination realizes enormous performance improvements.
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4.4.2 Data Flow and Sparsity

Another key factor to the success of our system is the fact that the

scope of possible vulnerabilities is only a small fraction of the program. This

observation has been made before in the literature [79] and our results confirm

it. That is, for any given vulnerability, the chain of data flow events from the

source of the malicious input to the location of the possible vulnerability is

typically short and only involves a very small fraction of the program.

The sparsity of the source-sink chains also explains why our overhead

is not necessarily related to the complexity of the policy. The file disclosure

vulnerability involves two separate typestate problems and in the naive ap-

proach should incur twice the overhead of a taint-only system. However, our

results show that the overhead for this more complex policy is actually lower

than for the simpler taint-based policy. This is because a more complex pol-

icy does not always result in more statements being instrumented. In fact,

it may result in fewer statements being instrumented because there are fewer

vulnerabilities or fewer statements involved in vulnerabilities. In either case,

our static analysis frees security professionals from considering the possible

performance impact of additional policy complexity because we ensure that

only the statements that can affect the security state at a possible vulnera-

bility are instrumented. Thus, complex policies can be enforced without fear

of introducing unnecessary overhead because the static analysis conservatively

ensures that any instrumentation present is actually necessary.
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4.5 Future Directions

We may broadly categorize future directions for this work in two cate-

gories: those that are amenable to modeling by typestate problems, and those

that cannot be modeled by typestate but nevertheless may benefit from our

general combined dynamic/static approach.

4.5.1 Extensions of Dynamic Data Flow

A clear extension of our work is to progress from problems that can be

modeled precisely by typestate to problems that can be modeled conservatively

by typestate. For example, consider SQL Injection Attacks (SQL-IA) [19, 69,

52]. Every legitimate query string will necessarily contain tainted user input or

the query will not be very useful. Thus, our system will mark every database

query as a potential vulnerability. However, SQL-IA requires that the specific

tainted inputs match up with SQL keywords in the parse tree. Because we

track data propagation on a byte granularity, we can identify the specific

characters in the query string that are tainted and check to make sure that

no SQL keywords are tainted. This policy cannot be modeled precisely with

typestate because it requires knowledge of SQL syntax, but our mechanism

can accommodate it by conservatively flagging all SQL queries as potential

vulnerabilities and calling user code that checks the keywords within the query

string. Our static analysis can still eliminate innocuous uses of user input that

do not form part of the query string while also ensuring that any potentially

problematic queries have any additional guards and checks inserted.

Another possible application is to use our tool for what we call analysis-

based aspect-oriented programming. Like aspect-oriented programming [59],

analysis-based aspects allow programmers to add cross-cutting functional-
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ity to existing code. Unlike conventional aspect-oriented programming sys-

tems, which implement aspects by defining simple syntactic code transfor-

mations [58], analysis-based aspects are implemented by defining a dynamic

analysis. The weaver then generates the code required to implement the anal-

ysis. This extends our current system, which inserts special instrumentation

to guard against vulnerabilities, to one that inserts extra user code to provide

new functionality.

Analysis-based aspects have two advantages over conventional aspects.

First, analysis-based aspects allow for more concise and easier-to-reason-about

code. Many aspects that one would like to implement, such as access controls,

information flow tracking, and privacy protection all pervasively cross-cut the

entire program, share numerous common elements and mechanisms, and can

be easily defined in terms of a dynamic analysis. By specifying these aspects di-

rectly as analyses, the programmer can focus on problem-specific concerns and

avoid tedious reimplementation of common mechanisms. Second, by specifying

the aspect as an analysis, the weaver can perform a conservative static analy-

sis that determines where additional code is necessary, allowing the weaver to

optimize away aspect code in a similar manner to how our dynamic data flow

analysis system optimizes away unnecessary tracking.

Analysis-based aspects have clear applications in problems relating to

information provenance, including privacy and information flow problems, be-

cause these problems are easily cast in terms of a typestate analysis. It is less

clear if analysis-based aspects can be generalized to other problems. In the

degenerate case, the “analysis” could be a null analysis and all join points are

considered possible “vulnerabilities,” resulting in a system that is essentially a

conventional aspect-oriented programming system with a declarative language
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for join points.

4.5.2 Combined Dynamic/Static Analysis

More generally, our philosophy is applicable to any dynamic analysis

for which there is a conservative static counterpart. The conservative static

analysis can identify which parts of the program are not involved in any policy

violation, with the remainder of the program being instrumented as usual.

For example, locks or shared variables [37] could be modeled conservatively,

with deadlock-detection mechanisms applied only to the locks that could not

be statically proven safe. Memory leak detection can be made more efficient

by eliminating tracking on objects that provably do not leak. A profitable

direction for future work would be to examine existing static analyses, finding

dynamic analyses that attempt to enforce or study the same thing, and then

integrating the two. Since there are many static and dynamic analyses, many

fruitful combinations are possible.

Further gains may be found if the requirement for conservative over-

approximation is relaxed. Coverity has found that in real-world software de-

velopment, it is often beneficial or even necessary to sacrifice correctness and

completeness in favor of reducing the false positive rate and improving error

prioritization [12]; it does not matter that a tool conservatively finds all bugs

if the false positive rate is so high that programmers ignore the reports. Sim-

ilarly, it may be beneficial to use more relaxed static analyses that do not

guarantee correctness for the corresponding dynamic analysis if tremendous

improvements in overhead are possible. While such a policy is unacceptable

for security applications, it may be quite practical for profiling, forensics, and

debugging as long as the overall quality of the dynamic results is still high.
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There will always exist dynamic analyses that do not benefit from our

approach. In order to be effective, the static analysis must be able to reduce

the scope of the dynamic analysis to be only a small fraction of the program.

This is not always possible. For example, enforcing an information flow policy

with implicit flows will be difficult with our approach because the false positive

rate is too high [60] for the static analysis to be useful. Relaxing the policy

can cause the system to miss real information leaks, which may not always be

acceptable.
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Chapter 5

Targeted Testing

In this chapter, we will describe the design and implementation of Bulls-

eye, our system for targeted testing. Existing software testing systems are

typically designed to thoroughly test programs and thus treat all parts of the

program essentially equally. If instead the goal is to find bugs quickly, these

systems are poorly designed as they spend significant time verifying correct

program behavior rather than seeking out incorrect behavior. Our targeted

testing approach steers execution to parts of the program that may be more

likely to reveal bugs, thereby improving bug-finding speed by avoiding paths

that serve only to verify correct program behavior.

Bullseye, our implementation of targeted testing, improves upon ex-

isting directed testing systems by using a static analysis to compute branch

data with respect to a user-supplied set of interesting points and using this

statically-computed data to guide execution towards program points that af-

fect or are affected by the interesting points. By doing so, Bullseye can find

faults in programs faster than existing directed testing systems and even finds

bugs that directed testing could not because of state space explosion.

The Bullseye system also incorporates a new technique for performing

automated boundary condition testing, enabling it to find faults that symbolic

execution fundamentally cannot find unassisted. Our automated boundary

condition testing solution is applicable to both targeted testing as well as
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Figure 5.1: The design of our targeted testing system. The base system is a
directed/concolic testing system where concrete executions are combined with
symbolic evaluation to generate inputs. Bullseye-specific extensions are shown
in the lower row of blocks, where we use static analysis to intelligently guide
branch selection.

existing directed testing systems.

5.1 System Overview

The overall structure of our system is shown in Figure 5.1. At a high

level, a programmer or tester would use our system as follows:

• Bullseye is given a list of statements and objects of interest in the pro-

gram. The list can be derived from change logs, static error checkers,

programmer hunches, or business priorities.

• Bullseye performs a static analysis to calculate the relevance and impact

of other objects, locations, and branch conditions to the items of interest.

This information is recorded in a separate file.

• Bullseye generates an initial input, or the tester provides one.

• The program under test is run with the input, and its behavior is moni-

tored.
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• Using information from the run and guided by the data computed by

the static analysis, Bullseye generates a new candidate input that highly

impacts or is highly impacted by items of interest.

• Input generation and execution is repeated until the tester is satisfied.

This workflow is similar to that of existing directed testing systems

except for three steps. The key differences between Bullseye and directed

testing are:

• Bullseye receives as input a set of program-specific interesting points,

which are used to target testing. Directed testing does not use interesting

points or any other program-specific method of prioritization.

• Bullseye performs a static analysis that computes the relative impact of

various program points on the interesting points. Directed testing does

not use static analysis.

• Bullseye uses the statically computed information to guide testing. While

extensions to directed testing have explored simple hardcoded heuristics,

none of them use statically computed program-specific information.

Bullseye also adds a fourth innovation that can be applied to both

conventional directed testing systems as well as targeted testing. Full path

coverage alone is insufficient for finding certain kinds of bugs. To address

this problem, we modify our path-based testing system to perform boundary

condition testing. Because the boundary conditions that expose bugs are typ-

ically not explicitly represented in the paths, we have developed a method for

encoding conditions for automatic boundary condition testing directly in the
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control flow graph of the program, allowing any system based on symbolic

execution to perform boundary condition testing. Our technique enables sym-

bolic execution to find faults that previously could not be found because the

conditions required to reveal them were not present in the program’s paths.

Our discussion of the specifics of Bullseye will follow in three main

parts. First, in Section 5.2, we will discuss the static analysis behind Bulls-

eye, showing the process by which interesting points are used to generate the

branch data file. Next, in Section 5.3, we will discuss our branch boundary

condition transformation and how it may be used in conjunction with directed

or targeted testing. Finally, in Section 5.4, we will discuss the implementation

of our targeted testing engine itself.

5.2 Static Analysis for Targeted Testing

The Bullseye compiler takes the set of interesting points and performs

data and control flow analysis to compute various metrics that allow the branch

selector to focus testing effort on the interesting points. These metrics are

associated with branches, and they are stored in the branch data file. In

this section, we will show the process by which interesting points are used to

compute the branch data file.

At a high level, the static analysis proceeds as follows:

• Bullseye reads in a set of interesting points, which are supplied via in-line

annotations.

• Bullseye performs a standard dependence analysis on the program, com-

puting def-use and use-def chains for every variable in the program.
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• Bullseye uses the def-use and use-def chains to compute a set of interest-

ing locations starting from the interesting points. The interesting loca-

tions capture the forward and backward data flows from the interesting

points.

• For each interesting location, Bullseye identifies the controlling condi-

tionals for that location, which are the conditionals that the interesting

locations are control-dependent upon. This phase determines the branch

weights, preferred branch directions, and control flow distances for each

of the controlling conditionals.

• All branch data is collected and written to the final branch data file.

5.2.1 Encoding Interesting Points

Interesting points are how the user communicates priorities to a tar-

geted testing system. Intuitively, an interesting point indicates that some

particular statement, object, or operation is important to the testing goal at

hand, and that test inputs should stress things that affect or are affected by

the interesting point.

The Bullseye system maintains a generic notion of interesting points

and is agnostic to their source. In our evaluation, we use program differences

as our source of interesting points, as if Bullseye were part of a change impact

management system. However, Bullseye can use many other sources for inter-

esting points. For example, a static error checker can produce a list of possible

bugs, or a programmer can manually designate certain “tricky” parts of code

as interesting.
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We now discuss how interesting points are communicated from the user

to the Bullseye system. We support three different types of interesting points:

• Interesting variables indicate that some variable v is interesting at some

location l.

• Interesting statements indicate that a specific statement s is interesting.

The variables used or defined at that statement are not necessarily in-

teresting, only the statement itself. Note that interesting statements can

be considered a special case of interesting variables if a dummy variable

is used.

• Interesting operations indicate that a specific comparison operator at

some statement s is interesting.

These interesting points are provided to Bullseye in the form of in-

line annotations in the program source code, as shown in Table 5.1. These

annotations have the syntax of function calls that wrap around variables or

statements.

Textual appearances of a variable can be marked as interesting with the

check interesting annotation, which specifies that the object pointed to by

v is an interesting variable. By using addresses instead of text variable names,

the annotator does not have to worry about aliasing or namespace problems

and names are not required; if the interesting object is a buffer, any pointer to

the buffer will suffice, or if it is a scalar, the address of that scalar will suffice.

We treat interesting statements as a special case of interesting variables.

In this case, the interesting “variable” is a dummy variable that has no uses

or defs. Since nothing is ever done with the bogus variable, all that remains
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Point type Annotation
Variable check interesting(v)

Statement check interesting(dummy)

Operation interesting op(v1, opcode, v2)

Table 5.1: Annotations for the various types of interesting points.

that is interesting is the physical location. Because we use C function call

syntax, we do not actually mark a specific statement as interesting; rather, we

mark the space between statements (immediately before or after the interesting

statement) as interesting.

Interesting operators require a little more annotation. The user must

replace the operator with a synthetic function call. For example, if the user

wants to mark the greater-than operator in x > y as interesting, the corre-

sponding annotation is interesting op(x, OP GT, y). The Bullseye com-

piler will recognize this and replace it with the original code after it has noted

the location and operator.

5.2.2 Dependence Analysis

Given a program that has been annotated with interesting points, the

Bullseye compiler first performs a flow-sensitive interprocedural pointer anal-

ysis. The resulting aliasing information is then used to construct interproce-

dural def-use and use-def chains for all memory objects in the program. We

use the existing mechanisms in the Broadway pointer analysis [47] to perform

our dependence analysis.

Bullseye can be used with context-insensitive or context-sensitive pointer

analyses. Our default is to enable context-sensitivity, but this option may be
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overridden by the user at analysis time. Again, our implementation simply

uses the existing analyses in Broadway. Later, in Section 6.6, we will measure

the impact of static context-sensitivity on the quality of the data it produces

and the impact on fault-finding speed.

5.2.3 Interesting Locations

It is not sufficient to ensure that execution reaches an interesting point.

What if the interesting point incorrectly modifies a variable that is used much

later in the program? We would like to ensure that the subsequent use of this

variable is reached. Similarly, if an earlier statement modifies a variable that

is used at the interesting point, we would also like to ensure that it is tested.

Previous test systems have already developed methods to guide execution to

specific locations [62], but they do not address the issues of the effects of

these locations on subsequent statements that can be far-removed. In order

to properly reason about the effects of a statement, data flow analysis must

be used.

To capture these causes and effects, we generalize the notion of in-

teresting points to interesting locations. In this thesis, we use a data flow

based definition of interesting locations. Intuitively, the interesting locations

are simply the locations in the forwards and backwards thin slice [89] from

each interesting point. In other words, the interesting locations are the loca-

tions that are on a chain of uses and defs (or defs and uses) that lead towards

or away from an interesting point. The set of interesting locations captures

data dependencies and is significantly smaller than a traditional executable

program slice that includes all control dependencies, while still containing the

program statements most useful to debugging [89].
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The interesting locations are computed differently depending on their

type because not all types of interesting points have data dependencies. We

compute them as follows.

For interesting variables, the computation of the resulting interesting

points is straightforward. We use the interprocedural def-use and use-def

chains computed earlier to find the forward and backward data dependencies.

Our implementation first performs a backwards traversal along the use-def

chains starting from the use at the original interesting point. From there, we

proceed to the corresponding def, and then from the def to any right hand side

uses. Every location that is traversed is added to the set of interesting loca-

tions. After the backwards traversal is complete, a similar forwards traversal

is performed along the def-use chains, treating the original interesting point

as a def of the variable and then proceeding to any subsequent uses and their

left hand side defs. The backwards trace is the same procedure used in com-

puting a thin slice [89], while the forwards trace is the forwards analogue of

the backwards thin slice.

For interesting statements, no such traversal is possible or necessary

because there are no data dependencies. Thus, the interesting locations for an

interesting statement is a set containing one element, the interesting statement

itself.

Finally, interesting operators are treated in the same manner as inter-

esting statements. An interesting operator means that the operator itself, not

the operands, is what is interesting. Of course, there is nothing that prohibits

the user from annotating an interesting operator that takes an interesting

variable.

The interesting locations are computed separately for each interesting

97



point in the program. When all of the interesting locations have been identi-

fied, they are combined into a single large set of interesting locations.

5.2.3.1 Data Flow Distances

We compute an additional metric while computing the interesting loca-

tions: the data flow distance. Intuitively, the data flow distance is the number

of hops along a def-use or use-def chain required to reach some interesting lo-

cation from the original interesting point. To compute the data flow distance,

we modify the use-def and def-use traversal as follows:

• The original interesting variable v at location l has a data flow distance

of 0.

• The def of v at l has a data flow distance of 1, as does the uses of the

def of v at l.

• During the backwards traversal, if a use of some object on the right hand

side of a statement has a data flow distance of d, the object on the left

hand side has a data flow distance of d + 1.

• During the forward traversal, if a def of some object on the left hand

side of a statement has a data flow distance of d, all objects on the right

hand side have a data flow distance of d + 1.

For the interesting locations that are interesting statements or interest-

ing operations, no data flow analysis is performed, so the default value of 0 is

used as the data flow distance.
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In some cases, it may be necessary to merge information while com-

puting data flow distances. A merge can be required for two reasons: context-

sensitivity and multiple interesting points. If a context-sensitive analysis is

performed, Bullseye may compute different data flow distances for a location

depending on the calling context of the containing function. Before this data

can be written out to the branch data file, all the various contexts must be

merged. Similarly, if there are multiple interesting points in the program, a

location may have different data flow distances depending on which interesting

point it was computed with respect to. In both cases, we handle merges by

always selecting the smallest of all the candidate values.

5.2.4 Control Dependence Analysis

In order to guide execution to certain locations, we must assign weights

to the branches in the program. To do this, we must identify the branches

that “control” whether or not interesting locations are reached. The concept of

control dependence is useful here [41], because if a node B is control-dependent

on node A, A determines whether B is reached.

5.2.4.1 Controlling Conditionals: Definition

In the standard definition of control dependence [41], a node B is

control-dependent on node A if for all paths P between A and B and all

statements s ∈ p on some path p ∈ P , B postdominates s but B does not

postdominate A. In other words, A has an outbound edge that heads “to-

wards” B and guarantees that B will be executed (modulo non-termination).

However, A also has another outbound edge that does not necessarily guaran-

tee that execution eventually arrives at B. Thus, A “controls” whether B is
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reached.

For a given interesting location l, we define the direct controlling con-

ditional of l to be the conditional node c that l is control-dependent upon.

The preferred direction of c is the edge e : c → s such that l postdominates s;

intuitively, the preferred direction is the edge that heads “towards” l.

We extend the direct controlling conditionals to controlling condition-

als by completing the transitive closure. The controlling conditionals for an

interesting location l is a set consisting of l’s direct controlling conditional c,

c’s controlling conditional c′, c′’s controlling conditional c′′, and so on.

We compute controlling conditionals for an interesting location l by

first finding the direct controlling conditional c by testing the basic blocks in

the function that l is located in for control dependence. We then transitively

compute the controlling conditionals by computing c’s controlling conditional

and so on. Our actual implementation uses a worklist to ensure that each new

“generation” is evaluated only after all of its parents have been evaluated.

5.2.4.2 Interprocedural Controlling Conditionals

By adding one step, our definition of controlling conditionals can be

easily extended to cover interprocedural controlling conditionals. If the loca-

tion l is not in the main function, we compute the controlling conditionals of

the callsites of the function that l is in. Thus, if location l is in a function

foo which is called from line 32 of function bar, we first compute the con-

trolling conditionals of l within foo. After that, we compute the controlling

conditionals of line 32 of bar, foo’s callsite. If foo has any callers, we find

the controlling conditionals of foo’s callsites after computing the controlling

conditionals within foo.
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In practice, interprocedural controlling conditionals are required for the

concept to be useful in testing. If a location inside a function is interesting,

we must ensure that the function itself is called, which requires computing

controlling conditionals in the function’s callers, and any of their callers in turn,

as required. Without computing controlling conditionals interprocedurally, we

would not be able to provide any guidance until execution stumbles upon the

right function.

5.2.4.3 Control Flow Distances

In addition to finding the controlling conditionals themselves, we com-

pute the control flow distance for each controlling conditional. Intuitively, the

control flow distance is the number of other controlling conditionals you must

pass through from the original interesting location to your current controlling

conditional.

Control flow distances are computed by tracking an additional distance

measure during the computation of the controlling conditionals. For an inter-

esting location l, the computation of l’s controlling conditionals is modified as

follows:

• The location l itself has a control flow distance of 0 for the purposes of

the analysis.

• The direct controlling conditionals of l have a control flow distance of 1.

• A branch that is the direct controlling conditional of another branch that

has a control flow distance of d will in turn have a control flow distance

of d + 1.
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As with data flow distances, context-sensitivity or multiple interesting

points may require data to be merged. As before, we resolve any such ambi-

guities by simply selecting the smallest value. All such merging is performed

at the end, so the computations of individual interesting points are performed

without any merges.

5.2.5 Branch Data

Once the controlling conditionals have been identified, the final branch

weights are computed, along with a few other miscellaneous pieces of infor-

mation. All the data gathered is then written out to the final branch data

file.

5.2.5.1 Branch Weights

Having computed the interesting locations and their controlling con-

ditionals, Bullseye may now compute the most important part of the branch

data file: the branch weights. The branch weights consist of two numbers,

which we call trueness and falseness. They indicate the weight on the true

edge and false edge of the branch, respectively. The branch direction is simply

the larger of the two and indicates which direction has higher weight.

The trueness and falseness of a branch is computed alongside the con-

trolling conditionals. When Bullseye determines that c is a controlling condi-

tional, it casts one “vote” for the preferred direction of c, incrementing one of

either the trueness or falseness. Each interesting location thus grants exactly

one vote to each of its controlling conditionals, which are allocated according

to each controlling conditional’s preferred direction.

A direction often receives several votes. For example, if a sequence of
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assignments and computations performed in the same basic block are all in-

teresting locations, the controlling conditionals of that basic block will receive

multiple votes on each of the preferred edges. Moreover, both the taken and

not-taken edges of a branch can receive votes. For example, if both arms of

a branch modify a variable that is used by a later interesting variable, then

both arms of the branch will contain interesting locations. Thus, the branch

will be traversed at least twice, corresponding to the two or more interesting

locations, but with a different preferred edge each time.

Our method for computing branch weights has two useful properties.

First, all branches that have branch weights are controlling conditionals for

some interesting location. This is because votes for weights are assigned only

during the computation of controlling conditionals to controlling conditionals.

This means that any branch that lacks branch data was never a controlling

conditional at any point and therefore does not directly influence the reach-

ability of interesting locations. Second, the weight on each edge of a branch

corresponds exactly to the number of interesting locations for which that edge

is a preferred edge. This gives us a simple guide for the direction that would

lead to the most interesting locations.

5.2.5.2 Miscellaneous Data

At this point, we have computed for each branch that is a controlling

conditional of an interesting location the data flow distance, control flow dis-

tance, and branch weights. The final branch data file contains two more pieces

of information.

First, we include a branch classification identifier. During the com-

putation of control flow and data flow distances, we also track the type of
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interesting point that the metrics are being computed for. The branch classi-

fication identifier allows the dynamic system to determine whether the branch

data for a given branch was computed for an interesting variable or an inter-

esting operation. In the event that the same branch contains data computed

for both an interesting operation and an interesting variable, we use the data

associated with the interesting operation. This is consistent with our policy

of always choosing the smaller metric; an interesting operation is an original

interesting point and always has a data and control flow distance of 0, which is

smaller than any control or data flow distance computed from any interesting

variable. The branch classification identifier is encoded as an integer constant

in the branch data file.

Second, we include an edge classification for each edge in the branch

data file. The edge classification is computed using the standard depth-first

spanning tree algorithm [73] and classifies edges as tree edges, cross edges,

forward edges, and back edges. A classification for both the taken and not-

taken edges of the branch are provided. As before, these are encoded in the

file as integer constants. Note that edge classification is not provided for every

edge or branch in the program, but only for those where other branch metrics

are also computed, i.e., the controlling conditionals of the interesting locations.

5.2.5.3 Assembling the Branch Data File

The static analysis now has all of the information it needs to generate

the branch data file. The file is a plain text file with one branch per line. The

information is as follows:

• Branch identifier. A unique identifier associated with the branch and

used internally by the runtime to distinguish between different branches.
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Table 5.3 shows that evaluating a branch requires a branch ID argument.

The branch identifier is the link between the branches during symbolic

execution and the branch data file. The branch ID is encoded as an

arbitrary whitespace-terminated string. Our implementation simply uses

the textual representation of the address of the object representing the

branch in the AST as the branch ID as it is guaranteed to be unique

for each branch in the program with no possibility of hashing collisions.

One side effect is that branch data cannot be reused if the program is

recompiled by Bullseye, as the branch IDs will no longer be comparable.

• Branch classification. Indicates whether the branch information was

computed for an interesting variable or an interesting operation. The

classification is also encoded as an integer.

• Data flow distance. The data flow distance for a controlling conditional

c that was computed starting from an interesting location l is the data

flow distance of l.

• Control flow distance. We record the control flow distance of the branch

as an integer.

• Branch weights. The weights are recorded as a pair of non-negative

integers representing the trueness and falseness of the branch.

• Edge classification. The edge classification records whether the true or

false edges are forward edges, cross edges, or back edges. The edge clas-

sification is encoded as a pair of integers representing the classification

of the true and false edges.
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The file by default has the same name as the output for the instru-

mented source code with .weights appended. The name can be changed by

the user.

5.3 Branch Boundary Condition Transformation

This section discusses the path inadequacy problem and our solution,

a technique for performing automated boundary condition testing within a

testing system driven by symbolic execution.

5.3.1 Motivation: The Path Inadequacy Problem

During development and testing, we noticed a curious phenomenon

where Bullseye would generate an input for every path in a small program and

yet fail to kill that mutant. Upon further investigation, we found that it is

quite possible to produce programs where every path can be explored without

revealing any bugs. We term this the path inadequacy problem because all-

paths coverage is inadequate for revealing all bugs.

To illustrate the path inadequacy problem, consider a simple func-

tion called IsGreaterThanTen with the obvious implementation. Suppose

this function has a bug where instead of performing a greater-than compari-

son, a greater-than-or-equal comparison is used. There are exactly two paths

through this program. Both paths can be covered with the inputs 5 and 15.

However, the bug is not revealed because the input 10 is never tested. Thus,

it is possible to test every path in a program and still not reveal a simple bug.

Although the path inadequacy problem in general is unsolvable be-

cause it reduces to the halting problem, many of its common manifesta-
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Original control flow graph Modified control flow graph

if(x > y) if(x > y)

if(x==y+1) if(x==y)

Figure 5.2: Transforming the control flow graph to include boundary condi-
tions.

tions can be addressed by probing the correct boundary conditions. In the

IsGreaterThanTen example, the bug can be found by probing the boundary

condition on the branch that tests the input against ten. Many similar er-

rors, such as bounds checks, off-by-one errors, and confusion between strict

and nonstrict inequality can also be found by simply probing the boundary

conditions.

We therefore address the path inadequacy problem by adding support

for boundary condition testing. Normally, systems based on symbolic execu-

tion cannot perform boundary condition testing because the boundary condi-

tions are not apparent from the paths. We address the problem by encoding

the boundary conditions to be tested as additional paths in the program. Sym-

bolic execution can then proceed as before, exploring the boundary conditions

by exploring the paths that encode them.
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5.3.2 Explicitly Representing Boundary Conditions as Paths

Rather than require changes to the constraint solver to support bound-

ary conditions, our solution encodes the conditions into the tested program’s

control flow graph. Wherever there is a branch with a boundary condition

to test, the compiler adds additional branches that test for the appropriate

boundary condition on both sides of the original branch. By explicitly test-

ing for the boundary conditions in the transformed program, symbolic execu-

tion follows the paths representing those conditions, thereby testing boundary

cases.

Intuitively, the transformation is simple. Given a branch b, we make

modifications to the true and false sides of the branch. On the true side, we

insert an additional test that probes the value that makes the condition at b

barely true. Similarly, on the false side, we probe the condition that makes it

barely false. None of these branches should do anything in their consequents

lest they change the behavior of the program, and everything should wind up

back at whatever real code would have been executed in the original program.

These extra tests simply add extra tests and edges to the control flow graph.

We now describe the transformation more formally. Suppose we have a

branch b with comparison condition c(x, y) that leads to target A if the branch

condition evaluates true and B if it evaluates false. On the edge from b to A,

which is the true edge, the compiler inserts a test between x and y for the case

where c(x, y) barely holds. For example, if c were the greater-than operator

and x and y were integers, then the comparison to insert on this edge would be

x == y +1, because x being one greater than y is the smallest value for x that

is still greater than y. Similarly, on the edge between b and B, where c(x, y)

does not hold, the compiler inserts a comparison where the condition between
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Condition True condition False condition
a > b a = b + 1 a = b

a < b a + 1 = b a = b

a ≤ b a = b a = b + 1
a ≥ b a = b a + 1 = b

Table 5.2: Additional conditions added to the true and false arms of the
original condition for integer comparisons.

x and y barely does not hold. If the condition is x > y, the condition that

barely does not hold is x = y, because it barely fails the strictly-greater-than

test. The consequents for the newly inserted comparisons are empty, but they

then proceed to their original respective targets of A and B. This example

transformation on the control flow graph is illustrated in Figure 5.2.

For integers, the operators >, <, ≤, and ≥ have well-defined boundary

conditions. Table 5.2 shows the additional boundary conditions that must

be added to each arm of an original condition. The additional conditions

correspond to the minimum or maximum value for which the condition still

holds true on that arm. For example, if the original condition is a > b, the

smallest value that a can be while still making the condition true is b + 1.

Similarly, the largest value that a can be while still making the condition false

is b. Thus, tests for these two values are added for the corresponding arms.

The two original paths in the program, representing the conditions a > b and

a ≤ b now become four paths, representing the conditions (a > b)∧(a 6= b+1),

a = b + 1, (a ≤ b) ∧ (a 6= b), and a = b.

In this work, we apply our boundary condition transformation to the

integer comparison operations >, >=, <, and <=, as shown in Table 5.2. Because

we do not require the constraint solver to support more powerful theories such
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temp = x > y;

...

...

if(temp) {

true_branch();

} else {

false_branch();

}

Figure 5.3: Boundary condition tests must recognize stored conditional results
or incorrect boundary conditions may be generated.

as sets or strings, we do not implement other such boundary conditions.

It is not sufficient to simply apply the transformation to the branch

conditionals found in the program. Many C programs store the results of

comparisons in integer “booleans” for use in later conditions. If these stored

booleans are not properly recognized and handled, vital boundary conditions

will be missed. For example, consider the code in Figure 5.3. In the if

statement, temp is compared (implicitly) to zero. Because we do not test

for boundary conditions on equality comparisons, no boundary condition is

tested. Even if we added tests that compare temp to -1 or 1, the correct

boundary conditions involving x and y will not be tested. Stored conditions

are used frequently in certain programs; tcas uses it almost excusively to avoid

repeately writing out complex predicates.

To solve this problem, we perform an additional pass that scans the

source code for these stored conditionals. The transformation is slightly more

complex than the one for a simple conditional because the stored conditional

need not be in the same basic block as the condition that subsequently uses it.

Moreover, even if the corresponding conditional that uses it can be identified,
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we cannot simply inline the original test as values may have changed. Thus,

the boundary conditions for a stored conditional must be evaluated on the

spot. Immediately after the store to the “boolean,” we add a branch that tests

exactly the same condition that was stored. Thus, to continue the example in

Figure 5.3, we would add another if after the line that tests for x > y. We

then apply the exact same transformation as before on this new conditional.

Note that in this case, we add four new paths where there was none before.

5.3.3 Generality and Limitations

This transformation is in principle applicable to any comparison for

which a boundary value is well-defined, not just integers. For example, if c

were set-inclusion between sets x and y, then the boundary case on the true

side (where x is a subset of y) would be where x equals y, as the boundary

case here is strict inclusion. Similarly, if c were string-prefix, the boundary

case would be whether the string was a proper prefix.

Our transformation does not attempt to fully solve the path inadequacy

problem, which easily reduces to the halting problem. Even ignoring issues of

undecidability, our solution only addresses boundary conditions that appear

in the original program. To understand this point, we first explain the root of

the path inadequacy problem.

The path inadequacy problem is caused by a mismatch between the way

that symbolic execution partitions the input space and the way that the formal

specification of correctness partitions the space. Symbolic execution partitions

the space by paths, such that each partition represents a path through the

program. The test system then generates one input from each partition. If the

program is buggy, there will exist “gaps” where the program path partitioning
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/* Source program */

int GreaterThanTenExcept154(int x) {

return (x > 10);

}

/* Correct program */

int GreaterThanTexExcept154(int x) {

if(x == 154) return 0;

return (x > 10);

}

Figure 5.4: A simple case where boundary condition testing on the source
program cannot reveal the bug.

and the true partitioning differ. Our solution can address the cases where

the gap overlaps with a branch that is present in the program. However, the

path inadequacy problem can still arise if there are gaps that do not overlap a

condition in the program, such as when the program fails to test for a condition

entirely.

In general, the path inadequacy problem is unsolvable without a full

formal specification of the program. Consider, for example, the function

IsGreaterThanTenExcept154 in Figure 5.4. If the function were implemented

as shown, then even with full boundary condition testing, the bug would not

be caught with input values 9, 10, and 11. The fact that 154 is special is not

present anywhere in the original program, only in the specification. Thus, in

the absence of a full formal specification, an automated testing system cannot

guarantee that all boundary conditions are tested.

Finally, our solution only addresses errors that can be revealed by

boundary values. For many operations, boundary values are not well-defined.
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For example, if the operator is bitwise-and, it is not clear what the boundary

condition tests should be. Our solution will not generate tests that are guar-

anteed to reveal these errors. However, the common corner cases of improper

conditionals, such as less-than versus less-than-or-equal, off-by-one errors, and

others are all handled by our solution.

5.3.4 Integration with Static Analysis

Unfortunately, our solution dramatically increases the number of paths

that must be searched. For each eligible comparison operation with two paths,

our transformation adds two additional paths to the control flow graph to rep-

resent the boundary conditions. In the case where the result of a comparison

is stored in a variable, it adds a hammock containing four paths where there

originally was none. Thus, this transformation can increase the number of

paths from 2n to 4n or worse.

Because our boundary condition solution does not alter any control or

data dependencies in the original program, our static analysis is performed

before inserting boundary condition hammocks. When the new boundary con-

dition branches are inserted, the compiler copies the branch data from the

“parent” branch. The weights on the boundary condition branches are set to

0/0 because there is no preference for whether values are boundary values,

only that they be tested. The classification field on the boundary condition

branches is changed to indicate that the branch tests a boundary condition

and is not actually present in the program, which allows the branch selector

to discriminate accordingly.
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5.4 Dynamic Test Case Generation Framework

Once the Bullseye compiler has transformed the input program and

produced the Branch Data file, the resulting modified program can use our

testing system to generate test inputs, as we now describe in this section.

At a high level, the dynamic test case generation framework in Bullseye

has several components.

• Symbolic execution is used to record and collect the symbolic constraints

along the path that was executed. The code to perform symbolic execu-

tion is added by the compiler. The system also records which branches

were taken or not taken and in what order.

• Environmental modeling is required to handle I/O and other interactions

with the system. We provide a simple mechanism for programs to read

inputs from streams and to write outputs to streams.

• The branch selector takes the list of branches executed by the program

and selects a branch to negate. The branch selector is the heart of the

targeted testing system; it is the only component that differs fundamen-

tally from directed testing and is the only component that directly uses

the branch data file computed by static analysis.

• The constraint solver is used to generate a new input. The existing path

constraints collected by symbolic execution plus the negated constraint

corresponding to the branch chosen by the branch selector are used to

generate a new input that behaves identically until it reaches the negated

branch, at which point it proceeds down a different path.
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• To determine whether the current input has found a fault, Bullseye calls

a user-supplied oracle. The oracle must conform to our oracle interface.

• The history and statistics component maintains detailed information

about past paths tried as well as the statistics used to generate our

results.

In the remainder of this section, we will discuss each of these compo-

nents in greater detail.

5.4.1 Symbolic Execution

As with directed test input generators [44, 87], the program under test

must be modified so that it performs symbolic execution alongside its concrete

execution. In our implementation, this transformation occurs after any static

analysis or boundary condition encoding. Our compiler takes ANSI C source

code as input and produces a modified C program as output, containing calls

to our symbolic execution library. The resulting program is then compiled and

linked with our testing system.

The modified C program itself is split into two components. The first

is an automatically generated program-specific driver file. This driver is re-

sponsible for initializing the symbolic execution system and describing to the

symbolic execution system all the C data types encountered. The second is

the instrumented program itself, which contains the original program plus ad-

ditional code that calls functions that perform symbolic execution.
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5.4.1.1 Type and Variable Declarations

In order to properly generate inputs, the symbolic execution system

needs to know about all of the types encountered in the program. Therefore,

the driver file includes a long series of calls that defines the shapes of the

various structures and unions used in the program, the names of their fields,

the sizes of various data types, and so on. The internal representation of C

types is a directed type graph, with primitive types as terminal nodes and

other types at nonterminal nodes. For example, a struct with two integer

fields will have a node for the struct that points to nodes for the fields, which

in turn point to the terminal node representing primitive integers.

Variables must also be declared. At the beginning of each function, the

compiler inserts a series of calls that symbolically declares all of the local vari-

ables. This allows Bullseye to associate names with addresses and to perform

the proper lookups when symbolic constraints need to be solved. In addition,

formal function parameters must also be declared; these behave slightly differ-

ently as the values must also be copied to properly simulate C’s call-by-value

semantics.

5.4.1.2 Symbolic Constraints

Symbolic execution is actually performed by calling a set of functions

that handle symbolic assignments and evaluation. Each statement in the pro-

gram under test is automatically transformed by the compiler to include the

correct calls to perform symbolic execution. A sampling of the transformations

is shown in Table 5.3.

The transformations themselves are fairly straightforward and follow

the same pattern as prior work [87]. The symbolic assign function as-
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Source Instrumentation
x=y; symbolic assign((void*) &x, "y");

*x = y; symbolic assign((void*) x, "y");

x = *y; symbolic deref((void*) &x, "y");

*x = *y; symbolic deref((void*) x, "y");

x = y op z; symbolic eval((void*) &x, "y", OP op, "z");

if(x op y) goto l;

comparison result = x op y;

evaluate predicate("x", OP op, "y",

comparison result, "branchID");

Table 5.3: Source code and the corresponding symbolic instrumentation. The
instrumentation is added before the original statement.

signs the symbolic value of the named variable to the specified address. The

symbolic deref function stores the symbolic address of the named variable

in the specified address. The symbolic eval function adds the appropriate

symbolic constraints to values stored as the result of a computation. Finally,

the evaluate predicate generates the appropriate symbolic constraints for

a branch condition and associates it with the branch identifier. The branch

identifier tells Bullseye the key to use when looking up data for this branch in

the branch data file, as discussed in Section 5.2.5.3.

Function call and return is handled with a stack. Several functions allow

the system to symbolically push and pop variables onto a stack for function

calls.

For additional information on our implementation of a directed testing

system, see prior work [90].
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Function Purpose
inputstream init() Initializes stream
inputstream getchar() Returns char or EOF
inputstream getint() Returns int or EOF
inputstream scanint(ptr) Writes int to ptr

inputstream getinputstream() Returns pointer to array
inputstream getsize() Returns size of input stream
inputstream printstream as char() Prints contents of char stream
inputstream printstream as int() Prints contents of integer stream
inputstream outputint(i) Outputs i to output
inputstream getoutputstream() Returns copy of output array
inputstream getoutputsize() Returns size of output

Table 5.4: Functions for accessing input and output streams.

5.4.1.3 Entry Point

As with other test input generators, the compiler must be provided

with a program entry point, which defines the input types that the system

should generate. This entry point need not be (and often is not) the main

function. For example, to test a list insert function, the user simply specifies

that function as the program entry point, eliminating the need to write main()

as a wrapper or test driver for that function. The inputs to the program are the

arguments to the function and we use the input generation process described

in previous work [87] to initialize any structures or complex pointer-based data

types.

5.4.2 Environment Modeling

Many programs interact with the environment by reading from or writ-

ing to files and streams. Thus, in order to support these programs, interaction

with streams must be modeled.
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Our system supports limited interaction with input and output. We

model a limited form of standard input and output. A program may read

integer-type values from a single input stream (representing standard input)

and output integer-type values to a single output stream. The API is shown

in Table 5.4.

We implement streams by using arrays and by translating the appropri-

ate calls to their corresponding array constraints. For example, the reading of

the first character from the input stream into a variable c creates a constraint

that specifies that c is equal to the first element of the input array and that the

array index is now incremented. These array accesses are augmented to intro-

duce constraints to simulate the behavior of the file input/output functions so

that the program need not be aware that the input stream is in fact an array.

For example, if an attempt is made to read data beyond the end of the “file,”

the appropriate EOF code is returned. Thus, programs employing the com-

mon while(input != EOF)... idiom can be tested without modifications to

the program logic.

Because C does not allow for easy resizing of arrays, a maximum size

must be chosen ahead of time. By default, our system limits standard input

to ten inputs, but this value can be adjusted upward or downward by the user

as needed.

Bullseye does not model directories or filesystems, like most testing

systems [22].

The I/O interface is used by manually transforming I/O calls in the

original program. Calls to various input functions such as getchar or scanf

must be replaced with special calls to our engine. Note that our input stream

is not exactly the same as standard input; a program can directly request
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an integer value instead of using scanf with format strings. This simplifica-

tion removes unnecessary constraints relating integer inputs to their character

representations and greatly reduces the complexity of the path search space.

5.4.3 Constraint Solver

The constraint solver is used to generate new program inputs. It re-

ceives a set of path constraints representing the path to follow plus a negated

constraint. It returns either a solution to the path constraints plus the negated

constraint or a “no solution” answer indicating that the path is infeasible. Our

input generation methods, including those for pointer-based data structures,

is identical with CUTE [87] and our implementation is based largely on the

description in their paper.

Our implementation uses the CVC3 constraint solver to generate new

program inputs. We generate linear constraints over integer and integer-like

variables, including data structures with integer fields and arrays of integer-like

values, including character arrays. In addition, we support complex pointer-

based data structures using previous input generation techniques [87]. Floating

point operations are not currently supported by our system, although that is

not an inherent limitation. Non-linear constraints, such as those introduced by

multiplication or division, are modeled by using the concrete value to reduce

the expression to a linear constraint, as in concolic testing systems [87]. While

this simplification does not guarantee that all paths will be explored, it can in

most cases allow execution to continue.
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5.4.4 Branch Selectors

The branch selector is the component responsible for choosing the

branch to negate in order to produce the next input. Bullseye provides an

interface for multiple branch selectors. A branch selector has access to data

collected during the previous execution, such as path constraints and branch

history. It returns a prioritized list of branches to negate; the first branch

returned is the branch selector’s top pick, and so on. The testing engine can

reject picks from the branch selector if they are duplicates, and it defaults to

depth-first search if the branch selector does not indicate a preference for any

branches.

Our branch selectors are implemented using priority queues. The branch

selector examines all branches from the current execution and adds to the pri-

ority queue any that it wishes to alter. When the testing engine requests a

candidate branch to invert, the lead element of the priority queue is popped

off and returned.

5.4.4.1 Simulating Directed Testing

To simulate the depth-first search behavior of systems like DART, we

implement a simple branch selector that uses the branch index as the priority.

Thus, the first branch in the program has priority 1, the second has priority

2, etc, so the last branch will have the highest priority. In Section 5.4.6.1 we

discuss how Bullseye records all previously explored paths and subtrees. The

Bullseye engine will reject previously explored paths and any proposed branch

selections that would cause it to re-explore already-explored space. By using

the path history to prevent repeats, the resulting behavior is identical to a

simple depth-first search. This branch selector allows us to directly compare
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the performance of our system against prior work.

5.4.4.2 Targeted Branch Selection

At runtime, the only conceptual difference between Bullseye and di-

rected test input generators is that the Bullseye branch selector uses priorities

computed by static analysis. These branch priorities are computed as follows:

• The default priority for a branch is the branch index, which results in a

default strict depth-first search. If there is no data for the branch, the

priority remains as the index.

• If the branch tests for boundary conditions and has never been selected

before, the priority is increased by 10000. This ensures that new bound-

ary conditions are explored immediately upon being exposed.

• If the branch goes in a direction that does not match the branch weights,

then the priority is adjusted upward depending on the degree of the

mismatch. If the branch weights indicate an absolute (X/0 or 0/X)

preference for a direction and the current branch does not match, the

priority is increased by 1000. If the branch is a mismatch and the ratio

between the weights in that direction exceeds a threshold, the priority

is increased by the square of the ratio, capped at 400 (202). The final

weight is multiplied against a scale factor. We use a default threshold

corresponding to a 1.3:1 ratio and a scale of 1.0.

We evaluate our system with just this simple priority function, whose

values were empirically derived. Although it is surprisingly effective, there is
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still significant work that can be done in exploring the best heuristics for effi-

cient targeted testing. In future work, we plan to study the relative importance

and sensitivity of the various parameters across a variety of benchmarks. In ad-

dition, automated machine learning techniques such as genetic algorithms [83]

can be used to learn coefficients for the priority function.

Later, in Section 6.7, we will examine the effects of varying the scale

and threshold parameters and determine how sensitive targeted testing is to

the heuristic function.

5.4.5 Test Oracle Interface

To know whether a given execution was correct, the system calls a

test oracle supplied by the user. The compiler automatically generates an

oracle.h, which contains the signature of an oracle function. The oracle

accepts as parameters the following:

• Return value. The return value, if present, of the original function under

test. This parameter is not available if the function returns void.

• Function arguments. The oracle has access to the arguments passed to

the function under test. Note that these arguments are from after the

execution of the function under test. If the arguments point to mutable

data structures, the oracle will see through these parameters the data

structures after the function under test has been executed.

• Function argument copies. The oracle has access to copies of the ar-

guments to the function under test. These copies are not touched or

perturbed by the function under test in any way; if they point to mu-

table data structures, the oracle will be able to examine an identical
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(except for memory addresses) copy of the data structure before the

function under test was executed.

The oracle returns a nonzero value to indicate that the case “passes”

and zero to indicate failure. If the user does not wish to provide an oracle or

does not wish to use an oracle, a simple function that always returns 1 will

suffice; Bullseye will then consider every input to have passed.

For programs that use the input and output stream interfaces, the

oracle writer also has access to copies of both the input and output stream.

The input stream is given as an array of integers and a corresponding size

indicating the number of items in the stream. The output stream is given

similarly. It is the responsibility of the oracle writer to ensure that the oracle

reads from the input stream in a manner semantically compatible with the

original program, and to perform any necessary and appropriate comparisons

between the output stream and any expected output.

5.4.6 History and Statistics

The Bullseye system also contains components for tracking path history

and various statistics. The path history component allows Bullseye to track

which paths have been explored as well as which subtrees have been fully

explored. The statistics component monitors Bullseye as it runs and produces

statistics that we use in our evaluation.

5.4.6.1 Path History

Unlike prior directed testing systems, Bullseye needs to keep track of

explored path information. Bullseye must track such information because it
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can (and often will) explore branches in an out-of-order manner. If branches

are explored depth-first, only minimal history needs to be maintained, but

targeted branch selectors have the freedom to explore branches in arbitrary

order.

The path history tracker logs information about paths that have already

been explored. Whenever an input is generated and executed that causes

execution to proceed down a previously unexplored path, the path is noted

and logged. By tracking information about actual and attempted paths, the

path history tracker can provide several essential services to the engine and

branch selector:

• Duplicate verification. The path history tracker can determine if a can-

didate path (or just-executed path) is a duplicate of an already-explored

path. Duplicate verification allows us to log and measure the “redun-

dancy” caused by out-of-order exploration.

• Proposed path checking. Given an existing path (branch vector) and

a proposed branch flip, the path history tracker can determine if all

paths in that direction have already been explored. If so, then flipping

the branch is guaranteed to result in a duplicate path. The history

mechanism allows Bullseye to avoid the duplicate selection and choose

another branch.

• Full subtree exploration. The history tracker can verify whether all paths

with a given prefix have been explored, allowing Bullseye to systemati-

cally explore execution subtrees. With a null prefix, it is equivalent to

exploring all paths. The engine uses full subtree exploration from the

root as a termination condition.
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Support for path feasibility is integrated into the path history tracker.

When the constraint solver is invoked to determine the feasibility of a path (via

an existing path prefix from a known feasible branch vector plus a proposed

branch flip) and determines that the proposed flip is infeasible, the entire

subtree representing the infeasible flip is marked completely explored.

The path history tracker is implemented as a lazily-constructed splay

tree with information stored along paths from the root to leaves. Each node in

the tree represents a possible branch decision (true or false). A path that has

been explored is represented as a path through the tree, with the particular

decisions exactly reflecting the corresponding branch vector. All nodes in the

tree are created on-demand; nothing is added until the path that requires those

nodes is added to the tree. The last branch in the branch vector represents

the end of the program and corresponds to leaf nodes in the tree; they are

marked as having no children.

Additionally, the interior nodes store completion information represent-

ing existential and universal quantification for all paths with the same prefix

as the node. The path-explored bit on each branch represents whether there

exists a path with the same prefix as the current node, followed by the relevant

true/false decision. The all-paths-explored bit records whether all paths with

the same prefix as the current node followed by the relevant choice have been

explored. For example, if node n represents the path prefix TTF, the outgo-

ing F edge will have the path-explored bit marked if there exists an already-

explored path with the prefix TTFF, and will have the all-paths-explored bit

marked if all paths with the TTFF prefix have been explored.

Moreover, due to the nature of concolic execution, there are concrete

conditions that cannot be flipped. The flip side of a concrete condition is
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considered infeasible and therefore completely explored. Information about

concrete branches is added whenever a new branch vector is added.

Because the execution tree can be potentially enormous, the implemen-

tation aggressively deletes nodes after they are no longer required. If a node’s

true and false subtrees are fully explored, the the appropriate side on the

parent is now fully explored and the node (and all of its children) can be deal-

located. If Bullseye is allowed to run until all paths are explored, eventually

all nodes except the root and the very last node will be deallocated.

The path history tracker incorporates a small amount of instrumenta-

tion to collect memory usage information, recording the current size of the

tree as well as the maximum size attained thus far. All measurements are in

terms of the number of nodes.

5.4.6.2 Logging and Statistics

The logging and statistics facility provides a means to gather experi-

mental data for mutant kill speed and other relevant metrics. The statistics

package reports numerous things:

• Number of iterations. The total number of iterations (inputs generated)

thus far.

• Number of unique paths. The number of unique paths explored thus far.

• Unsatisfiable paths attempted. The number of candidate paths rejected

by the constraint solver as unsatisfiable.

• Duplicate paths. The number of duplicate paths added. Duplicates can

result from flipping branches out of order.

127



• Errors found. The number of errors found thus far, according to the test

oracle.

• First error found. The iteration on which the first error was found. The

iteration number also measures mutant kill speed.

• Passed branches. A complete list of branch flips that resulted in a passing

path according to the oracle.

• Failed branches. A complete list of branch flips that resulted in a failing

path according to the oracle.

• Branch flip histogram. A histogram of branches and the number of times

each was flipped.

• Path length (unique). The average, min, and max path lengths, as cal-

culated over unique paths.

• Path length (all). The average, min, and max path lengths, as calculated

over all paths (which includes duplicates).

The statistics package offers a number of public methods for getting,

setting, and incrementing various elements of logged data. These are called

from the relevant points within the engine. These values can be reported

and printed at any time; currently the statistics are simply dumped at the

end. In our experimental evaluation, these results and statistics are fed into

spreadsheets for further processing and analysis. Not all of the information is

used in our evaluation; we have found that the branch lists and histograms are

not generally useful or interesting outside of debugging, and the path length

numbers are similarly unenlightening.
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As a practical matter, the fact that the statistics and logging pack-

age keeps full histories and information about every path executed limits the

number of iterations that Bullseye can run before it runs out of memory. For

typical programs on a 32-bit system, Bullseye typically runs out of memory

after a few hundred thousand inputs. Disabling the statistics and history

package would improve this number substantially, but would inhibit the data

collection needed to perform studies and experiments.
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Chapter 6

Evaluating Bullseye

In this chapter, we will evaluate Bullseye, our targeted testing system,

as well as our automated boundary condition testing transformation. Our

evaluation is guided by a desire to answer the following questions:

• Does targeted testing find bugs faster than directed testing?

• Does targeted testing find more bugs than directed testing?

• Does automated boundary condition testing find more bugs when added

to targeted or directed testing?

• Does automated boundary condition testing slow down bug finding?

• When does boundary condition testing perform well and why?

• How sensitive is targeted testing to the precision of the static analysis?

• How sensitive is targeted testing to the parameters in the heuristic func-

tion?

• What insights have we gained and what future directions are suggested

by our results?
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6.1 Metrics

To answer our main questions, we need a metric to measure how fast

a testing system finds bugs. Because dynamic test input generators produce

a continuous stream of candidate inputs rather than a single fixed test suite,

we cannot use traditional measurements like the size of the test suite. Prior

evaluations of directed testing systems have focused largely on the number of

inputs generated, percentage of statements covered, or the number of bugs

found. While valuable for demonstrating high coverage, these metrics are

inadequate for evaluating targeted testing because it does not directly measure

bug-finding speed. Instead, our metric is mutant kill speed (MKS), which is

the number of inputs that the system generates before revealing the first fault.

Mutant kill speed directly measures how fast an input generator finds bugs

while remaining independent of hard-to-control variables like processor type

and system memory that might pollute measurements such as bugs per second.

Lower numbers for mutant kill speed represent faster fault identification.

We also wish to find whether targeted testing can result in repeated

or duplicate test inputs. Targeted testing can generate duplicate inputs while

a fixed search pattern will not. This is because targeted testing can invert

early branches before it has finished exploring all the later ones. For example,

suppose the initial random input sends the program down some path P . The

targeted selector decides to flip branch 3 rather than explore the paths near

the initial input. Later, if the targeted selector flips 3 back to the original

direction, there is a chance that the constraint solver will generate an input

that happens to follow the same path P . If this happens, the input is a

duplicate. In our results, we measure the efficiency of our system, which is the

proportion of total inputs generated that are not duplicates. By this metric,
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Name Purpose Versions LOC
triangle Triangle classification 9 42
tictactoe Tic tac toe checker 4 70
tcas Aircraft collision detection 41 173
schedule Process scheduler 8 412
printtokens String tokenizer 6 569
polymorph Filename converter 12 716
sjeng-core Chess (move checker) 9 3425
eqntott Truth table calculator 9 4363
tr Unix text translator 5 7683

Table 6.1: List of benchmarks, including the number of mutants (versions)
evaluated and the program size in terms of source code.

directed testing has 100% efficiency.

6.2 Test Benchmarks

We evaluate our system using nine benchmarks, shown in Table 6.1.

From the Software-artifact Infrastructure Repository [36] we use three pro-

grams from the siemens test suite: tcas, schedule, and printtokens. From

the PEST suite [68] we use the classic triangle classification program. From

the BugBench [66] suite, we use the GNU polymorph utility. From SPEC

CPU2006 we use the sjeng benchmark, and from SPECint92 the eqntott

benchmark. From the GNU Coreutils package, we test the standard Unix util-

ity tr. Finally, we add one synthetic benchmark of our own that evaluates

tic-tac-toe boards, tictactoe.

In order to provide a more complete picture of targeted testing, we

chose our programs to maximize qualitative diversity. If only system utilities

or only numeric applications or only state machines were tested, we would not
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be able to generalize our results to other types of programs. We selected these

benchmarks because they represent a wide range of program characteristics,

differing greatly in the data structures used, the operations performed, and

the overall program structure.

Our study includes several tiny benchmarks, which admit a detailed

study of program and branch selector behavior, allowing us to understand

why certain test strategies succeed or fail. The smallest programs contain no

loops and allow the test generators to explore the entire path space, which is

particularly important for our study of boundary condition testing.

We will now discuss the benchmarks in more detail. For the benchmarks

from the SIR suite, slight modifications had to be made because the SIR

programs include their own test driver. The SIR suite relies on I/O differencing

instead of a native-language oracle and therefore requires a driver that reads

input from standard input and parses it before passing the input to the function

that actually performs the task. Since Bullseye can directly call functions and

programs under test, this driver is not needed and Bullseye either calls the

appropriate function directly or calls a wrapper driver that we provide. Other

modifications and details are discussed in the section for each benchmark.

6.2.1 triangle

The triangle benchmark is a short triangle-classification program that

classifies triangles, given by the lengths of their sides, as equilateral, isosceles,

and so on. The program has a very small state space, is wholly contained

within a single short procedure, and is a standard benchmark for evaluating

software testing systems.
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6.2.2 tictactoe

The tictactoe benchmark was written by the author and contains a

single procedure. It takes as input a tic-tac-toe board and determines if any

player has won the game and if so, returns the player. The program essentially

consists of a long series of short-circuited comparison operations that checks

the rows, columns, and diagonals and was intended to be superficially similar

to the sjeng-core benchmark on a much smaller scale. Virtually every path

in the program is feasible and represents a different board configuration. As

a result, the program has a far larger state space than its small size would

indicate.

This program was also deliberately written to serve as a worst-case

scenario for our automated boundary condition testing technique. The board

representation employed uses negative integers for player X, positive integers

for player O, and zero for empty squares. Thus, the program consists almost

entirely of greater-than and less-than comparisons. However, there are no

boundary conditions whatsoever in tictactoe. Therefore, boundary condition

testing is completely useless while also guaranteeing worst-case exponential

blowup.

6.2.3 tcas

The tcas benchmark is extracted from an aircraft collision warning sys-

tem and was originally from the siemens software testing suite. The program

contains no loops and evaluates a very complex predicate (the collision warn-

ing predicate) in several steps, using numerous short functions as shorthand

for certain formulae and arithmetic expressions. The program heavily stresses

numerical predicates but does not use complex data structures; all variables
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are integers and no data structures are created dynamically.

6.2.4 schedule

The schedule benchmark simulates the operation of a job scheduler.

The program accepts some initial values for the number of jobs as well as

a stream of scheduler commands such as “upgrade priority” and “flush.” It

produces a list containing the order in which processes exit the scheduler as

output.

In addition to the core process scheduling logic, a significant portion

of the program is devoted to the implementation of priority queues. The

program itself is structured as a single main loop that reads commands and

handles them in the various arms of a very large switch statement.

Our test driver treats the initial process settings as input parameters

and uses the I/O library to simulate new scheduler commands. Differences in

the process exit order are considered fault-revealing deviations.

6.2.5 printtokens

The printtokens benchmark parses an input stream and produces

tokens along with a classification of the token type, such as integer constant,

string constant, identifier, and so on. The program makes extensive use of

standard string operations.

Our test driver uses the I/O library to provide character inputs to the

tokenizer and considers differences in the resulting token classification to be

fault-revealing.
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6.2.6 polymorph

The polymorph benchmark is a small Unix utility that converts DOS-

style filenames into Unix-style file names. The program stresses character-level

string operations but not string classification.

We replace the main function of the original program with a test driver

that calls the function that actually converts filenames. The few remaining

other parts of the program exist simply to make system calls to perform the

actual file renaming and are therefore not relevant to our test harness as we do

not simulate the underlying file system. Thus, we only check that it performs

the filename conversions correctly. Our test driver uses the I/O library to

provide arbitrary-length input strings to serve as filenames. Any deviation in

the output string is considered fault-revealing.

6.2.7 sjeng-core

The sjeng-core benchmark is adapted from Sjeng 11.2, a chess playing

program. The original program is a sophisticated chess-playing program that

uses, among other things, a heuristic search combined with a database of

opening moves. We test the portion of Sjeng that evaluates the legality of

proposed chess moves, omitting the portions that handle the move database

and search heuristics. The size of the full Sjeng program is over 17,000 lines of

code; the number we report in Table 6.1 is only the portion directly involved

in checking move legality.

Our test driver also contains some code that validates chess boards

before passing them to the move checker. Sjeng assumes that the board always

represents a valid chess board and will behave incorrectly if the board is invalid.

For example, placing six kings on the board or removing the edges of the
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board will cause the program to return nonsensical results. To eliminate these

spurious errors, our test driver enforces board validity as a precondition before

transferring control to the Sjeng move checker.

6.2.8 eqntott

The eqntott benchmark, which was formerly a part of the SPEC suite,

converts boolean equations into truth tables. The program stresses sorting and

iterative computation.

The program itself first parses the input strings and builds representa-

tions of the equations. It then builds several data structures representing the

constraints in the equations and repeatedly “grinds” over this structure until

it converges on an answer, which is the final truth table.

Our test driver bypasses the parser and tokenizer and directly passes a

well-formed equation to eqntott. The equation itself is obtained by reading

symbols and operations via our I/O interface in postfix order; this minimizes

the amount of time the testing system is required to spend on parsing. Any

deviation in the output truth table is considered fault-revealing.

6.2.9 tr

The tr benchmark is the Unix tr utility, from the GNU Coreutils

package, and is installed on virtually every Linux system today. The program

is commonly used by shell scripts to perform text substitution and replacement

tasks. It takes as input two specification strings and translates an input stream

by replacing characters in the first specification string with their counterpart

in the second specification string.
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Our test driver simulates invocation of tr from the command line with

default options, with two strings up to length 5 for the specification strings

and an input stream as simulated by our I/O interface. Faults are revealed if

the program and the test oracle produce different output strings.

6.3 Test Methodology

We evaluate our system as though it were a part of a change manage-

ment system, and we use a form of mutation testing [2] to simulate a step

in program evolution. The original program represents the previous program

version, the mutants represent new versions derived by changing the original,

and the test goal is to evaluate Bullseye’s ability to identify bugs introduced

by the changed program, both in terms of the number of mutants it could kill

and the number of inputs generated before each mutant was killed.

6.3.1 Mutant Selection

Unlike some evaluations using mutation testing, we do not use randomly

generated mutants as the difficulty of killing randomly generated mutants may

not be representative of real bugs when compared with hand-seeded bugs. In

fact, prior work has shown that hand-seeded faults are significantly harder for

testing systems to find than randomly generated mutants and in some cases

can be harder than even real-world bugs [4]. Thus, for all of our experiments,

we rely on hand-seeded faults.

For the SIR [36] and PEST [68] benchmarks, we use the mutants sup-

plied by the maintainers. In cases where the mutation is in the test driver,

we discard the mutant. The polymorph, sjeng-core, tr, and eqntott pro-

grams do not come with standard mutants or different program versions, so
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we generated hand-seeded mutants, emphasizing the same types of mutations

used by SIR. Finally, since tictactoe is our own program, we hand-seeded

our own faults.

6.3.2 Test Oracle

Because our testing system requires an oracle to determine if a fault

has been found, we supply test oracles for all of our benchmarks. We create

these oracles by creating a complete second copy of the original version of

the program under test, with all function names and global variables name-

mangled to prevent namespace collisions during compilation. The oracle

function itself performs any actions necessary to prepare the inputs for the

copy and to compare the results after the copy returns. If the program uses our

I/O interface, the oracle mimics stream access with access to the underlying

input stream arrays, essentially the reverse of the original process of simulating

streams with backing arrays.

6.3.3 Test Parameters

In general, it is impossible to completely test a program, especially if a

program contains loops, because the number of paths may be extremely high

or infinite. We must therefore choose an upper limit on the number of inputs

generated before the testing system is deemed to have failed to find a fault.

For our experiments, this limit is set at ten thousand inputs; if no faults are

found within this limit, the test system is considered to have failed to find any

faults in that mutant.

In addition, several of the programs read from potentially unbounded

streams. In order to prevent the program from simply testing longer and
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longer streams and to limit the likely state explosion from long input streams,

we must bound the size of any input streams. For all of our experiments, we

bound standard input to ten inputs. This is not the same as ten characters;

a program can directly read ten integers without any parsing from our input

stream, which would have a textual representation of much more than ten

characters. There is no bound on the data structures that are passed directly

as function parameters.

We must also control for randomness because the constraint solver can

randomly generate satisfying inputs which can affect the mutant kill speed.

For each program version, we execute the program seven times and use the

median result, based on the iteration on which the fault was identified. This

approach reduces the noise that is possible due to luck on the part of the

constraint solver. The Bullseye system itself uses no random numbers, so the

constraint solver is the sole source of non-determinism.

6.4 Evaluating Targeted Testing

Our first task is to evaluate the effectiveness of Bullseye against di-

rected testing on the baseline program versions. Table 6.2 shows a comparison

between Bullseye (labeled TGT) and directed testing (labeled DFS).

6.4.1 Faults Found

The most important goal is finding faults in programs. As shown in our

results, Bullseye finds 71/103 faults while directed testing finds only 65/103.

There are no cases in which directed testing finds a fault that Bullseye does

not. Most notable, directed testing was unable to find any faults among the

six versions of printtokens within ten thousand iterations, while Bullseye was
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Benchmark
Bugs Found Iter Found

Imp Paths Eff.
DFS TGT DFS TGT

triangle 5/9 5/9 8.2 3.8 2.04× 15.89 0.9248
tictactoe 4/4 4/4 15.5 15.5 1.0× 1645.6 0.9756
tcas 30/41 30/41 19.62 7.97 2.76× 196.65 0.9324
schedule 0/8 0/8 NA NA NA 10000 0.9612
printtokens 0/6 5/6 NA 26.2 NA 10000 0.9888
polymorph 12/12 12/12 7.83 4.83 1.58× 10000 0.8414
sjeng-core 6/9 6/9 21.67 14 2.28× 10000 0.9100
eqntott 8/9 9/9 971.13 318 5.48× 10000 0.9512
tr 0/5 1/5 NA 78 NA 10000 0.9035
Average/Total 65/103 71/103 175.72 58.54 2.52× 0.9321

Table 6.2: Comparison of depth-first search (DFS) vs. targeted testing (TGT).
Iteration found is the average iteration found across all versions of that pro-
gram. The relative improvement is an average of the ratio of the iteration
found over each individual version and thus differs from a simple ratio of the
average iteration found. Efficiency is TGT’s proportion of paths explored that
are not duplicates.

able to find 5/6 after an average of only 26.2 iterations. Moreover, Bullseye

could find all of the faults in eqntott while directed testing misses one case,

and Bullseye finds one fault in tr while directed testing is unable to find any

at all. Thus, targeted testing is able to find more bugs than ordinary directed

testing.

6.4.2 Mutant Kill Speed

Let us now look at mutant kill speed, measured here in terms of the

number of iterations required to find a fault. The Iter Found columns in

Table 6.2 show the average iteration number on which the fault was found for

each of the benchmarks. The Imp column shows the relative improvement in
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mutant kill speed from directed to targeted testing. This improvement is not

the same as the ratio of the average iteration found for each of the benchmarks

(which is a ratio of averages); rather, it is computed by first computing the

ratio for each of the mutants and then finding the average of the ratios (an

average of ratios).

We see here that in the cases where both Bullseye and directed testing

are capable of finding the fault, Bullseye finds the fault 2.52× faster on average.

That is, Bullseye only generates one-half to one-third the number of inputs as

directed testing before it can find a fault. For some programs, the ratio can

be even greater, up to 5.48× in the case of eqntott.

Moreover, this speedup figure understates Bullseye’s advantage over

directed testing because this ratio can only be computed for the mutants where

both systems find the fault. If only Bullseye finds the fault, it is not credited

with what is arguably an infinite speedup.

6.4.3 Input Generation Efficiency

The last column in Table 6.2 gives the efficiency of the Bullseye system

as a ratio between the unique paths tested and the total number of paths

tested. There is significant variation between the benchmarks, from a high

of almost 99% for printtokens and a low of around 84% for polymorph,

with an average efficiency across all benchmarks of around 93%. Thus, up to

16% of the inputs Bullseye generates are redundant and duplicate prior effort.

As long as the efficiency does not unduly affect mutant kill speed, it is largely

meaningless as the goal of Bullseye is to find faults quickly, not to generate lots

of inputs quickly. Nonetheless, we believe that the average efficiency remains

quite acceptable even if one is aiming to simply generate many inputs.
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Fortunately, we find that the somewhat lower efficiency of Bullseye

does not hamper its power to find faults as measured by mutant kill speed. To

understand this better, we enabled detailed debugging output for the bench-

marks and observed the running efficiency ratio while Bullseye generated in-

puts. We found that efficiency actually remains very high until some number

of fault-revealing inputs are generated and that the efficiency worsens around

the middle or end of the run. What this means is that the overwhelming

majority of these duplicate inputs are being generated after the fault has al-

ready been found and therefore does not affect mutant kill speed. This is not

surprising, as duplicates are only generated when Bullseye flips back a branch

that it flipped earlier. As long as branch flips take Bullseye towards faults,

there should be minimal duplicates until the fault is found.

6.4.4 Additional Observations

The results for the two smallest programs are quite remarkable. In fact,

it was these results that motivated us to develop our automated boundary

condition testing technique in the first place. We see that in 11 out of 41 cases

in tcas and in 4 out of 9 cases in triangle, neither targeted nor directed

testing is able to identify the faults, despite the fact that the programs contain

no loops and all paths are explored. Upon close inspection, the affected versions

suffer from the path inadequacy problem. The constraint solver generates

inputs that traverse every path, but it does not generate the exact input

required to reveal the fault. The frequency with which boundary condition

errors occur shows that the path inadequacy problem is surprisingly common.

We emphasize that the issue is not with the specific search strategies used;

any automated testing systems based on symbolic execution can similarly fail
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regardless of the sophistication of the search strategy.

Neither targeted testing nor depth-first search find any faults in any

version of the schedule benchmark. Depth-first search fails for two reasons.

First, the search space is enormous and the initial random input never executes

a path close to one that would reveal a fault. Second, human inspection shows

that these faults can typically be revealed only through a highly specific set of

operations. For example, one version introduces a simple fault in the priority

queue code that would be easy to find via careful unit testing. However,

because the priority queue code is evaluated in the context of the scheduler that

uses it, the fault is missed unless a specific and non-obvious schedule is used.

Bullseye is unable to help for a third reason: All operations are performed

on a global data structure. Because every operation uses the priority queue,

Bullseye’s static analysis determines that every branch in the program affects

every other, resulting in useless branch data.

Conclusion Bullseye is able to find more faults than ordinary directed test-

ing. In the cases where both are able to find a fault, Bullseye finds it an average

of 2.5× faster. Although Bullseye is slightly less efficient than directed testing

when it comes to generating duplicate inputs, this does not affect mutant kill

speed because the duplicates are generated after the fault has already been

found.

6.5 Evaluating Boundary Condition Testing

We now evaluate our technique for automated boundary condition test-

ing. We apply our transformation to our benchmarks and examine how bound-

ary condition testing affects both Bullseye and directed testing.
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Benchmark
Bugs Found Iter Found

Imp Paths Eff.
DFS TGT DFS TGT

triangle 9/9 9/9 22.56 15.22 1.46× 86.33 0.9248
tictactoe 4/4 4/4 89.5 92.75 0.97× 10000 0.9763
tcas 38/41 38/41 195.7 139.51 6.11× 5473 0.9759
schedule 0/8 0/8 NA NA NA 10000 0.9115
printtokens 0/6 5/6 NA 23.8 NA 10000 0.9868
polymorph 12/12 12/12 69.58 8.67 4.68× 10000 0.9076
sjeng-core 8/9 8/9 23.75 15.38 2.35× 10000 0.8866
eqntott 9/9 9/9 776.67 227.56 7.18× 10000 0.9539
tr 0/5 3/5 NA 100.33 NA 10000 0.9131
Average/Total 76/103 81/103 196.29 77.9 3.79× 0.9374

Table 6.3: Comparison of depth-first search versus targeted testing with
boundary condition testing. The columns are the same as in Table 6.2.

Our main results are presented in three tables to better show the ef-

fects of boundary condition testing on directed and targeted testing. Table 6.3

shows the performance of both directed and targeted testing with boundary

condition testing side-by-side. Table 6.4 shows directed testing with and with-

out boundary condition testing side-by-side, allowing us to examine the effect

of boundary condition testing on directed testing alone. Finally, Table 6.5

shows targeted testing with and without boundary condition testing side-by-

side, showing the effects of boundary condition testing on targeted testing.

6.5.1 Faults Found

We first examine boundary condition testing’s effect on fault identi-

fication. In Table 6.3, the Bugs Found column shows the number of faults

identified for each of the benchmarks. We find that boundary condition test-

ing identifies significantly more faults, finding a total of 88/103 of the seeded
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Benchmark
Bugs Found Iteration Found

Slowdown
Base BCT Base BCT

triangle 5/9 9/9 8.2 22.56 2.28×
tictactoe 4/4 4/4 15.5 89.5 6.74×
tcas 30/41 38/41 19.62 195.7 4.75×
schedule 0/8 0/8 NA NA NA
printtokens 0/6 0/6 NA NA NA
polymorph 12/12 12/12 7.83 69.58 6.33×
sjeng-core 6/9 8/9 21.67 23.75 1.09×
eqntott 8/9 9/9 971.13 776.67 0.95×
tr 0/5 0/5 NA NA NA
Average/Total 65/103 80/103 175.72 196.29 3.69×

Table 6.4: Comparison of boundary condition testing, using depth-first search.
Base represents directed testing without boundary conditions, while BCT rep-
resents directed testing with boundary condition testing. Slowdown shows the
average of the ratio of the iteration found over each individual version. Path
increase is calculated for the two programs that have a finite number of paths.

faults when used in combination with targeted testing, compared with only

65/103 for directed testing without boundary condition testing. This repre-

sents a 35% improvement in fault coverage, a very significant improvement.

Moreover, this improvement is due in large part to the effectiveness

of boundary condition testing at tackling the path inadequacy problem. The

triangle and tcas benchmarks are small benchmarks for which it is possible

to explore all paths in the program. Therefore, any faults not found after a

complete exploration of the path space are due to the path inadequacy problem

and thus cannot be found by any symbolic execution system except through

chance. Even without directed testing, Table 6.4 shows that our boundary

condition testing technique reliably improves the fault coverage of directed

testing for triangle from 5/9 to all 9/9 versions, and improves tcas from
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Benchmark
Bugs Found Iteration Found

Slowdown
Base BCT Base BCT

triangle 5/9 9/9 3.8 15.22 3.55×
tictactoe 4/4 4/4 15.5 92.75 6.95×
tcas 30/41 38/41 7.97 139.51 2.67×
schedule 0/8 0/8 NA NA NA
printtokens 5/6 5/6 26.2 23.8 0.91×
polymorph 12/12 12/12 4.83 8.67 1.98×
sjeng-core 6/9 8/9 14 15/38 0.93×
eqntott 9/9 9/9 318 227.57 1.15×
tr 1/5 3/5 78 100.33 3.78×
Average/Total 71/103 88/103 58.54 77.9 2.74×

Table 6.5: Comparison of boundary condition testing, using targeted testing.
The columns are the same as Table 6.4.

30/41 to 38/41 versions. Because these programs can be completely explored,

no amount of cleverness in targeted testing could have delivered these gains;

boundary condition testing is required to expose the conditions that reveal the

faults.

Boundary condition testing also shows benefits in larger programs as

well. Boundary condition testing enables ordinary directed testing to find two

additional faults in sjeng-core, bringing the total from 6/9 to 8/9, while

also finding the last fault in eqntott. For targeted testing, these additional

benefits are also realized. As shown in Table 6.5, targeted testing gains the

same improvement in fault coverage for sjeng-core. Boundary condition

testing is not required for eqntott because targeted testing already finds all

9/9 faults. Moreover, coverage for tr improves from a mere 1/5 faults to

a much more respectable 3/5 faults. In these cases, both targeted testing

and boundary condition testing were required; directed testing with boundary
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condition testing still does not reveal any faults in tr. This is because targeted

testing and boundary condition testing were designed to serve complementary

goals: the former brings testing closer to the fault, while the latter makes it

possible to reveal faults masked by the path inadequacy problem. In other

words, targeted testing helps to find the correct path, and boundary condition

testing helps ensure that the fault actually manifests once the correct path is

found.

Conclusion Boundary condition testing can reveal numerous bugs that sym-

bolic testing systems previously could not reveal except through chance alone.

Both ordinary directed testing and targeted testing benefit greatly and can

find more faults than before. Moreover, a combination of both targeted test-

ing and boundary condition testing can be required to find faults that are both

difficult to reach and that are affected by path inadequacy.

6.5.2 Impact on Mutant Kill Speed

Automated boundary condition testing can cause exponential blowup

in the path space of programs. How great is the impact on our benchmarks?

First, let us consider boundary condition testing with ordinary directed

testing. The Iteration Found columns in Table 6.4 show the average iteration

on which the fault was found for directed testing (Base) and for directed

testing plus boundary condition testing (BCT). The slowdown is the ratio

between boundary condition testing and ordinary directed testing. Like the

improvement figures in Table 6.2, the slowdowns are computed as an average of

the ratios. We find that on average, adding boundary condition testing causes

the test system to take 3.69× longer to find a fault in the cases where both
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vanilla directed testing and directed testing plus boundary condition testing

find faults. This slowdown is quite significant, but is hardly exponential.

A similar pattern holds for boundary condition applied to targeted test-

ing. In this case, however, the average slowdown is only 2.74×, which while

still significant, is not as high as the 3.69× slowdown that directed testing

experiences. This holds not just for the average but also on a benchmark-by-

benchmark basis. Table 6.3 shows a head-to-head comparison of directed and

targeted testing with boundary condition testing enabled for both. When com-

puted on a mutant-by-mutant basis and averaged across all of the benchmarks,

targeted testing finds faults 3.79× faster than directed testing. This is signif-

icantly higher than the 2.52× difference when boundary condition testing is

disabled. This means that directed testing is far more negatively impacted by

boundary condition testing than targeted testing, or equivalently, that targeted

testing mitigates some of the high overhead of boundary condition testing.

The case of tictactoe differs from the other small benchmarks. Even

without boundary condition testing, tictactoe has vastly more paths than

the other benchmarks, with an average of 1,645.6 paths across the versions.

The larger and seemingly more complex tcas has only an average of 196.65

paths. When boundary condition testing is applied, the number of paths grows

exponentially and tictactoe no longer finishes within ten thousand inputs.

In fact, we ran tictactoe until Bullseye ran out of memory after over 200,000

iterations and it still had not explored every path, so we do not know how

many paths in total were added by boundary condition testing. This is not

surprising as tictactoe was written by the author to serve as a worst case

for boundary condition testing; virtually every branch will be expanded by

our technique and none of them will help in fault identification because the
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program does not suffer from the path inadequacy problem. Even so, the

slowdown in mutant kill speed is only a factor of 6.74-6.95×, which although

far higher than the slowdown for the other benchmarks, is hardly exponential

or catastrophic.

These results show that although boundary condition testing imposes a

penalty on the mutant kill speed, it does not exponentially worsen mutant kill

speed even though it may exponentially increase the search space. We find this

result remarkable because we fully expected the slowdown to be punishingly

high due to the exponential increase in the path space. We were surprised to

find such reasonable slowdowns for targeted testing and even directed testing,

which should have been impacted severely by the extra paths introduced by

boundary condition testing.

Moreover, three of the benchmarks are particularly striking for their

near-total lack of overhead. The sjeng-core and eqntott benchmarks are

not negatively impacted by boundary condition testing for either directed or

targeted testing. In fact, boundary condition testing improves the mutant

kill speed of eqntott for directed testing and sjeng-core for targeted test-

ing. Moreover, in the printtokens benchmark, in which only targeted testing

found faults, boundary condition testing improved the mutant kill speed as

well.

Table 6.6 compares the static proportion of branches changed to the

relative slowdowns in directed and targeted testing. We instrumented the

Bullseye compiler to report the total number of branches in the intermediate

representation of the program as well as the number of branches or statement

locations actually changed. The Changed and Total columns show the average

number of branches changed by boundary condition testing versus the total
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number of branches. The Ratio column shows the average ratio between the

changed branches and the total branches. The Slowdown columns repeat the

relative slowdowns from Table 6.4 and Table 6.5.

These results show a relationship between the proportion of the branches

changed and the slowdown. The printtokens benchmark has the smallest pro-

portion of changed branches at around 8.6% and also has the lowest relative

slowdown at 0.91×, which in this case is actually a speedup. The sjeng-core

and eqntott benchmarks have changed branch proportions of around 22-31%

and still have essentially no slowdown. After that, the slowdowns increase dra-

matically, shooting up to 2.67-4.75× for tcas at only 34.5% branches changed.

This pattern is interesting. For our set of benchmarks, as long as the

proportion of branches changed remains below 1/3, the slowdown is minimal

or negligible. Once the proportion rises above 1/3, performance falls off a cliff

and the slowdown increases dramatically. However, higher changed branch

proportions above 1/3 do not necessarily result in higher slowdown. While it

is the case that the benchmark with the highest proportion of changed branches

(tictactoe with 100% of branches changed) also has the highest slowdown,

there is no correlation between the proportion of changed branches and higher

slowdown once the 1/3 threshold is crossed.

The case of tr would seem to be an exception as only around 20% of

the branches are changed but it still experiences a relative overhead of 3.78×.

However, we can consider this benchmark an outlier. The tr slowdown is

based on a single data point as targeted testing without boundary condition

testing was only able to find a single fault. With boundary condition testing,

targeted testing was able to find an additional two faults, but these slowdown

ratios of course cannot be calculated.
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Benchmark
Branches BCT Slowdown

Changed Total Ratio DFS TGT
triangle 5.89 9.67 0.6175 2.28× 3.55×
tictactoe 25.5 25.5 1.0000 6.74× 6.95×
tcas 12.05 34.85 0.3456 4.75× 2.67×
schedule 18 41 0.4391 NA NA
printtokens 7 81.5 0.0859 NA 0.91×
polymorph 7 18 0.3889 6.33× 1.98×
sjeng-core 60 275 0.2183 1.09× 0.93×
eqntott 68.22 219.67 0.3106 0.95× 1.15×
tr 43 207 0.2077 NA 3.78×
Average 0.4015 7.11× 2.74×

Table 6.6: The proportion of branches changed by boundary condition testing
compared to the relative slowdowns.

For schedule, boundary condition testing does not help. Boundary

condition testing does not help when the largest obstacle is simply getting the

program on the right path; it can only help when the constraint solver fails to

produce a fault-revealing input when it is already on the right path.

Conclusion Contrary to initial expectations, boundary condition testing

need not seriously hamper mutant kill speed. If the proportion of changed

branches is below 1/3, the slowdown is not significant. Above 1/3, the slow-

down is higher but still far from exponential.

6.6 Context-Sensitivity

Another question we wish to answer is whether highly precise static

analysis is necessary for achieving high mutant kill speeds. We answer this

by disabling context-sensitivity in our static analysis for both pointers and for
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Benchmark
Iteration Found Efficiency

CI TGT DFS Diff CI TGT Diff
tcas 10.37 7.9 19.53 1.46× 0.9457 0.9324 1.0200
schedule NA NA NA NA 0.9164 0.9612 0.9552
printtokens 25.2 26.2 NA 0.96× 0.9919 0.9888 1.0032
polymorph 6.08 4.83 7.83 1.35× 0.8696 0.8414 1.0477
sjeng-core 16.83 14 21.67 1.41× 0.9286 0.9100 1.0229
eqntott 483.56 318 971.13 2.96× 0.9496 0.9512 0.9999
tr 252 78 NA 3.23× 0.8644 0.9035 0.9482
Average 1.90× 0.9996

Table 6.7: Targeted testing with context-insensitive static analysis compared
with the default context-sensitive analysis.

Benchmark
Iteration Found Efficiency

CI TGT DFS Diff CI TGT Diff
tcas 161.95 136.11 192.74 3.23× 0.9672 0.9759 0.9940
schedule NA NA NA NA 0.9225 0.9115 1.0138
printtokens 27 23.8 NA 1.13× 0.9890 0.9868 1.0022
polymorph 25.58 8.67 69.58 2.36× 0.9031 0.9076 0.9972
sjeng-core 15.38 15.38 23.75 1× 0.8866 0.8866 1.0000
eqntott 498 227.56 776.67 5.4× 0.9579 0.9539 1.0041
tr 308 100.33 NA 1.04× 0.8554 0.9131 0.9332
Average 2.36× 0.9921

Table 6.8: Targeted testing with boundary condition testing with context-
insensitive static analysis compared with the default context-sensitive analysis
with boundary condition testing.
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our computation of interesting locations. The results are shown in Table 6.7.

Note that two benchmarks, triangle and tictactoe, are omitted because

both of these are single-procedure programs and therefore are not affected

by context-sensitivity in the static analysis. Naturally, these results are for

targeted testing, as directed testing does not use the static analysis results

anyway.

The Iteration Found columns in Table 6.7 show the average iteration on

which the fault is found for each of the benchmarks. The CI column shows the

result for context-insensitive static analysis, while the TGT and DFS columns

repeat the context-sensitive targeted testing and the directed testing results,

respectively, for convenience. The Diff column is the average ratio between the

mutant kill speeds of the context-insensitive and the context-sensitive versions

of the static analysis.

Our results show that context sensitivity in the static analysis improves

mutant kill speed. The average improvement for enabling context-sensitivity

(or equivalently, the average slowdown for performing a context-insensitive

analysis) is 1.90× across all benchmarks. The actual factor varies with the

benchmarks, with 1.35-1.46× for the tcas, polymorph, and sjeng-core bench-

marks, to a significantly higher 2.96× and 3.23× for the larger eqntott and

tr benchmarks.

We also consider what happens when we enable boundary condition

testing. These results are shown in Table 6.8. The average slowdown caused

by context-insensitivity increases to 2.36×. However, the situation is slightly

more complex as there is also greater variation between the benchmarks. For

example, tr was significantly affected by context-insensitivity when boundary

condition testing was not used, with an average slowdown of 3.23×. How-
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ever, when boundary condition testing was enabled, these differences vanished.

Similarly, although less impacted by context-insensitivity, sjeng-core’s 1.41×

slowdown completely vanished when boundary condition testing was enabled.

The slower average is caused by the other benchmarks, which saw their slow-

downs go up with context-insensitivity.

While these slowdowns are non-trivial, they are also not catastrophic.

Although often significantly slower than targeted testing with a context-sensitive

analysis, they also perform better than directed testing, so benefits can be re-

alized even without context-sensitive static analysis. The variation between

the benchmarks suggests that the decision of whether or not to perform a

context-sensitive analysis depends not only on the tradeoff between analysis

time and performance, but also on the particular benchmarks themselves, as

not all programs benefit greatly from context sensitivity.

Finally, we also compute the effect of context-insensitivity on the ef-

ficiency of Bullseye. The average ratio of the efficiency between context-

insensitive and context-sensitive analysis across all benchmarks without bound-

ary condition testing is 0.9996, which means that overall, context-sensitivity

or lack thereof has no meaningful effect on the efficiency of Bullseye. When

boundary condition testing is enabled, the average efficiency ratio becomes

0.9921, essentially unchanged. We may conclude that context sensitivity does

not affect efficiency.

Conclusion Context sensitivity in the static analysis has a noticeable ef-

fect on mutant kill speed but lack of context sensitivity is not necessarily a

dealbreaker. There is significant variation between the benchmarks, indicat-

ing that the benefits of performing a context-sensitive analysis are likely to be
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Benchmark
Norm. Iter Found (t =) Efficiency (t =)
0.1 0.3 0.5 1.0 0.1 0.3 0.5 1.0

triangle 1.76 1 1.3 1.32 0.9746 0.9248 0.9746 0.9808
tictactoe 1 1 1 1 0.9757 0.9756 0.9756 0.9756
tcas 1.02 1 1.17 1.01 0.9314 0.9324 0.9248 0.9314
schedule NA NA NA NA 0.9378 0.9612 0.9848 0.9956
printtokens 1.11 1 1.15 1.13 0.9787 0.9888 0.9888 0.9888
polymorph 1.71 1 2.06 2.97 0.7614 0.8414 0.8159 0.8157
sjeng-core 1 1 1 1 0.9100 0.9100 0.9100 0.9100
eqntott 2.22 1 2.74 2.75 0.9548 0.9512 0.9547 0.9556
tr 1 1 1 1 0.8379 0.9035 0.8552 0.8527
Average 1.35 1 1.43 1.52 0.9180 0.9321 0.9316 0.9340

Table 6.9: The effects of varying the threshold parameter on mutant kill speed
and efficiency. The MKS values are normalized to the default threshold of 0.3.

program-dependent.

6.7 Heuristic Parameters: Threshold and Scale

We also wish to examine the sensitivity of our results to the constants

used in our heuristic function. To answer this question, we varied the two

main parameters in our heuristic function separately.

The threshold parameter determines which branch weights should be

ignored. In some cases, the static analysis may produce branch weights that

are very close, for example, something like 28/27. In these cases it may be

better to ignore the branch direction completely as the static analysis does

not indicate a strong preference for either side and because needlessly flipping

branches decreases the efficiency of the system and may harm mutant kill

speed. The threshold parameter controls which weights are ignored. If the

ratio between the larger and the smaller weight exceeds 1+t for some threshold
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Benchmark
Norm. Iter Found (s =) Efficiency (s =)
1.0 2.0 5.0 10.0 1.0 2.0 5.0 10.0

triangle 1 1.46 1.22 1.04 0.9248 0.9746 0.9746 0.9746
tictactoe 1 1 1 1 0.9756 0.9756 0.9756 0.9756
tcas 1 0.99 1.05 1.04 0.9324 0.9316 0.9319 0.9325
schedule NA NA NA NA 0.9612 0.9956 0.9956 0.9955
printtokens 1 1.15 1.16 1.17 0.9888 0.9888 0.9888 0.9888
polymorph 1 1.86 1.85 2.25 0.8414 0.8328 0.8344 0.8050
sjeng-core 1 1 1 1 0.9100 0.9100 0.9100 0.9100
eqntott 1 2.65 2.64 2.85 0.9512 0.9477 0.9523 0.9431
tr 1 0.5 0.53 0.53 0.9035 0.8331 0.8247 0.7922
Average 1 1.33 1.31 1.36 0.9321 0.9322 0.9320 0.9241

Table 6.10: The effects of varying the scale parameter on mutant kill speed
and efficiency. The MKS values are normalized to the default of 1.0

value t, then Bullseye will use the branch data; otherwise the branch is ignored.

In other words, the threshold factor determines whether Bullseye should act

on a particular mismatched branch.

For our main experiments, we use a default threshold value of t = 0.3,

corresponding to a ratio of 1.3:1. This value was empirically determined by

informal experimentation on our benchmarks and was used as it seemed to

perform better than higher or lower values.

Table 6.9 shows the effect that varying the threshold parameter on

mutant kill speed. We test the values 0.1, 0.5, and 1.0 against the default of

0.3. The mutant kill speed is normalized in the table to that of the default of

0.3. The results show that across all benchmarks, t = 0.3 is indeed at a “sweet

spot” as lower or higher values degrade mutant kill speed by 35-52%.

This result is not surprising, both because the value t = 0.3 was already

experimentally determined to be good and because we expect a U-shaped
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curve for intuitive reasons. Intuitively, we would expect that very low values

for threshold would result in poor performance, as Bullseye would spend time

flipping branches for which the weights were almost even, reducing efficiency

and possibly hurting mutant kill speed. In fact, this is exactly the case, as

Table 6.9 shows that mutant kill speed is affected and the efficiency is lowered.

We also expect high threshold values to perform poorly as they would ignore

useful branch data. With an infinite threshold, all branch data is ignored and

Bullseye degenerates into a depth-first search, so we would expect efficiency to

at least be unaffected as we increase threshold beyond the default. This is also

the case; mutant kill speed is harmed as threshold increases and the efficiency

remains essentially flat.

The scale parameter controls how aggressively Bullseye promotes branch

flips that deal with mismatched directions. If the ratio exceeds the threshold

defined earlier and the branch does not go in the same direction as the branch

data indicates it should, Bullseye computes a weight that roughly indicates

how many branches forward it should promote the mismatched branch for

branch selection. The scale parameter is multiplied against this to further in-

crease the priority of the mismatched branch. In other words, the scale factor

determines how strongly Bullseye should act on a branch once it decides that

it may need to be altered.

We developed our heuristic formula with a default scale factor s = 1.0.

Values below 1.0 can actually result in weakly mismatched branches being

given lower priority than branches with no data at all and is thus nonsensical.

Higher values for scale greatly increase the priority of mismatched branches;

if our default heuristic increases the priority of a branch by 2, a scale factor of

10.0 would increase the priority by 20.
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Table 6.10 shows the effect of varying the scale parameter on mutant

kill speed and efficiency. Surprisingly, the initial value of 1.0 for scale turned

out to be the best overall value. This means that in the majority of cases,

increasing Bullseye’s aggressiveness about flipping earlier branches is actually

counterproductive.

This effect does not hold for all of the benchmarks, however. Most

strikingly, the tr benchmark benefits strongly from a higher scale value. In-

creasing scale from s = 1.0 to s = 2.0 causes it to find the fault twice as

quickly. The tcas and sjeng-core benchmarks are not meaningfully affected

by scale at all.

Overall, there is a clear relationship between sensitivity to threshold

and sensitivity for scale; benchmarks that are sensitive to one are also sensitive

to the other. The tictactoe, tcas, printtokens, and sjeng-core bench-

marks are not strongly affected by either threshold or scale. The triangle,

polymorph, and especially eqntott are strongly affected by both threshold

and scale. The tr benchmark is the only exception to this pattern; it is com-

pletely unaffected by threshold and strongly affected by scale. However, this

result is based on a single data point because Bullseye could only find 1/5

faults in tr, so this single data point may not be meaningful.

6.8 Observations and Insights

By examining detailed debugging output, we have gained insights about

the behavior of our system and about techniques for effective fault identifica-

tion.
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6.8.1 Targeted Testing and Variance

Although we did not gather data for all trials, only the median, we

observe anecdotally that Bullseye is significantly more predictable than depth-

first search with respect to mutant kill speed. While depth-first search will

often have outliers both good and bad, Bullseye’s grouping tends to be more

clustered around the median.

This difference is because depth-first search’s performance is dependent

on luck; it performs well if the initial input is near a faulty path and poorly

if the initial input is far from any faulty path. Bullseye reduces the impact of

chance by backing out rapidly when the initial input is unfavorable, leading

to greater consistency in mutant kill speed. We believe that in larger testing

scenarios, this greater consistency in mutant kill speed is beneficial, on top of

the strong raw improvements in mutant kill speed afforded by targeted testing.

6.8.2 Exponential Explosion and Mutant Kill Speed

One of the most surprising lessons learned from our work is that ex-

ponential techniques may be far more viable than previously believed. We

believed initially that the boundary condition transformation would have pun-

ishingly high slowdowns and should only be used as a matter of last resort when

faults are being missed due to the path inadequacy problem. However, our re-

sults show that the effect on mutant kill speed, while nontrivial, is far from an

exponential slowdown. In fact, as long as the proportion of changed branches

stays below 1/3 of the total branches, the slowdown is quite minimal.

The difference between exponential explosion in the space of paths and

exponential explosion in mutant kill speed is easier to distinguish in hindsight.

While intuitively one might expect any technique that exponentially increases
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the number of paths to affect mutant kill speed by a proportional amount,

this does not have to be the case. Even in the tictactoe benchmark, which

was specifically designed to be a worst-case with 100% of the branches being

changed, the slowdown in mutant kill speed was less than 7× while the increase

in the number of paths was well over 100× (the exact amount could not be

determined as it was too large for Bullseye to explore). We did not anticipate

this dichotomy because prior work focuses heavily on achieving high coverage,

which of course would be negatively impacted by our technique in exactly the

expected way. However, the goal of targeted testing is fault identification, not

coverage, and so boundary condition testing becomes much more viable.

One possible avenue to pursue for future work would be an investi-

gation into other techniques in software testing or model checking that also

exponentially expand the space of paths. While such techniques obviously still

remain impractical if the goal is to explore the entire state space, our results

suggest that these exponential techniques may be much more viable if the goal

is rapid fault identification.

6.8.3 Program-Library Interaction

One significant difficulty encountered is in dealing with the interaction

between library-like code and the application code. Bugs in the library code

can be easily masked by the way in which the application uses it. For example,

the schedule benchmark contains a small library for managing priority queues

in addition to the core scheduling code. We can introduce obvious errors into

the priority queue code that could be easily unmasked with trivial unit testing.

However, if the code is being used in the context of the scheduler, finding the

fault becomes harder. We not only have to find a way for the scheduler to use
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the priority queues in a way to trigger the bug, but also to ensure that the

effects of the bug result in different final output. For example, the priority

queue may make mistakes in assigning priorities, but as long as the final order

of the jobs does not change, no fault is exposed. This difficulty can mask

serious bugs that would be exposed with even simple unit testing. Thus,

any whole-program testing system must consider adopting some unit-testing

techniques to ensure that all bugs are found.

6.8.4 Library Code and Symbolic Execution

Because most constraint solvers do not handle a theory of strings, di-

rected testing systems support string operations indirectly by including an

implementation of the string functions with the main program. Upon close

observation, we find that this severely limits the ability of a testing system to

choose new paths. For example, symbolically executing an implementation of

strcmp can prevent the testing system from rapidly altering the string. Be-

cause the path through strcmp is now part of the path through the whole

application, changing the result of a string compare requires changing a sig-

nificant portion of the path across many branches and comparisons. Similar

problems occur if the testing system is reasoning about paths through a red-

black tree implementation rather than the set operations that they implement.

Future work on this problem can proceed in at least two ways. The first

is to simply move to more powerful theories in constraint solvers. This also has

the added benefit of eliminating many cases where the results are semantically

equivalent but take different paths through the implementation. The second

would be to investigate mechanisms for selectively ignoring certain portions of

the path. For example, we can construct an annotation system that would tell
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Bullseye to not track constraints or branches within certain functions. This

would prevent symbolic execution from being bound to the concrete paths

in library-like code, but could also lead to unexpected path divergence. The

design tradeoffs and empirical experiences would make for interesting future

study.

6.8.5 Global Data Structures and Static Analysis

The failure of Bullseye and Bullseye with boundary condition testing

to find any of the faults in the schedule benchmark raises questions about

the fundamental limits of our technique. One key difficulty are program de-

sign patterns that place the program in a “command loop” where each of the

commands operates on some global data structure. Because every part of the

program operates on the global data structure, if the data structure is consid-

ered interesting, Bullseye (or any other static analysis) can only determine that

all parts of the program are interesting. This largely eliminates the benefit

of static analysis as it is no longer able to properly prioritize among branches

and statements.

6.8.6 The “Data Inadequacy Problem”

We encountered in the sjeng-core and especially the tr benchmarks

an extremely nasty variant of the path inadequacy problem that we can call

the data inadequacy problem. This problem arises when semantically different

decisions can be made using data while not being reflected in the paths the

program takes.

The example of tr is the most illustrative of this problem. The last

part of tr is a simple loop that reads one character at a time from the input
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stream. This character is used as an index into a table that was constructed

in the earlier part of the program and is used to find the character that it

translates to. For any input of size n, this loop will run n times and will be

the only control flow in this part of the program. In order to expose a fault,

the input stream must contain characters that index into the affected parts of

the translation table. Unfortunately, there is absolutely no difference in the

path the program takes when it reads a fault-revealing character or when it

reads an unaffected character. Because this last loop is the only time there is

any connection between the input stream and control flow, there is simply no

way for any symbolic execution system, even with boundary condition testing,

to explore different characters in the input stream as they all lead to equivalent

paths.

One possible but undesirable solution would be to recognize this idiom

and translate these table lookups into a massive n-way switch statement. This

makes each lookup in the table follow a different path, making these states

accessible to symbolic execution. However, such a technique is certain to be

costly and also does not allow for methods for static analysis to distinguish

between the new synthetic paths. In effect, it forces symbolic execution to

simply iterate blindly over the space of inputs that result in equivalent paths.
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Chapter 7

Conclusion

In this thesis, we have implemented and evaluated techniques for im-

proving dynamic analyses by utilizing static data flow analysis. We have ap-

plied our philosophy and approach to two widely separate areas: runtime

security policy enforcement and software test input generation.

The central theme behind this thesis is that dynamic analyses, defined

broadly, contain inherent inefficiencies due to an inability to properly see and

reason about the problem space at hand. This handicap causes the dynamic

analysis to waste time on tasks that are ultimately irrelevant to the goal but

are performed because the dynamic analysis does not know that it is irrelevant.

Our key insight and contribution is that these inefficiencies can be ad-

dressed by first performing a static data flow analysis that computes infor-

mation that is specific to both the problem at hand and the program that it

is being applied to. In our two problem domains, the specific information is

information about the future behavior of the program, which is not available

to dynamic analysis but can be attacked by static analysis. In taint tracking,

the future information required to eliminate inefficiencies is whether or not

some piece of data will be used at a specific place in the future. In testing, the

information is whether or not a particular candidate path is likely to reveal a

fault. In both cases, static analysis can supply this information, with abso-

lute or probabilistic assurance, allowing the dynamic system to avoid needless
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work.

We will now briefly recap some high-level points and lessons learned

from our two systems. Additional commentary and thoughts on future work

specific to the systems can be found earlier in the discussion portion of our

evaluations for each of the systems; insights and future directions specific to

dynamic data flow analysis are discussed in Section 4.4, while insights and

observations specific to test input generation can be found in Section 6.8.

7.1 Summary: Dynamic Data Flow Analysis

In our dynamic data flow analysis work, we were able to build a system

for enforcing user-defined security policies at runtime. This system is not only

far more general than existing taint tracking systems, but is also one to two

orders of magnitude more efficient, with overhead that is essentially negligible.

In the case of dynamic data flow analysis, the inefficiencies result from

the fact that dynamic taint analysis (and other similar analyses) track a large

amount of information about the program, but only a vanishingly small frac-

tion of it is ever used. In a server program, much of the data the program

manipulates will wind up being tainted, which would necessitate extensive

tracking by a taint tracking system to ensure that no tainted items are missed.

Although almost none of this tainted data is used unsafely, a purely dynamic

analysis cannot “see into the future” and know that it is computing facts that

will never be used. Static analysis is able to help because it can see into an ap-

proximation of the future; this is used to rule out possibilities that it can prove

are irrelevant. Rather than tracking information for every object in memory,

our system only tracks those that are involved in a policy violation.

166



Our use of static analysis to address the inefficiency resulting from dy-

namic taint analysis’s inability to reason about future actions leads to great

improvements in performance. We were pleasantly surprised to find that our

overhead was so low. While we naturally expected significant improvement

over taint tracking systems, our average overhead of 0.65% for server pro-

grams is stunningly low, essentially within measurement noise. When testing

compute-bound programs, we were even more surprised: our static analysis

can completely eliminate the possibility of vulnerabilities, leading to an over-

head of 0%. In order to evaluate our system on compute-bound applications,

we had to insert synthetic vulnerabilities that our static analysis could not

eliminate. Even so, our overhead remains quite low, with our worst overhead

being better than the best overhead of previous comparable systems.

As an added bonus, our system is also far more general than standard

taint tracking systems, matching the expressive power of General Information

Flow Tracking [63]. As discussed in Section 4.4, our generality comes directly

from our use of data flow analysis as opposed to other possible models for

specifying policies. Using dynamic data flow analysis for the policy allows us

to easily perform static data flow analysis and easily ensure that the static

analysis is an appropriate conservative over-approximation. Moreover, we are

pleased to note that using a more complex policy does not necessarily result

in higher overhead. The file disclosure vulnerability we evaluate in Section 4.3

would have around twice the space and time overhead of taint tracking if

implemented naively because it tracks two separate properties instead of one.

However, the actual overhead is only 0.25% on average, lower even than taint

tracking. This is because our static analysis could identify the paths involved

in any vulnerabilities, which were even sparser for this more complex example.
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Decoupling complexity and overhead is an unique advantage of our hybrid

analysis approach.

7.2 Summary: Targeted Test Input Generation

For test input generation, we implement and evaluate a system, called

Bullseye, that uses static analysis to guide a dynamic search of program paths

for bugs. We find that Bullseye finds more bugs than directed testing and

in the cases where directed testing was able to find a bug, Bullseye finds it

significantly faster, on average 2.5× faster. We also develop and evaluate

an orthogonal technique that addresses the inadequacy of paths in revealing

faults. This boundary condition testing technique allows any system based

on symbolic execution to communicate boundary conditions to the constraint

solver with no additional changes by simply encoding the boundary conditions

in the control flow graph. We show that boundary condition testing allows

both directed and targeted testing to find numerous bugs that they could

not before, and that the slowdowns incurred by introducing an exponential

number of new paths is actually quite reasonable. We have also investigated

other factors, such as parameters for the search heuristic function and the role

of precision on static analysis on fault-finding speed.

The inefficiency in testing stems from a rather different source than

in dynamic data flow analysis. Where the inefficiency in dynamic data flow

analysis was due to tracking information that will never be needed, the in-

efficiency in testing is in running test inputs that reveal no faults. To find

faults faster, the search must ignore or defer the many paths that do not re-

veal faults in favor of those that are likely to reveal faults. Bullseye enables

this with the concept of “interesting points” that are then used to perform a
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static analysis that allows Bullseye to generate inputs that are highly relevant

to the interesting points. As long as the interesting points are useful in fault

identification, Bullseye can find faults much faster by steering the search away

from irrelevant paths.

Again, data flow analysis is important to Bullseye. Previous efforts

in dynamic test case generation have focused on control flow, with the goal

of forcing execution to reach a particular point. Unfortunately, control flow

alone does a poor job of capturing what affects what in a program. If a value

is incorrectly computed and then used much later in the program, control flow

analysis will not be able to see the connection. In Bullseye, we first perform a

data flow analysis so that effects can be fully seen, followed by a control flow

analysis to actually drive execution to those points.

7.3 The Future of Dynamic Analysis

As fixing bugs and security vulnerabilities become increasingly high

priorities for developers, we expect a continual increase in the availability and

power of dynamic tools that help programmers find and fix these errors. This

thesis has shown how static analysis can be used to greatly improve the perfor-

mance of dynamic analyses by giving the dynamic analysis a chance to avoid

doing work that can be shown to be unnecessary in the future. While we have

had great success in the two areas of runtime security policy enforcement and

test input generation, we believe that this pattern can be fruitfully extended

to other dynamic analyses as well.

Consider, for example, memory profiling and analysis tools such as

Valgrind [78]. While it is an indispensable tool for programmers debugging

memory errors and leaks, it also has hideously high overheads. These over-
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heads come from the need to track every memory operation and every byte

of memory, even though most of these are not involved in leaks or overruns.

With static analysis, much of this instrumentation could be avoided, leading to

lower overhead. Moreover, there are tasks like performance profiling and other

such studies where absolute correctness is not required as it is with security.

In these cases, static analysis may help with intelligent sampling approaches

and other such approximation techniques.

Another important category of tools are systems designed to find con-

currency errors. There are numerous dynamic tools for finding races and dead-

locks, but all must deal with the immense number of possible orderings, most

of which do not reveal any errors. Recent work uses partial order reduction

to eliminate equivalent interleavings among threads [28], reducing the search

space and improving the ability to find errors caused by interleavings. In-

deed, there are many other such inefficiencies in concurrency testing that can

be eliminated by a variety of techniques that exploit some form of reasoning

about the future to avoid inefficiency.

Finally, we believe the complementary nature of static and dynamic

analysis should be and will be increasingly exploited in the future. Static

analysis can give approximate information across the entire space of possible

program executions, while dynamic analysis delivers the complement—highly

precise information but only for the current execution. By marrying the two,

static analysis can be used to reduce the overhead of dynamic analysis or dy-

namic analysis can be used to address the imprecision in static analysis. Cur-

rent test generation techniques, for both single-threaded [18] and concurrent

programs [28], draw inspiration from model checking techniques. Language-

based approaches to security rely on a mix of static verification and dynamic
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enforcement [74]. Moving forward, we believe that static and dynamic analy-

sis will be recognized and treated as two sides of the same coin, instead of as

different fields entirely.
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