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Message-passing programs are efficient, but fall short on convenience and
portability. ZPL is a high-level language that offers competitive performance and
portability, as well as programming conveniences lacking in low-level approaches.

P n sequential programming, low-level assembly lan-
guages have long given way to languages such as C
and Fortran. These higher-level languages offer

= programming conveniences such as procedures,
structured control flow, and richer data types, while still
providing good performance. By contrast, other sequen-
tial languages that provide even higher levels of abstrac-
tion than C and Fortran have not been as widely em-
braced because they do not perform as well.

The difference among these high-level languages is
that the efficient ones map well to the underlying ma-
chine, while the inefficient languages are either too far
removed from the hardware or have features that disable
compile-time optimizations and introduce runtime over-
heads. An example of the former is Lisp’s reliance on re-
cursion and higher-order functions. Examples of the lat-
ter are Java’s dynamically bound class hierarchies and
garbage collection.

"The situation in parallel computing is even more severe
because performance is more critical. Users have opted
for low-level approaches rather than accept the ineffi-
ciencies incurred by high-level languages. But high-level
parallel languages are not inherently inefficient. Most sim-
ply map poorly to the underlying hardware or introduce
excessive runtime overhead, or both. Thus, they cannot
deliver speed with convenience and portability.
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In parallel programming, the low-level approach is
represented by message passing; the high-level analog to
Cand Fortran is ZPL. The analogy with sequential pro-
gramming is not exact, however; because issues of con-
currency and synchronization make message-passing
programs even more difficult to write than sequential as-
sembly-language programs. Also, unlike assembly-lan-
guage programs, there are standards such as the Message
Passing Interface (MPI)! that provide a degree of porta-
bility across parallel machines.

Even with these standards, however, message passing is
inadequate for several reasons. First, message passing is
too tedious and difficult to use. Second, it undermines
portability by exposing the underlying machine to the
programmer. Third, message passing embeds assump-
tions in the source code that obscure the program logic
and make the program difficult to modify. Thus, high-
level languages are essential.

"This article describes the high-level approach embod-
ied by the ZPL programming language. The key to suc-
cess for high-level languages is to choose language fea-
tures that simplify programming, accurately expose costs,
and can be effectively compiled for different machines.
The ZPL language meets these criteria. It runs on a vari-
ety of parallel and sequential computers; and provides
programming conveniences not found in message pass-
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ing. Here, we describe the problems with mes-
sage passing and describe how ZPL simplifies
the task of programming for parallel comput-
ers—without sacrificing efficiency.

Limitations of message passing

Most parallel programs are written in a sequential
language, such as C or Fortran, and use message
passing to perform synchronization and commu-
nication. Because MPI is an industry standard,
programs written with MPI can run on almost
any parallel computer. However, even with a
standard such as MPI, the low-level nature of
message passing causes significant problems.

Low-level reasoning

Message passing forces the programmer to
reason about concurrency and synchronization
at a low level. Within iterative code, for exam-
ple, programmers must keep messages from one
iteration distinct from those of another. These
details are both difficult to write correctly and
difficult to optimize. Consider the task of im-
plementing double-buffering to overlap com-
munication with computation. To do this, the
programmer must understand a program’s data
dependences to know which computations are
independent of incoming data, where they can
safely move the computations, and when to wait
for a receive to complete. As we describe below,
these are all tasks that a compiler can easily per-
form for well-designed high-level languages.

Performance portability

A basic tenet of software reuse is to separate
interfaces from implementation so that imple-
mentations can change without affecting clients
of interfaces. Unfortunately, most message-
passing interfaces expose much of the imple-
mentation to programmers. They do this by
providing many ways to transmit data that vary
in their timing, synchronization, and comple-
tion. For example, some routines buffer the
user’s data while others receive the data directly
into a user-specified location. Such implemen-
tation details should be hidden from the inter-
face, but they are exposed to enable significantly
improved performance in certain contexts.

By exposing the implementation, the interface
indirectly exposes the underlying hardware and
its idiosyncrasies. Because the performance of
different communication forms varies from ma-
chine to machine, a program optimized for one
machine might perform poorly on another.?
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Figure 1. Comparing MPI communication routines. (a) On the IBM
SP-2, the ready-send mechanism performs best; (b) On the Cray

T3E, the shmem_put mechanism is the clear winner.

For example, Figure 1 shows the throughput
of various MPI point-to-point communication
routines on the IBM SP-2 and the Cray T3E.
On the IBM, the ready-send mechanism is
the clear winner for all message sizes; on the
Cray, the shmem_put mechanism performs
best. Consider trying to port to the T3E an MPI
program that was originally optimized for the
SP-2. While the original SP-2 program might
use the ready-send mechanism, the tuned
T3E program would prefer to use MPI_Put
(once MPI 2.0 has been implemented). The re-
quired translation is an invasive process requir-
ing significant changes, none of which improve
the fundamental computational approach or al-
gorithm. Thus, for good performance, message
passing requires programmers to change the
program as it moves from one machine to
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‘

1 program jacobi;

2

3 config var n : integer = 256; -= Run-time constants
4 delta : float = 0.0001;

5 .

6 region R= [1..n, 1..nl; ~~ Declarations

8 dire¢tion north = [-1, 0]; south = [1, 0];

9 east = [0, 1]; west = [0,-1];

10

11 procedure jacobi(); -— Entry point

12 var A, Temp [R] float; : ‘

13 err : float;

14

15 begin

16 [R] A = 0.0; -— Initialization
17 [north of R] A := 0.0; -— Set boundary conditions’
18 [east of R] A := 0.0; ‘ ‘

19 [west of R] A := 0.0;

20 [south of R} A = 1.0;

21 [R] repeat -— Main body

22 Temp = (A@north+A@east+A@West%A@south) 7 o4;
23 err 1= max<< fabs(A-Temp) ; ‘
24 A 1= Temp;

25 until err < delta;

26 ' end;

Figure 2. The Jacobi iteration in ZPL.

another. The point is that while sorze binding of
MPI is appropriate for each machine, #o bind-
ing of MP1 is appropriate for all machines.

Modification and maintenance

Message-passing programs are difficult to
modify because they embed so many details and
assumptions into the source code. The message-
passing code is typically scattered throughout the
source code and often obscures the basic logic of
the algorithm, making the code difficult to un-
derstand and debug.? In addition, message pass-
ing forces the programmer to embed certain as-
sumptions into the source code. For example, a
programmer might embed a logical communi-
cation topology, such as a binary tree ora mesh.
Although such information is often closely linked
to the parallel algorithm, there are eases in which
it makes sense to change the logical topology.

Long-term prospects :

These three problems raise concerns about
the future of message passing. First, as new com-
munication mechanisms are introduced for new
machines, existing message-passing programs

will have to be manually rewritten to exploit
their benefits. Even then, the resulting program
is likely to be optimized for only a limited num-
ber of platforms. Second, imagine what mes-
sage-passing codes will look like when hybrid
machines, such as clusters of bus-based multi-
processors, become more common. In such en-
vironments, commiunication ameong clusters
favors traditional message passing while com-
munication within a cluster-favors shared mem-
ory Put and Get operations. Programs that are
highly tuned for such architectures might well
require a mixture of message passiig and Put
and Get operations: Such code will be ex-
tremely tedious to optimize manually. If written
in a low-level approach, such as' MPI orf PVM,
they will likely be too convoluted to port to
- other platforms. ' ‘

A brief introduction to ZPL

ZPL is an array language developed with the
goals of portability, good performance, concise-
ness, and clarity: Whereas languages such as
Fortran 77 provide array data types that can only
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be manipulated one element at a time, ZPL lets
programmers operate on entire arrays. ZPL uses
regions to refer to a collection of array indices.
Region operators produce new regions in a
structured manner. Together, regions and region
operators give programmers a clean mechanism
for referring to and operating on sets of array
elements, replacing the explicit array indexing
found in most languages.

Jacobi iteration in ZPL

As an example, consider the four-point Jacobi
iteration on» X » array A in which each element
of the array is to be replaced by the average of
its four neighbors. The boundary values are
taken to be 0 except at the southern edge, where
the boundary values are 1.

Figure 2 shows a ZPL implementation. The
configuration variables declared at the top of the
program are defined atload time and remain con-
stant thereafter. These variables configure a com-
putation by defining program-specific quan-
tities—such as problem size. Because parallelism is
implicit in ZPLs semantics, the number of proces-
sors does not appear in the source code. Each con-
figuration variable is given a default value—in the
source code—that the programmer can override
at the command line or by specifying a configu-
ration file when the program is executed.

Line 6 of the Jacobi iteration shows that region
R is declared to be a two dimensional index set
containing the indices {(i,y) |7 € [1..n],5 € [1..7]}.
This region can now be used in two ways. First, it
can be used to declare array variables as shown
on line 12. Here, arrays A and Temp are declared.
(The ZPL compiler will allocate extra space to
hold boundary elements for the array A. Details
are provided elsewhere.)* Second, regions can
specify a statement’s domain of computation. For
example, line 16 specifies that each element of A
in the region R will be set to 0.

Directions are user-defined vectors that can be
used in conjunction with region operators such as
of and @. Lines 8 and 9 define four directions—
north, south, east and west—which are vec-
tors of size 2. Lines 16-20 show the code to ini-
tialize the values of A, After the elements of array
A described by region R are set, the boundary val-
ues are set using four statements, each of which
initializes one of the borders. Each of these bor-
ders is referred to by an of operator, which takes
a direction and a region and refers to the adjacent
region in the specified direction. For example, as
Figure 3 shows, [north of R] refers to the re-
gion adjacent to R’ north boundary, namely, the
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[R] A@north

(a) (b) [R] A@east

Figure 3. lllustration of (a) regions and (b) the @
operator.

indices {(0) | € [1..n]}; thus, line 17 specifies that
the elements of array A whose indices are in
[north of R] will be assigned the value 0. The
precise semantics of of and other region opera-
tors are available in the programmer’s guide.*

The iteration’s main loop consists of a re-
peat statement (lines 21-25), whose region R
applies to every statement in the loop body. In
line 22, the @ operator is used to replace each
element of A with the average of its four neigh-
bors. The @ operator takes an array and a direc-
tion and refers to the array elements that are off-
set by the vector shown in Figure 3. Thus,
A@north refers to the elements of A whose in-
dicesare {(i,y)|i€ [0..n—1],j € [1..n]}. Line 23
computes the maximum change over all ele-
ments using a reduction operator (<<), which
leaves the result in a scalar called err.

At this point, three of ZPL features are note-
worthy. First, the language has deterministic se-
mantics. Each statement logically completes be-
fore the following one executes, and the entire
right-hand side of an assignment statement is
evaluated before it is assigned to the left-hand
side. Second, the ZPL compiler implicitly gen-
erates all communication and synchronization.
Third, data partitioning is also implicit, with all
interacting arrays guaranteed to be aligned in
the same manner.

The Jacobi example does not exercise ZPLs
more sophisticated features, but it does illustrate
the language’s basic properties: high-level con-
cepts such as regions support array manipula-
tion; array operations are a natural, implicit ex-
pression of data parallelism; and the compiler
handles the mechanical details of communica-
tion and synchronization.

ZPL and other languages
Several characteristics of ZPL are unique. First,
ZPL is based on an underlying abstract machine,
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Figure 4. Com-

parisons of
ZPL and C
~with MPI im-
plementations
of the Simple
benchmark on
(a) the Cray
T3E and (b)
the IBM SP-2.
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the CTA,® which represents the essential features
of all contemporary parallel computers. By in-
cluding in ZPL only constructs that execute well
on the CTA, ZPL programs should execute well
on any parallel computer. Second, ZPL does not
inherit baggage from existing sequential lan-
guages, which were not designed with paral-
lelismi—much less the. CTA—in mind. Finally,
unlike many paralle] languages, ZPL does not
hide performance costs from the user. For exam-
ple, in Janguages such as High Performance For-
tran (HPF), the statementA(i,3) = B(i,3)
may or may not require communication, de-
pending on how the two arrays are distributed
relative to one another. Thus, small changes in
data distribution directives can significantly af-
fect performance, which makes it difficult to rea-

son about a program’s performance on any par-
allel machine. In HPE, costs can be similarly hid-
den at procedure calls, where dynamic redistrib-
ution of array operands might be necessary:

ZPL performance

The performance of ZPL programs has been
extensively measured and. compared -against
other approaches.'2 Here, we highlight some
of these results. ,

Benchmark results

Figure 4 compares the performance of ZPL
and C with MPI implementations of the Simple
fluid-dynamics benchmark on the Cray T3E and
the TBM SP-2. Of the many results, we chose
these for two reasons. First, they show that high-
level approaches can be as efficient as message
passing. Second, Simple is a widely studied fluid-
dynamics benchmark intended to be representa-
tive of scientific codes.? ‘

In his 1997 doctoral dissertation,” Ton Ngo
did an in-depth analysis of portability and per-
formance of data-parallel languages.and their
compilers, including three HPF compilers and
one ZPL compiler. The results examined per-
formance of basic expressions, dense matrix
multiplication, and a subset of the NAS parallel
benchmarks suite on an IBM SP-2. Ngo not
only measured programs, he analyzed the com-
pilation process to explain why the compilers
did what they did.

"Two conclusions can be drawn. from thls in-
depth study. First, ZPI. was the most consistent
in giving the best performance, while the per-
formance of particular HPF codes often varied
drastically depending on which compiler was
used. Second, ZPLs absolute performance and
scaling were good. These results confirm pre-
liminary experiments from 1994. In these tests,
an early version of ZPL was compared against
an early HPF compiler on a set of eight small
benchmark programs. ZPL. outperformed HPF
on six of the benchmarks,? indicating an overall
performance advantage.

Application experience

Researchers have used ZPL to produce parallel
programs. that do not have parallel counterparts
in other languages. Examples include a novel hi-
erarchical N- body code, ' two mathematical bi-
ology codes,! and a large (10,000 lines of ZPL)
synchronous circuit simulator.'? To evaluate per-
formance, ZPL programs were compared on a
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/* Set up an MPI datatype for column-vectors... */

MPI_Datatype columntype;

MPI_Type_ vector(l, Height-2, Height, MPI_FLOAT, &column_type);

MPI_Type_commit (&column_type) ;

/* MPI_Send calls omitted... */

if (row != Top)
MPI_Recv(&A[0][1], Width-2, MPI_FLOAT,

MPI_ANY_SOURCE, North, MPI_COMM_WORLD, &status);

if (col != Right)

MPI_Recv(&A[1l] [Width-1], 1, columntype,

MPI_ANY SOURCE, East, MPI_COMM WORLD, &status);

if (row != Bottom)

MPI_Recv(&A[Height~1][1], Width-2, MPI_FLOAT,
MPI_ANY_ SOURCE, South, MPI_COMM_WORLD,

if (col != Left)

MPI_Recv({(&A[1]1[0], 1, column_type, column_type,
MPI_ANY_ SOURCE, West, MPI_COMM WORLD, &status);

/* Calculate average, delta for all points */

delta = 0;
for (i=1; i<Height-1; i++) {
for (j=1; j<width-1; j++) {

average = (A[i-1]1[JI+A[1i]1[3+1]1+

Ali+11[j1+A[i1[j-11)/4;
delta = max(delta, fabs(average - A[i]l[j]1)):

B[i][]j] = average;

}

/* Find maximum diff */

MPI_Reduce(&delta, &error, 1, MPI_FLOAT;
MPI_MAX, 0, MPI_COMM_WORLD) ;

(@)

(b)

[R] begin
&status) ; B := (A@north+A@east+AB@west+A@south)/4;
error := max<< fabs(A-B)
end;

Figure 5. The main loop of the Jacobi lteration in (a) C with MPI and (b) in ZPL. For brevity, the MPT_Send calls are omit-

ted from the MPI version.

single processor against sequential implementa-
tions, written in either C or Fortran. Speedup
(relative to the best sequential results) was then
computed to show how the programs performed
as the number of processors grew. The perfor-
mance of ZPL programs scaled well.

How ZPL Helps the Programmer

ZPL programs are more readable, concise, and
easier to write than other approaches. ZPL does
this in several ways.

JULY-SEPTEMBER 1998

Simplified source code

ZPL implicitly specifies communication and
synchronization. As Figure 5 shows, this tremen-
dously simplifies the source code. However,
communication zs evident in the source code, be-
cause operators such as @ and max<< indicate
where communication can be induced. Thus,
only the details of communication are hidden
from the programmer. Message passing, in con-
trast, hides too little of the communication;
higher level languages such as HPF hide too
much.
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C)

DO NREL=1,
WHERE (RE

ITER
D(2:NX-1,2:NY-1,2:Nz2-1))

RELAXATION OF THE RED POINTS

U(2:NX-1,
&

& U(1:NX-2,
& U(2:NX-1,
& U(2:NX-1,

ELSEWHERE

2:NY-1,2:Nz2-1) = &
FACTOR* (HSQ*F (2:NX-1,2:NY-1,2:NZ-1)+ &
2:NY-1,2:NZ2-1)+U(3:NX,2:NY~1,2:NZ2~1)+ &
1:NY-2,2:NZ-1)+U(2:NX-1,3:NY,2:NZ-1)+ &
2:NV-1,1:NZ-2)+U(2:N¥-1,2:NV-1,3:NZ))

RELAXATION OF THE BLACK POINTS

U(2:NX-1,

&

& U(1:NX-2,
& U(2:NX-1,

& U(2:NX-1

END WHERE
ENDDO

2:NY-1,2:NZ-1) = &
FACTOR* (HSQ*F (2:NX-1,2:N¥-1,2:NZ-1)+ &
2:NY-1,2:NZ-1)+U(3:NX,2:N¥-1,2:N%-1) + &
1:NY-2,2:N2-1)3U(2:NX-1,3:NY,2:NZ-1) + &
,23NY-1,1:NZ-2)+U(2:NX-1,2:NY-1,3:NZ))

for nrel := 1 to iter do

-— Relaxation of the red points

[T with Red] U := factor*(hsg*F+
UGtop+U@bot+
URleft+URright+
U@front+U@back),

—-— Relaxatlon of the black points

[T without Red] U := factor* (hsg*F+
URtop+U@bot+
v@left+UGright+
U@front+Ueback) ;

end;

(b)

Figure 6. Red/black relaxation loop from (a) Fortran90 and (b) ZPL versions of a 3D Poisson solver.

82

Regions and region operators

ZPL regions elevate the concept of the index
set to an entity that can be named and manipu-
lated. As Figure 5 shows, regions and region op-
erators replace explicit looping and array index-
ing. Thus, the concept of operating on the entire
region of an array is made clear. By contrast, ex-
plicit indexing is significantly more error prone
and forces the programmer to reason about each
loop individually. Moreover, by applying regions
to entire statements and using expressions such
as A@north in place of direct array indexing,
ZPL removes redundancy and reduces the like-
lihood of errors.

ZPLs region construct has significant advan-
tages, even when compared to other array lan-
guages. Figure 6 shows the inner loop of a 3D
Poisson solver using red/black successive over-
relaxation in Fortran 90 and in ZPL. The clarity
of the ZPL code is striking in comparison to the
Fortran. Much of the clarity comes from the re-
gion construct. The region T in ZPL encapsu-
lates the same information as the Fortran slice
2:NX-1, 2:NY-1, 2:NZ-1, exceptthatthe
region applies to all arrays in a statement, while a
slice must be specifed for each array reference.
Because this “interior” region is used throughout

the computation, it is both convenient and con-
ceptually simpler to declare it once and use it
symbolically thereafter.

The ZPL code’s improved readablhty reduces
the potental for errors. In the ZPL solution,
different things look different—in this case us-
ing different direction and region names—
whereas all of the HPF slices look similar except
for the numerous constants, which can easily be
mistaken for each other.

Boundary condition specification

ZPL supports common types of boundary
conditions, such as constant, periodic, and mir-
rored boundaries. In Figure 2, we saw how con-
stant boundary conditions were easily defined
and how using regions cleanly separated the
boundary-condition code from the common
case code, making it both easier to understand
and modify. By contrast, in message-passing
programs, boundary conditions and communi-
cation code are often intertwined.

Figure 7 shows how ZPL simplifies the spec1—
fication of periodic boundary conditions. The
example shows Fortran 90 and ZPL code frag-
ments from a finite-différence calculation using
the shallow-water equations. This program con-
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UOLD(M + 1,:N) = UOLD(1, :N)
VOLD(M + 1,:N) = VOLD(1, :N)
POLD(M + 1,:N) = POLD(1, :N)
UM + 1,:N) = U(1l,:N)
V(M + 1,:N) = V(1,:N)
P(M + 1,:N) = P(1,:N)

I

UOLD(:M,N + 1) UOLD(:M, 1)
VOLD(:M,N + 1) VOLD(:M, 1)
POLD(:M,N + 1) = POLD(:M,1)
U(:M,N + 1) U(:M,1)
V(:M,N + 1) V(:M, 1)
P(:M,N + 1) P(:M,1)

il

UOLD(M + 1,N + 1) UoLD(1,1)
vVoLD(M + 1,N + 1) VOLD(1,1)
POLD(M + 1,N + 1) = POLD(1,1)
UM+ 1,N + 1) = U(L,1)
V(M + 1,N + 1) v(1,1)
P(M+ 1,N+ 1) = P(1,1)

(a)

[south of I] wrap U, Uold, V, Vold, P, Pold;
[east of I] wrap U, Uold, V, Vold, P, Pold;
[se of I] wrap U, Uold, V, Vold, P, Pold;

(b)

Figure 7. Specifying boundaries using (a) Fortran 90 and (b) ZPL code fragments from a finite-difference calculation to

predict weather using the shallow-water equations.

tains 72 X » arrays with periodic boundaries, so
each array is allocated an extra row and column
that is kept equal to the row or column on the
opposite edge. The ZPL program uses the wrap
statement to copy items from one side of an array
to the other. For example, given region I =
[1..m, 1..n] anddirecdoneast = [0,1],
the statement

[east of I] wrap U;
-- copy first column into last column

assigns to the region [east of I] (thatis,
[1..m, n + 1])the datafrom the same-sized
region on the opposite side of the array, namely,
the region [1..m, 1].The programmer’s in-
tent is clear from the text, reducing the potential
for error. Thus, ZPL raises the level of abstrac-
tion by providing a direct solution for periodic
boundary conditions. It also directly supports
mirrored boundary computations, using the
reflect statement. Here again, ZPL program-
mers can define names for indices once and use
them symbolically thereafter.

By contrast, each of the first six lines of the
Fortran 90 code (Figure 7a) copies the first row of
an array to the last row of the same array. The
next six lines copy the first column to the last col-
umn, and the last six lines copy the upper left cor-

JULY-SEPTEMBER 1998

ner item to the lower right. The use of explicit
array indexing (in this case, slices) obscures the
existence periodic boundary conditions.

Sequential semantics

ZPLs deterministic behavior greatly simplifies
parallel programming as users no longer need to
worry about issues such as explicit communica-
tion, race conditions, deadlock, or livelock. De-
terministic behavior not only makes it easier to
reason about programs, but it lets programmers
develop and debug their programs in uniproces-
sor environments—such as PCs and worksta-
tions—and later execute their code for actual data
sets on more powerful parallel computers. This
scalability is beneficial because PC and worksta-
tion environments are typically more familiar, ac-
cessible, and available than parallel computers.
Furthermore, this approach moves the program-
development process off parallel computers so
they can be reserved for production runs.

How ZPL Helps the Compiler

If ZPL programs do not perform well, the pro-
gramming advantages of ZPL are lost. As we dis-
cussed above, ZPL offers good performance. In
additdon, the ZPL compiler can succeed in situa-
tions where parallelizing compilers and compilers
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for other parallel languages face difficulties.

By carefully raising the level of abstraction
while remaining faithful to an appropriate ab-
stract machine model, the ZPL language conveys
more semantic information to the compiler than
is possible with other approaches. The region
construct, for example, raises the level of abstrac-
tion by explicitly representing an array’s index set.

Furthermore, region operators
such as of and @ provide struc-

The ZPL compiler can
succeed in situations
where parallelizing
compilers and
compilers for other
parallel languages face
difficulties.

0 tured means of modifying re-

gions and produce the same
benefits that structured control
flow does over goto’s: they
carry with them semantic infor-
mation that the compilation
process can exploit.

To provide context, we first
describe the ZPL compiler’s
structure. We then explain how
ZPLs high-level constructs help
the compiler in unique ways.
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Compiler structure
Our compiler accepts ZPL
source code as input and out-
puts ANSI C code.’* The C code is then com-
piled by native C compilers and linked with
ZPL- and machine-specific libraries to produce
executables for different hardware. Our ZPL
compiler is currently targeted to Unix worksta-
tions, networked computers running MPI and
PVM, shared-address-space parallel computers
such as the Cray T3E and SGI Origin, and dis-
tributed-memory parallel computers such as the
IBM SP-2 and Intel Paragon. Although the
compiler produces a low-level representation of
the source program, its internal representation
preserves and exploits the high-level nature of
the ZPL source program during the machine-
independent compilation process.

Simplified analysis

Regions and region operators simplify the
analysis required to generate communication.
Just as using @ operators helps programmers
identify potential communication, the presence
of an @ indicates to the compiler that commu-
nication is necessary. Communication is also re-
quired for other operators such as reductions,
and these are always immediately apparent from
the source code.

Languages that use explicit array indexing
must perform sophisticated analysis—such as
recognizing linear recurrences of array indices—

to detect communication. Where such analysis
is imprecise or foiled by procedure-call bound-
aries, compilers must be conservative and use
expensive runtime checks to detérmine where
communication is needed. These limitations ap-
ply to automatic parallelization as well as to the
compilation of most other parallel languages.

The slices in array languages such as Fortran
90 are not regions. Because they are applied to
individual array references, rather than to the en-
tire statement, their analysis can become quite
complex and can flummox compilers. Moreover,
because Fortran 90 contains Fortran 77 as a sub-
set, Fortran 90 compilers must deal with all of
the complexity of the inherited language.

Communication optimizations

ZPLs array language semantics allow the com-
piler to automically manipulate entire arrays or
slices of arrays. This representation trivializes an
optimization known as message vectorization in
which many small communication operations,
typically found in a loop, are bundled together
and transmitted as a single large message. This
transformation is profitable on most machines
because a communication operation’s per-mes-
sage overhead is typically large compared to its
per-byte cost. More. sophisticated optimiza-
tions—such as message pipelining and redun-
dant-communication removal—are also greatly
simplified by this high-level representation.'*

These same transformations can be applied to
other languages, but the undisciplined use of the
more general array-indexing operation can lead
easily to index expressions that cannot be stati-
cally analyzed.

Loop nests

As with all array languages, ZPL regions pro-
vide many benefits in loop-nest generation in the
object C code. Sequential languages such as For-
tran force the programmer to specify a complete
ordering of loop iterations. This only compli-
cates the compiler’s task, as it must find alternate
orderings that preserve data dependencies yet
enable parallelization. In contrast, ZPLs regions
provide exactly the information that is needed:
the iteration space. With this information, the
compiler can easily construct loop nests for the
output C code. These loop nests can be opt-
mized for spatial and temporal locality, and can
be fused in the output C code to remove large
intermediate arrays.!

Efficient indexing i$ also p0551ble Rather than
compute array offsets for each access to an-ar-
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ray element, the compiler can simply move a
pointer through the array, requiring only a sin-
gle addition per iteration. The technical terms
for this optimization are induction variable elim-
ination and strength reduction. In low-level lan-
guages such as C, this transformation is typically
thwarted by pointer aliasing except in the case
of statically declared arrays.

Flexible communication

Yet another advantage of high-level languages
is that the compiler can insulate the program-
mer from machine specifics, while at the same
time choosing the communication mechanisms
best suited to a given machine.

The ZPL compiler does this by generating
generic communication routines that can be
mapped to different communication mecha-
nisms on different machines. In particular, the
compiler uses the Ironman interface to insert
four different routines that together define the
legal intervals during which data can be trans-
mitted from one processing element to another.
These routines carry no specific implementa-
tion, so they unify all forms of communication,
including all MPI 2.0 standard routines. The
generic Ironman routines are mapped to a par-
ticular machine’s communcation interfaces by
linking in machine-specific implementations.
Thus, for example, the routines can be bound
to the shared memory Put operation on the
T3E or MPI’s ready-send on the IBM SP-2.

Another advantage of this approach is that the
compiler-generated C code is not specific to any
machine, so retargeting the compiler primarily
involves implementing machine-specific com-
munication routines. Because the compiler is
easily retargeted, it can be widely available
across many platforms.

ow-level parallel programming ap-
proaches such as message passing have
many inherent problems because they
embed too many implementation de-
cisions into the source program. High-level ap-
proaches can be successful if they present care-
fully chosen constructs, such as those in the ZPL
data parallel array language: ZPL allows for ease
of programming and produces efficient com-
piled code across different architectures. ¢
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