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Memory accesses continue to be a performance bottleneck for many

programs, and prefetching is an effective and widely used method for alleviat-

ing the memory bottleneck. However, prefetching can be difficult for irregular

workloads, which the hardware has no clear patterns like sequential or strided

patterns.

For irregular workloads, one promising approach is to perform temporal

prefetching, which memorizes temporal correlations that happen in the past

and use them to predict future memory accesses. To store these correlations, it

requires megabytes of metadata which cannot be feasibly stored on-chip. As a

result, previous temporal prefetchers store metadata off-chip in DRAM, which

introduces hardware implementation difficulties, increases DRAM latencies

and increases DRAM traffic overhead. For example, the STMS prefetcher

proposed by Wenisch et al. has 3.42× DRAM traffic overhead for irregular

SPEC2006 workloads. These problems make previous temporal prefetchers

impractical to implement in commercial hardware.
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In this thesis, we propose three methods to alleviate the metadata

storage problems in temporal prefetching and make it practical in hardware.

First, we propose MISB, a new scheme that uses a metadata prefetcher

to manage on-chip metadata. With only 1/5 traffic overhead compared to

STMS, MISB achieves 22.7% performance speedup over a baseline with no

prefetching compared to 10.6% for an idealized STMS and 4.5% for a realistic

ISB.

Second, we present Triage, the first temporal prefetcher that stores

its entire metadata on chip, which reduces hardware complexity and DRAM

traffic by re-purposing part of last level cache to store metadata. Triage reduces

60% traffic compared to MISB and achieves 13.9% performance speedup over a

baseline with no prefetching. In a bandwidth constrained 8-core environment,

Triage has 11.4% speedup compared to 8.0% for MISB.

Third, we present a new resource management scheme for Triage’s on-

chip metadata. This scheme integrates ISP’s compressed metadata representa-

tion and makes several improvements. For irregular benchmarks, this scheme

reduces on-chip metadata storage requirement by 38% and achieves 29.6%

speedup compared to Triage’s 25.3%.
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Chapter 1

Introduction

1.1 The Problem

As Hennessy and Patterson point out [12], memory is slower than pro-

cessors, and it often takes 150 to 300 CPU cycles to process a DRAM access.

Figure 1.1 shows the performance gap between processors and memory in the

past 40 years. This gap between processor and DRAM speed affects CPU

performance significantly. For example, as Ayers et al. point out [1], more

than 40% of total performance potential in a Google’s web search binary is

wasted on waiting for memory accesses.

An effective method to bridge this gap is data prefetching. By predict-

ing future memory accesses, hardware prefetchers bring in data before they

are actually used and hide the latency for accessing these memory locations.

The majority of prefetchers exploit regular access patterns such as se-

quential or strided patterns. These prefetchers rely on relations among accesses

in their address space. As a result they are not capable of prefetching data

structures with irregular access patterns such as linked lists or trees. Fig-

ure 1.2 shows the difference between regular and irregular access patterns. In

general, irregular access patterns are hard to prefetch because there are no

1



Figure 1.1: The gap between processor and memory performance, measured as
time spent. Borrowed from Computer Architecture: A Quantitative Approach
6th edition by Hennessy and Patterson [12].

clear patterns between consecutive accesses.

A powerful method of prefetching such irregular access patterns is tem-

poral prefetching. Temporal prefetchers memorize temporal correlations that

happen in the past and use them to predict future memory accesses. For

example, in the bottom graph of Figure 1.2, we observe the access pattern

A,D,C,B,E. Next time when A comes in, a temporal prefetcher can predict

that D,C,B,E are likely to be accessed in the near future.

Despite their ability to prefetch patterns that other prefetchers cannot,

temporal prefetchers suffer from the problem of excessive amount of storage

to record past access correlations. The storage size is usually too large to fit

on-chip. As a result, previous prefetchers often store them in the DRAM and

only fetch them on-chip when necessary. These mechanisms result in excessive

amount of latency and traffic overhead and introduce hardware implementa-

tion difficulties. For example, the STMS prefetcher proposed by Wenisch [40]

has 3.42× DRAM traffic overhead for irregular benchmarks.
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Figure 1.2: This graph shows regular and irregular patterns. Regular access
patterns are fixed in their address space (e.g. a fixed delta between consecutive
accesses) while irregular access patterns don’t observe it.

To make irregular prefetching practical in hardware, it is critical to

tackle the problem of having excessive amount of storage. The Irregular

Stream Buffer [16] (ISB) introduces a partial solution to this problem by

adding an on-chip metadata cache for irregular prefetching. ISB manages

this metadata cache by synchronizing with TLB.

Unfortunately, ISB is still inefficient and costs too much hardware re-

source. ISB suffers from three problems. First, ISB has an excessive amount

of traffic going off-chip to DRAM. Experiments show that ISB has 1.5 to 5

times traffic overhead on average. This traffic overhead adverse impacts both

performance and energy consumption. Second, ISB, similar to any off-chip

based temporal prefetchers, requires complicated management of metadata in

DRAM which is not always viable. In certain hardware designs, simpler design

without off-chip metadata is desired even with a slight loss of performance.

Finally, ISB only addresses benchmarks with irregular access patterns. For

benchmarks with both regular and irregular patterns it does not provide a

3



nice solution.

In this thesis, we address these three problems and propose three solu-

tions for them. Our solution is the first commercially viable temporal prefetcher.

1.2 Our Solution

First, we present the Managed ISB(MISB) [43], a temporal prefetcher

that utilizes a new metadata management and improves both performance

and DRAM traffic overhead. MISB achieves 22.7% performance speedup over

a baseline that has no prefetchers, compared to 10.6% of STMS [40] and 4.5%

of ISB. MISB has 70% traffic overhead one fifth of STMS (342%) and one sixth

of ISB (411%).

Second, we present Triage [42], the first on-chip only irregular temporal

prefetcher for this purpose. It reduces complexity of hardware design and

amount of DRAM traffic by removing off-chip metadata storage. It reduces

performance speedup from MISB by 4.4% on single-core with reduction of

traffic of 60%. This traffic reduction helps multi-core since DRAM bandwidth

is more constraint in multi-core environment. In an 8-core system Triage

achieves 11.4% speedup while MISB only achieves 8.0%

Third, we present Reeses, a new mechanism to manage on-chip meta-

data for Triage. This new mechanism reduces on-chip metadata storage re-

quirement by 38% and has 4.3% more performance over Triage.

The rest of the thesis is organized as follows. Chapter 2 talks about

4



background of prefetching. Chapter 3 describes our metadata management

scheme of MISB. Chapter 4 describes our on-chip only prefetcher of Triage.

Chapter 5 describes our on-chip metadata scheme. Chapter 6 concludes the

thesis and presents future work.
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Chapter 2

Background

2.1 Temporal Prefetcher

Temporal prefetchers predict memory accesses by memorizing pairs of

accesses that are correlated with each other in temporal order. For example, if

the access stream A,B,C,X, Y is memorized, when A arrives, the prefetcher

can prefetch B. Charney et al proposes correlation-based prefetcher [6] [7] and

the term ”temporal prefetcher” is introduced by Wenisch et al [41].

Markov prefetcher by Joseph et al. [18] is a simple and effective tempo-

ral prefetcher. However, the storage size of Markov prefetcher limits its per-

formance. Nesbit et al propose Global History Buffer (GHB) prefetcher [27]

that utilizes global address correlation, which is widely used in most followup

works. Figure 2.1 shows an example of how GHB organizes its metadata.

Since the metadata of GHB is merely a large FIFO buffer whose values

have a huge reuse distance, it is very difficult to cache the metadata and no

previous prefetchers have successfully cached them on-chip.

Jain et al propose Irregular Stream Buffer (ISB) prefetcher [16] provides

a solution that caches part of the metadata on-chip. It correlates physical

addresses to consecutive structural addresses. Figure 2.1 shows an example of

6
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Temporal Stream:

              (a) GHB                                (b) ISB

Figure 2.1: Metadata for GHB and ISB [43]

how ISB organizes its metadata and uses it to do prefetch.

The metadata of ISB is stored in two mappings: physical-to-structural(PS)

mapping and structural-to-physical (SP) mapping. During training, when ac-

cess stream A,B,C,X, Y is observed, ISB assigns consecutive structural ad-

dresses 19, 20, 21, 22, 23 to it. The next time A is accessed, ISB searches PS

mapping for the structural address for A (19), predicts the next structural

address (20), and searches SP mapping for the physical address to prefetch

(B).

There are two benefits for ISB’s metadata storage. First, this approach

allows ISB to do PC-localization, which improves accuracy and coverage of

prefetching. PC-localization is a technique that separates streams by their

7



program counter (PC). Second, this approach allows ISB to cache part of its

metadata on-chip. Unlike GHB, ISB does not have redundancy in its physical

address space, making its metadata size much smaller (about 6× reduction)

than GHB.

ISB synchronizes on-chip metadata storage with only addresses that are

also located in TLB. The reasoning for this approach is that the latency for

fetching the entries not in the TLB is covered by page walk and does not lead

to extra latency on the critical path. Since traditional systems often possess

a small TLB, ISB can keep the entire TLB resident metadata on chip. For

example, for a system with 128 entries of 4KB pages, there are only maximum

of 512KB of active memory footprint at one time and requires only 32KB of

on chip storage.

As a result, the amount of metadata required on-chip is proportional

to pagesize and TLBsize. As a result, TLB synchronization has three defi-

ciencies.

First, TLB synchronization manages metadata at page line granularity

and creates a lot of useless traffic. Since there is little spatial locality among

temporal streams, 90% of the metadata brought on-chip is not used. Extra

traffic due to useless metadata fetches hurt performance.

Second, TLB synchronization does not scale to multiple level TLBs,

which are used in modern processors.

Third, TLB synchronization does not scale to huge pages, which are

8



often used for optimizing workloads with large footprint.

To solve these two issues, we need a method to get the metadata without

TLB synchronization. This leads to our first piece of work in this thesis -

Managed ISB (MISB). We will discuss it in the next chapter.

2.2 Other Prefetchers

Many non-temporal prefetchers have been proposed. In this section we

discuss some of them that will be used as comparison in following chapters.

2.2.1 Regular Prefetcher

Next line prefetcher [36] is one of the earliest prefetchers which always

prefetch the next cache line of the current access. Stream buffer prefetcher [19]

can detect streams before performing prefetching. Sandbox prefetcher [32] uses

sandboxes to determine the degree for prefetching. Best Offset prefetcher [26]

evaluate different offsets to determine the best offset for prefetching. Signature

Path prefetcher [22] uses previous access deltas (signatures) to determine the

next prefetch.

All these prefetchers try to find strides that have the best performance.

They work well for strided or streaming access patterns. For irregular access

patterns they have little to none performance.

9



2.2.2 Spatial Prefetcher

Spatial Memory Streaming (SMS) [38] records access patterns within

a spatial region and uses this information for future prefetching. This scheme

works well when access patterns within a spatial region is similar across dif-

ferent regions. Typical workloads that benefits from this prefetcher include

database programs and web workloads.

2.2.3 Pointer Prefetcher

Pointer prefetchers are prefetchers that exploit relationship between

pointers and their destinations. There are two types of pointer prefetchers:

compiler-based and hardware based. Compiler-based pointer prefetchers [25,

34] insert prefetch instructions based on programming properties. Hardware-

based pointer prefetchers like CDP [8] guess pointer relationship during exe-

cution and performs prefetching.

As Jain and Lin [16] point out, there are several deficiencies for pointer

prefetchers compared to temporal prefetchers. First, pointer prefetcher only

exploit pointer structure while temporal prefetcher exploit other sources of

irregular access patterns as well. Second, software-based pointer prefetchers

have poor timeliness. Third, hardware-based pointer prefetchers have low

prediction accuracy due to its inability to precisely identify pointer instances.

10



Chapter 3

MISB1

As described in chapter 2, Irregular Stream Buffer (ISB) prefetcher [16]

provides a solution that caches part of the metadata on-chip for temporal

prefetchers by synchronizing on-chip metadata with TLB. This approach leads

to three deficiencies:

• It fetches large amounts of useless metadata (90% of its loaded meta-

data is never used), which leads to poor metadata cache efficiency (30%

hit rate) and high metadata traffic overhead (411% traffic overhead for

irregular SPEC 2006 workloads).

• It does not scale to large pages since the size of the on-chip cache is pro-

portional to the page size. Large pages are important for many programs

that have large memory footprints.

• It does not work for modern two-level TLBs. If the metadata cache

is synchronized with the L1 TLB, the latency of L2 TLB hits is too

short to hide the latency of off-chip metadata requests. If the metadata

1Portions of this chapter have been published in ISCA 2019 [43]
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cache is synchronized with the L2 TLB, the metadata cache would be

impractically large—on the order of 200-400KB.

We propose Managed ISB (MISB) to solve these three issues introduced

due to its TLB synchronization mechanism. Instead of synchronzing with

TLB, MISB uses a metadata prefetcher to load useful metadata on-chip and

uses LRU replacement policy to evict lines from on-chip metadta cache.

There are three key insights behind our metadata management scheme.

First, TLB-based cache management is wasteful because metadata for a phys-

ical page, which includes 64 consecutive physical-to-structural mappings, typi-

cally exhibits poor spatial locality, yielding metadata cache utilization of about

10%. Thus, metadata should be cached at a finer granularity. Second, because

structural addresses are temporally ordered, the structural address space has

precisely the information that is needed to fill the metadata cache with useful

entries ahead of time. Thus, we prefetch metadata entries by using next-line

prefetching for structural-to-physical mappings. Third, many off-chip meta-

data requests are to addresses that have not been seen before, so no metadata

exists for these addresses. Thus, we use a Bloom filter [3] to record the physical

addresses that have associated metadata; by checking the Bloom filter before

issuing metadata prefetches, we dramatically reduce the number of metadata

requests for unmapped physical addresses.

Our results are magnificent. We reduced off-chip traffic overhead for

metadata to 70% from ISB’s 411%, a reduction of 5.9×. For irregular SPEC2006

12



benchmarks, MISB achieves 22.7% speedup compared to 4.5% for ISB and

10.6% for idealized STMS. MISB also scales to large pages and 2-level TLBs.

For example, MISB achieves 25.5% speedup on a system with 2MB pages while

ISB has no speedup for them.

3.1 Our Solution

MISB is composed of three components: (1) a metadata cache, (2) a

metadata prefetcher, and (3) a metadata filter that avoids issuing spurious

metadata requests. These three components together allow MISB to judi-

ciously manage metadata. We will describe each component in more detail.

Metadata Caching The on-chip metadata cache helps reducing latency

and traffic from accessing off-chip. As mentioned in chapter 2, we require

translations for both structural to physical and physical to structural to work,

so we have separate structure for PS cache and SP cache.

Upon receiving a memory access, the training unit records consecutive

memory accesses from the same PC, and assigns correct structural address for

a given physical address. During prediction, MISB accesses both PS cache and

SP cache for prediction.

We cache both PS and SP cache off-chip. Unlike ISB, MISB manages

its metadata at a fine granularity in cache line level. A logical metadata cache

line contains 8 entries of mapping. Each time MISB does not find a metadata

cache line on-chip, it goes to off-chip metadata for that cache line, and pops
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them to on-chip metadata. MISB uses LRU replacement policy to decide

which cache line to be evicted from on-chip metadata.

Metadata Prefetching If we only have simple metadata caching scheme as

mentioned above, MISB cannot efficiently issues prefetches because the latency

to fetch metadata off-chip adversely affect prefetching performance. To solve

this, MISB introduces a metadata prefetcher.

Since structural address space has temporal locality. We can simply

utilize a next line prefetcher for prefetching metadata. That is to say, if we

are accessing structural address 71, we can bring in 72 and it will be used in

the near future.

Metadata Filtering MISB accesses off-chip metadata for each missing on-

chip metadata entry. If an entry does not exist off-chip, this access is futile and

results in useless traffic to DRAM. To reduce this traffic, we introduce a Bloom

filter for off-chip accesses. Each off-chip entry is recorded in the Bloom filter.

Before MISB accesses off-chip, it first checks the Bloom filter and squashes all

accesses off-chip if they do not exist in the Bloom filter.

3.1.1 Overall Operation

Figure 3.1 shows the overall design of MISB. The Training Unit finds

correlated addresses within a PC-localized stream and assigns them consec-

utive structural addresses. On-chip mappings are stored in the PS and the

14
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Figure 3.1: Overview of MISB

SP caches, and on eviction, they are written to the corresponding off-chip PS

and SP tables. The Bloom filter tracks valid PS mappings and filters invalid

off-chip requests for PS mappings.

Conceptually, MISB’s overall training and prediction algorithms are

similar to ISB’s, but they differ significantly in the way that MISB manages

the movement of metadata between the on-chip metadata caches and off-chip

metadata storage. We now describe MISB’s metadata management scheme

and its interactions with ISB’s training and prediction algorithms.

Prediction On prediction, MISB first queries the on-chip PS cache with

the trigger physical address. If the PS request hits, MISB predicts prefetch

requests for the next few structural addresses. If the PS request misses, MISB

issues an off-chip PS load request, delaying the prediction until the request

completes. For example, in Figure 3.2- 1 , the trigger address M misses in the

15



PS cache and initiates a PS load for M . When the request completes, the new

mappings are inserted into both the PS and SP caches, as indicated by the

shaded entries in Figure 3.2- 2 .

Regardless of whether the PS load hits or misses in the cache, when

we find its structural address s, we issue a data prefetch request for structural

address s+ 1, which causes MISB to query the on-chip SP mapping for s+ 1

(structural address 1024 in Figure 3.2- 3 ). If found, a data prefetch for the

corresponding physical address is issued. If not found, the predicted structural

address s + 1 is placed in a small (32-entry) buffer and an SP1 load request

is issued to off-chip memory. At the same time, future requests to structural

addresses s + 2, s + 3 and so on are anticipated with the issuance of SP2

prefetch requests. For example, in Figure 3.2- 3 , an SP2 prefetch request is

issued for structural address 1025, assuming a metadata prefetch degree of

1. The degree of metadata prefetching can be tuned, and like PS requests,

each SP request carries mappings for 8 consecutive structural addresses. SP

requests also fill both the PS and SP caches. In Section 3.2.4, we show that our

metadata prefetching scheme improves hit rates for both PS and SP caches.

Training MISB’s training is similar to ISB’s training algorithm. The Train-

ing Unit keeps track of consecutive memory references for a given PC and as-

signs PC-localized correlated addresses consecutive structural addresses. The

on-chip PS and SP caches are updated with newly assigned mappings, and if

mappings change, they are marked dirty so that they can be written to off-chip
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Figure 3.2: MISB: PS and SP Transactions.

memory.

Metadata Organization As shown in Figure 3.2, MISB’s on-chip metadata

caches are organized at a fine granularity, where each cache entry holds one

mapping (8 bytes). A fine-grained organization ensures better metadata cache

efficiency because individual mappings can be retained and evicted based on

their usefulness. For example, if one portion of the stream is more likely to be

reused than another, then our metadata cache can selectively retain mappings

for the first portion and discard mappings for the second portion. To maximize

off-chip bandwidth utilization, off-chip requests are issued at the granularity

of 64 bytes (or 8 mappings). Unless specified otherwise, our metadata caches

are 8-way set-associative.

Unlike ISB, both the PS caches and SP caches are managed using an

LRU policy, which allows the PS and SP caches to retain the mappings that

see the most utility in the respective caches. For example, in Figure 3.2, for

the stream A, B, C, the PS Cache has the physical to structural mapping for
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A, and the SP cache has structural to physical mappings for B and C, but

not A. Both our PS and SP caches are writeback caches, so dirty evictions in

these caches result in an off-chip store request.

Finally, our off-chip storage includes two tables: The PS Table and the

SP Table. PS loads are served by the PS Table, while SP1 loads and SP2

prefetches are served by the SP Table. By contrast, since ISB does not need

the SP Table for prefetching, ISB maintains just the off-chip PS Table and

uses the PS entries to construct the on-chip SP table.

Bloom Filter As shown in Figure 3.2- 4 , on an off-chip store request from

the PS cache, the corresponding store address is added to the Bloom filter to

indicate that an off-chip mapping exists for this physical address. The Bloom

filter is then probed on future PS loads, and the load is issued only if the

Bloom filter confirms that a mapping will exist in off-chip memory.

An ideal Bloom filter with infinite resources can eliminate all false pos-

itives, but with limited resources, the Bloom filter produces false positives. To

reduce false positives, we provision 17KB for the Bloom filter and use the h3

hash [33], which provides a good tradeoff between space efficiency and traffic.

For more bandwidth-constrained environments, the Bloom filter budget can

be increased to further reduce traffic.
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3.2 Evaluation

3.2.1 Methodology

For single-core configurations, we evaluate MISB using a proprietary

cycle-level simulator that is correlated against the RTL of commercially-available

CPU designs. This highly accurate and flexible simulator is developed and

maintained by a team of engineers. Our generic CPU model implements the

ARMv8 AArch64 ISA and uses the configuration shown in Table 3.1. The

simulator employs a simple fixed-latency memory model, but it models band-

width constraints accurately and stalls the execution accordingly. Our small

page configuration uses pages sizes of 4KB, and our large page configuration

uses a page size of 2MB.

For multi-core configurations, we use ChampSim [11, 23], a trace-based

simulator that includes an out-of-order core model with a detailed memory sys-

tem. ChampSim’s cache subsystem includes FIFO read and prefetch queues,

with demand requests having higher priority than prefetch and metadata re-

quests. The main memory model simulates data bus contention, bank con-

tention, and bus turnaround delays; bus contention increases memory latency.

The main memory read queue is processed out of order and uses a modified

Open Row FR-FCFS policy. Our ChampSim simulations use the configuration

in Table 3.1 and replicate single-core performance trends from our proprietary

simulator2.

2Absolute quantities such as IPC, MPKI, and traffic in GB/s do not match exactly
between the two simulators, but the relative differences in these quantities are similar.
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Core Out-of-order, 2GHz,
4-wide fetch, decode, and dispatch

128 ROB entries
TLB 48-entry fully-associative L1 I/D-TLB

1024-entry 4-way L2 TLB
L1I 64KB private, 4-way, 3-cycle latency
L1D 64KB private, 4-way, 3-cycle latency

Stride prefetcher
L2 512KB private, 8-way, 7-cycle latency
L3 2MB per core, shared, 16-way

12-cycle latency
DRAM Single-Core:

85ns latency, 32GB/s bandwidth
Multi-Core:

8B channel width, 800MHz,
tCAS=20, tRP=20, tRCD=20

2 channels, 8 ranks, 8 banks, 32K rows
32GB/s bandwidth total

Table 3.1: Machine Configuration

Benchmarks We present single-core results for all memory-bound work-

loads from SPEC2006 [13]. For detailed analyses, we choose a subset of

benchmarks that are known to have irregular access patterns [16]. For SPEC

benchmarks we use the reference input set. For all single-core benchmarks,

we use SimPoints [35] to find representative regions. Each SimPoint has 30

million instructions, and we generate at most 30 SimPoints for each SPEC

benchmark.

We present multi-core results for CloudSuite [9] and multi-programmed

SPEC benchmarks. For CloudSuite, we use the traces provided with the 2nd

Cache Replacement Championship. The traces were generated by running
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CloudSuite in a full-system simulator to intercept both application and OS in-

structions. Each CloudSuite benchmark includes 6 samples, where each sample

has 100 million instructions. We warm up for 50 million instructions and mea-

sure performance for the next 50 million instructions. For multi-programmed

SPEC simulations, we simulate 4 benchmarks chosen uniformly randomly from

all memory-bound benchmarks, and for 8-core results, we choose 8 benchmarks

chosen uniformly randomly. Overall, we simulate 80 4-core mixes and 35 8-core

mixes. For each mix, we simulate the simultaneous execution of SimPoints of

the constituent benchmarks until each benchmark has executed at least 500

million instructions. To ensure that slow-running applications always observe

contention, we restart benchmarks that finish early so that all benchmarks in

the mix run simultaneously throughout the execution. We warm the cache

for 30 million instructions and measure the behavior of the next 100 million

instructions.

Prefetchers We compare MISB against four irregular prefetchers, namely,

Spatial Memory Streaming (SMS) [38], Sampled Temporal Memory Streaming

(STMS) [40], Irregular Stream Buffer (ISB) [16], and Domino [2]. SMS cap-

tures irregular patterns by applying irregular spatial footprints across memory

regions. STMS, ISB, and Domino represent the state-of-the-art in temporal

prefetching. For simplicity, we model idealized versions of STMS and Domino,

such that their off-chip metadata transactions complete instantly with no la-

tency or traffic penalty. Thus, our performance results for STMS and Domino
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Figure 3.3: Comparison of Prefetchers on SPECfp 2006 (left) and SPECint
2006 (right).
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represent the upper bound of performance for these prefetchers. To estimate

their traffic overhead, we count the number of metadata requests, but the re-

quests are never issued to the memory system. Throughout our evaluation,

references to STMS and Domino refer to these idealized implemen-

tations. We also try variants of STMS and Domino that cache the index

table in a 32 KB on-chip cache and probabilistically update the off-chip index

table [40]. These implementations also do not incur any latency and traffic

penalty and are meant to evaluate the impact of probabilistic metadata update

on traffic and performance.

For ISB and MISB, we faithfully model the latency and traffic of all

metadata requests. For MISB, we use 49KB of on-chip storage, which contains

32KB for the on-chip metadata cache and 17KB for the Bloom filter. We also

compare against an idealized version of ISB which has access to all the meta-

data instantaneously, thereby representing an upper bound of performance for

ISB and MISB.

Unless otherwise specified, all prefetchers train on the L2 access stream,

and prefetches are inserted into the L2 cache. Unless otherwise specified, all

prefetchers use a prefetch degree of 1, which means that they issue at most

one prefetch on every trigger access.

We also evaluate MISB as the irregular component of a hybrid prefetcher

that uses the Best Offset Prefetcher (BO) [26] as the regular prefetcher. We

choose BO because it won the Second Data Prefetching Championship [31].
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3.2.2 Single-Core Results

Figure 3.3 compares all the prefetchers on memory-intensive bench-

marks from SPECfp (left) and SPECint (right). On SPECint, which mostly

consists of challenging irregular benchmarks, MISB outperforms all prefetch-

ers with a speedup of 9.3% vs. 4.5% for STMS, the second best prefetcher.

On SPECfp, which mostly consists of regular benchmarks, BO outperforms

all temporal prefetchers with an overall speedup of 21.5%. Temporal prefetch-

ers do not perform well on regular benchmarks because they cannot prefetch

compulsory misses, but we show later in this section that temporal prefetch-

ers combine well with regular prefetchers. Because the benefit of temporal

prefetching is most pronounced for irregular benchmarks, the rest of this sec-

tion focuses on a subset of 7 irregular benchmarks (5 from SPECint and 2

from SPECfp).

Irregular SPEC2006 The top graph of Figure 3.4 shows that for the irregu-

lar SPEC2006 benchmarks, MISB outperforms all other prefetchers. Its 22.7%

speedup comes close to the 26.9% speedup of an idealized ISB that incurs no

metadata overhead. By contrast, realistic ISB achieves a 4.5% speedup, which

illustrates the severe limitations of ISB’s metadata management scheme on

a modern system with a 2-level TLB. MISB also outperforms idealized ver-

sions of STMS (10.6% speedup) and Domino (9.5% speedup), which illustrates

its benefits over unrealistically optimistic versions of GHB-based temporal

prefetchers. Regular prefetchers, such as BO and SMS, do not perform well
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Figure 3.4: Irregular SPEC2006 Results

on irregular benchmarks, achieving only 6.3% and 2.3% speedup, respectively.

The bottom graph of Figure 3.4 shows that MISB’s traffic overhead is

significantly lower than that of the other prefetchers. In particular, MISB’s

traffic overhead over a baseline with no prefetching is 70%, while STMS,

Domino, and ISB incur five to six times more traffic (342% for STMS, 348%

for Domino, and 411% for ISB). The overhead includes traffic due to metadata

requests and useless prefetches, but as we will see, ISB and MISB issue very

few useless prefetches, so the vast majority of their traffic overhead can be

attributed to metadata requests. We expect these traffic savings to translate

directly to both energy and power savings.
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MISB’s traffic overhead can be reduced from 70% to 45% by using it at

the L3 cache (train on L3 accesses and prefetch into the L3), but this reduction

in traffic comes at the cost of performance, as speedup is reduced from 22.7%

to 19.0%.

Figure 3.5 shows that probabilistic update [40] reduces STMS’ traffic

at the cost of performance. In particular, STMS with probabilistic update

reduces STMS’ speedup from 10.6% to 5.4%, and it reduces traffic overhead

from 342% to 209%, which is still much higher than MISB’s traffic overhead

of 70%.
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Figure 3.5: Impact of Probabilistic Update on STMS

To summarize MISB’s benefits, Figure 3.6 shows that MISB outper-

forms other temporal prefetchers in nearly all dimensions, including accuracy

and timeliness. Like ISB, MISB has high accuracy (87.3% for MISB vs. 64.1%

for STMS and 60.9% for Domino) and good timeliness (83.1% for MISB vs.
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Figure 3.6: MISB Improves Along Multiple Dimensions.

59.6% for STMS and 60.4% for Domino). MISB’s 18.8% coverage is slightly

lower than that of Domino (20.3%) and STMS (21.5%) because our idealized

implementations of Domino and STMS do not incur any latency for accessing

off-chip metadata, whereas for MISB, the metadata latency causes a 5.0% loss

in coverage. Nevertheless, MISB achieves higher speedup than idealized STMS

and Domino because benefits in other dimensions easily compensate for the

small loss in coverage.

Large Page Workloads Figure 3.7 shows that MISB retains its benefits

in the presence of 2MB pages. In particular, MISB achieves 25.5% speedup

over no L2 prefetching (vs. 9.1% for BO, 2.7% for SMS, 12.8% for STMS, and

12.0% for Domino). As we would expect, with huge pages, ISB sees only a

0.2% speedup because at 8MB, the metadata for TLB-resident pages is too

large for ISB to maintain in its on-chip caches. MISB retains its traffic benefits
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Figure 3.7: Large Page Results

with large pages: Its traffic overhead is 64%, which is much lower than ISB’s

132%, Domino’s 340%, and STMS’ 337%.

Hybrid Prefetchers It would be difficult to imagine a chip vendor provid-

ing an irregular prefetcher without also providing a regular prefetcher, so we

combine each of our temporal prefetchers with BO and SMS. Figure 3.8 shows

that for the irregular subset of SPEC2006, the BO-MISB hybrid outperforms

other hybrids with a 25.6% speedup (vs. 14.1% for BO-STMS). Since BO alone

sees only a 6.3% speedup, we conclude that the remaining performance benefit

comes from MISB’s ability to prefetch irregular memory access patterns. If we

further add SMS to the hybrid prefetcher, the BO-SMS-MISB hybrid achieves
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a 26.2% speedup. For SPECfp benchmarks, the BO-MISB hybrid improves

performance by 23.9%, a slight improvement over BO alone (21.5% speedup).

40
3.g

cc.
16

6

42
9.m

cf

45
0.s

op
lex

.ke
nn

47
1.o

mne
tpp

47
3.a

sta
r.la

kes

48
2.s

ph
inx

3

48
3.x

ala
ncb

mk

AVG (ir
reg

ula
r)

1.0

1.2

1.4

1.6

Sp
ee

du
p

Speedup over no L2PF for Irregular Benchmarks
BO_SMS
BO_STMS
BO_Domino
BO_ISB
BO_MISB
BO_SMS_MISB
BO_ISB_Ideal
BO_SMS_ISB_Ideal

Figure 3.8: Hybrid Results

3.2.3 Multi-Core Results

We now evaluate MISB on multi-core configurations.

CloudSuite Benchmarks Figure 3.9 shows that a realistic MISB outper-

forms idealized STMS and idealized Domino on CloudSuite benchmarks, even

though the idealized prefetchers incur no latency or traffic penalty for meta-

data accesses3. In particular, MISB improves performance by 7.2%, while

idealized STMS and Domino improve performance by 4.0% and 3.9%, respec-

tively. These performance improvements can be explained by MISB’s superior

coverage (31.0% for MISB vs. 13.6% for STMS and 13.4% for Domino) and

accuracy (89.8% for MISB vs. 79.0% for STMS and 77.7% for Domino).

Figure 3.10 shows that MISB’s metadata traffic overhead is significantly

3For CloudSuite workloads, we train all prefetchers on L2 misses instead of L2 accesses,
which results in better IPC and lower traffic for all prefetchers.
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Figure 3.10: Traffic Comparison on CloudSuite

lower than that of STMS and Domino: MISB’s traffic overhead is 96.2%, while

idealized STMS’ and Domino’s are 1082.7% and 1081.5%, respectively. The

traffic overhead of STMS and Domino can be reduced to 621.6% and 596.9%,

respectively, by employing probabilistic updates to the off-chip structures [40],

but this optimization degrades performance. For STMS, the performance

drops from 4.0% to 2.0%, whereas for Domino, performance drops from 3.9%

to 1.8%.

Our results show that contrary to prior claims [2], PC-localization is

quite beneficial for server benchmarks. Figure 3.11 compares the compressibil-

ity of PC-localized cache access streams to global access streams, showing that
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Figure 3.11: Benefits of PC-Localization For CloudSuite

PC-localized streams are more compressible and therefore more predictable

than the global stream.4 These results also explain MISB’s higher coverage

and accuracy on server workloads. A second concern [2] is that PC-localized

predictions are untimely for server workloads because instructions repeat much

less frequently than in scientific workloads. Our results show that timeliness

is not an issue when prefetching into the L2 or L3 (prior work prefetches into

a prefetch buffer that is probed in parallel to the L1 [2]). In fact, at the LLC,

MISB is more timely than even idealized STMS and Domino.

Multi-Programmed SPEC Benchmarks To avoid aggravating memory

pressure, low metadata overhead is critical for scaling the benefits of tempo-

ral prefetchers to multi-core systems. MISB works well for 4-core and 8-core

systems. On 4-core multi-programmed workloads, a realistic MISB improves

4We use the Sequitur algorithm [28] to compute compressibility of global and per-PC
streams. Given a sequence of symbols, Sequitur constructs a compressed representation of
the sequence by substituting repeating phrases with concise rules.
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Figure 3.12: MISB Scales to 8-Core Systems.

performance by 19.9%, compared to 8.8% for STMS and 9.6% for Domino. On

8-cores, MISB’s benefit reduces to 12.1% because the metadata traffic over-

head starts to stress available bandwidth, but the top graph in Figure 3.12

shows that MISB still outperforms idealized versions of STMS (7.5% speedup)

and Domino (7.6% speedup) that do not incur performance penalty for meta-

data traffic. The bottom graph in Figure 3.12 shows that the key to MISB’s

scalability is its low traffic overhead, which is 72.5%, while idealized STMS

and Domino incur 304.7% and 306.8% traffic overhead respectively.
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3.2.4 Understanding MISB’s Benefits

The left graph in Figure 3.13 shows that MISB’s benefits depend on its

metadata cache and prefetcher working in concert. We make two observations.

First, without metadata prefetching, MISB’s speedup is reduced from 22.7%

to 6.5%; without an adequate metadata cache budget 5, its speedup is reduced

from 22.7% to 8.9%. Second, MISB’s caching and prefetching scheme can be

applied even in the absence of PC-localization, but the loss of PC-localization

severely hurts performance, reducing speedup from 22.7% to 7.3%.
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Figure 3.13: MISB Benefits from Both Metadata Caching and Prefetching.

The right graph in Figure 3.13 shows that metadata caching signif-

icantly reduces MISB’s traffic overhead. If we were to reduce the metadata

cache budget from 32KB to 1KB, traffic overhead increases from 70% to 113%.

Metadata Cache Hit Rates Figure 3.14 shows that for both the PS and

SP caches, MISB’s metadata management yields significantly better hit rates

5We reduce the metadata cache size from 32KB to 1KB to evaluate the benefit of meta-
data caching. The specifics of the MISB design require a little bit of on-chip metadata cache
to properly train off-chip metadata.
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than ISB’s (43.0% vs. 27.1% for the PS cache, and 66.5% vs. 32.5% for the

SP cache). MISB’s improved hit rates are primarily caused by its accurate

metadata prefetching. We find that more than 90% of metadata retrieved

by ISB’s TLB-sync scheme is never used, which both hurts metadata cache

efficiency and incurs high traffic overhead.
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Figure 3.14: On-Chip Metadata Cache Hit Rate.

Metadata Traffic Finally, Figure 3.15 shows a breakdown of MISB’s off-

chip prefetcher traffic. We see that our Bloom filter reduces spurious PS

loads by not issuing traffic requests marked in striped blue, resulting in traffic

savings of 8.5% (78.5% traffic overhead without the bloom filter vs. 70.0%

traffic overhead with the bloom filter). We also see that by reducing the
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Bloom filter’s false positive rate (unfiltered PS loads), we can further reduce

traffic.
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Figure 3.15: Traffic Breakdown for MISB.

3.3 Conclusion

MISB improves on ISB by managing metadata efficiently. By utilizing

fine-grained caching and accurate data prefetching, MISB improves perfor-

mance by 22.7% (vs. 4.5% for ISB and 10.6% for idealized STMS), while

reducing off-chip traffic to 70% (vs. 411% for ISB and 342% for STMS).

Although MISB significantly reduces traffic overhead and improves per-

formance, it still has an off-chip storage. This off-chip storage can lead to extra

resource consumption which could be infeasible in certain chip design. To solve

this problem, we propose our next solution, the Triage prefetcher, in the next

chapter.
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Chapter 4

Triage1

Metadata is necessary for temporal prefetching. Unfortunately, all pre-

vious temporal prefetchers have to store them off-chip, leading to three issues.

First, off-chip metadata consumes significant extra energy because DRAM op-

erations consume much more energy than SRAM. Second, extra traffic caused

by off-chip metadata accesses can adversely impact performance in bandwidth

constraint environments. Third, storing metadata off-chip require extra hard-

ware complexity for chip vendors, including changing memory interface and

operating systems.

To solve this issue, we propose a new temporal prefetcher that does

not require off-chip metadata. We have two basic insights for this. First, as

Figure 4.1 shows, most of the benefits of prefetching come from a small portion

of metadata, so it is possible to achieve significant amount of coverage with

only a small fraction of the entire metadata. Second, last level cache (LLC) is

not efficient enough for irregular workloads, and the benefit of having a larger

LLC is often outweighed by using them for prefetcher metadata.

Based on these two insights, our Triage prefetcher reuse a fraction of

1Portions of this chapter have been published in MICRO 2019 [42]
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Figure 4.1: Metadata Reuse Distribution for the mcf benchmark: For an ex-
ecution with 60K metadata entries, only 15% of metadata entries are reused
more than 15 times.

LLC as metadata storage, and throws away extra metadata that do not fit in

LLC. We also introduce a dynamic partitioning mechanism and replacement

policy so that the LLC space is used effectively.

4.1 Our Solution

To utilize valuable on-chip cache space effectively and efficiently, the

Triage design considers the following design questions:

• How should metadata be represented to maximize space efficiency?

• Which metadata entries are likely to be the most useful?

• How much of the last-level cache should be dedicated to the metadata

store?

We now discuss our solution for each design question in turn.
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Metadata Representation Triage learns PC-localized correlated address

pairs and records them in a tabular format. For example, the top side of

Figure 4.2 shows a stream of memory references that is segregated into two

PC-localized streams, and the bottom side shows the conceptual organization

of Triage’s metadata. In particular, each entry in Triage maps an address to

its PC-localized neighbor.

Global 

Stream 
A X Y B Z C 

PC1 A B C 

PC2 X Y Z 

Time 

Addr Neighbor 

A B 

B C 

X Y 

Y Z 

Triage’s Metadata Organization 

Figure 4.2: Triage’s metadata organization.

While tables are a poor choice for organizing off-chip metadata, they

are the ideal choice for organizing on-chip metadata because of their space ef-

ficiency. In particular, compared to other metadata organizations [16, 40, 43],

our table-based organization avoids metadata redundancy by representing each

correlated address pair only once. One drawback of our table-based organi-
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zation is that higher degree prefetching requires multiple metadata lookups,

but this latency penalty is significantly lower when the metadata resides com-

pletely on chip (˜20 cycles for accessing each LLC-resident metadata entry vs.

150-400 cycles for accessing up to eight off-chip metadata entries.)

Section 4.1.2 provides more details about how Triage’s entries are orga-

nized in the LLC and how we use compact address representations to reduce

the metadata footprint.

Metadata Replacement We build Triage’s metadata replacement policy

on three observations. First, most metadata reuse can be attributed to a

few metadata entries (see Figure 4.1). Second, even among the metadata

entries that are frequently reused, fewer still account for prefetches that are

not redundant, that is, prefetch requests that do not hit in the cache. Finally,

metadata should be managed and evicted at a fine granularity because Triage

targets irregular memory accesses, which exhibit poor spatial locality.

OPTgen
Hawkeye 

Predictor
Metadata

Store

Computes the OPT 

solution for the past

Remembers past OPT 

decisions

Metadata 

Accesses 

 OPT

 hit/miss

 

Insertion 

Priority

 

PC

Figure 4.3: Triage’s metadata replacement is based on the Hawkeye [17] cache
replacement policy.

To accomplish these goals, we modify a state-of-the-art cache replace-

ment policy called Hawkeye [17], which learns from the optimal solution for
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past memory references. To emulate the optimal solution for past memory

references, Hawkeye examines a long history of past cache accesses (8× the

size of the cache), and it uses a highly efficient algorithm to reproduce the

optimal solution. Figure 4.3 shows a high-level overview of Hawkeye, where

OPTgen is used to train a PC-based predictor; the predictor learns whether

loads by a given load instruction (PC) are likely to hit or miss with the optimal

solution. On new cache accesses, the predictor informs the cache whether the

line should be inserted with high priority or low priority.

Because the Hawkeye policy can capture long-term reuse, it is a good fit

for Triage, where the replacement policy must not be overwhelmed by the many

useless metadata entries. We modify the Hawkeye policy so that the policy is

trained positively only when the metadata yields a prefetch that misses in the

cache. We accomplish this by delaying Hawkeye’s training when the prefetch

request is actually issued to memory. If the prefetch request hits in the cache,

then the metadata reuse is ignored and is not seen by any component of the

Hawkeye policy.

In Section 4.1.2, we provide more details on how we manage the meta-

data replacement at a fine granularity even though many metadata entries

share the same logical last-level cache line.

Adjusting the Size of the Metadata Store To avoid interference between

application data and metadata, we partition the last-level cache by assigning

separate ways to data and metadata. Since different applications have different
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metadata cache requirements, our solution dynamically determines the number

of ways that should be allocated to data and metadata. Our dynamic cache

allocation scheme is based on two insights. First, the OPTgen component of

Hawkeye can cheaply model the optimal hit rate at different cache sizes, so

OPTgen can be used to estimate the profitability of adjusting the amount of

cache space devoted to metadata entries. Second, the optimal hit rate scales

linearly with cache size, so we need not estimate optimal hit rate at every

possible metadata store size—we can instead estimate hit rate at two points

and interpolate.

More concretely, we maintain two copies of OPTgen (each copy needs

an additional 1KB space), and we use these copies as sandboxes to evaluate

the optimal hit rate at different metadata cache sizes. If we find that increas-

ing the metadata cache size will increase optimal metadata hit rate by more

than 5%, we increase the number of ways that are allocated to metadata en-

tries. Similarly, if we find that reducing the metadata cache size decreases the

metadata hit rate by less than 5%, we reduce the number of ways allocated

to metadata entries. For simplicity, Triage chooses between three possible al-

locations for metadata cache (0 MB, 512 KB and 1 MB), but our scheme can

be extended to any number of partitioning configurations by time-sharing the

OPTgen copies to evaluate different metadata cache sizes.
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Figure 4.4: Overview of Triage.

4.1.1 Overall Operation

Figure 4.4 shows the overall design of Triage, where we see that a

portion of the LLC is re-purposed for Triage’s metadata store. On every LLC

access, the metadata portion of the LLC is probed with the incoming address

to check for a possible metadata cache hit 1 . If the metadata entry is found,

it is read to generate a prefetch request 2 . Irrespective of whether the load

resulted in a metadata hit or miss, the Training Unit is updated, and the

newly trained metadata entry is added (or updated) in the metadata store 3 .

The metadata replacement state is updated on metadata misses and metadata

hits that generate a successful prefetch 4 , and the metadata replacement state

periodically recomputes the amount of LLC that should be used as a metadata
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cache 5 .

Training The training unit keeps the most recently accessed address for

each PC. When a new access B arrives for a certain PC, the training unit is

queried for the last accessed address A by the same PC. Addresses A and B

are then considered to be correlated, and the entry (A,B) is stored in Triage’s

metadata store; the metadata store is indexed by the first address in the pair

(A in this example).

To avoid changing entries due to noisy data, each mapping in Triage’s

metadata store has an additional 1-bit confidence counter. If the training

unit determines that A’s neighbor is different from what the metadata store

currently holds, then the confidence counter is decremented. If the training

unit determines that A’s neighbor is the same as what the metadata store

currently holds, then the confidence counter is incremented. The neighbor is

changed only when the confidence counter drops to 0.

Prediction Upon arrival of a new address A, Triage indexes the metadata

by address A to find any available metadata entry. If an entry (say (A,B)) is

found, Triage issues a prefetch for B. If an entry is not found, no prefetch is

issued.

Metadata Replacement Updates Our metadata replacement state, in-

cluding replacement predictors and per-line replacement state, are updated on
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(1) metadata misses, and (2) metadata hits that result in a successful prefetch

request (a prefetch request that does not hit in the cache and is actually issued

to memory. The replacement state is not updated on metadata hits that result

in redundant prefetches (prefetch requests that hit in the cache) because such

metadata entries are not useful.

Our metadata replacement is based on the Hawkeye policy which looks

at a long history of past metadata requests to filter undesirable metadata

entries. Much like the Hawkeye policy, the replacement policy is trained on

the behavior of a few sampled sets only.

Metadata Partition Updates Triage partitions the cache between data

and metadata by using way partitioning. In particular, it uses OPTgen hit

rates as discussed above to periodically (every 1000 metadata accesses) re-

compute the portion of the cache allocated to the metadata store. If Triage

decides to increase or decrease the amount of metadata store, dirty lines are

flushed and the newly allocated/deallocated portion of the cache is marked

invalid immediately.

For shared caches, Triage computes the metadata allocation for each

core individually (by using per-core OPTgens) and allots the corresponding

portion of the LLC for each core’s metadata. For example, if two cores are

sharing a 4MB cache, and if core 0 wants 1MB of metadata, and core 1 wants

512KB of metadata, Triage allocates 1.5MB of the shared LLC for metadata

and partitions the metadata space in a 2:1 ratio among the two cores.

44



4.1.2 Hardware Design

Triage’s metadata entries must be organized at a fine granularity since

metadata entries for irregular prefetchers do not exhibit spatial locality. Be-

cause the LLC is organized at a much coarser granularity, each metadata entry

stores multiple tagged entries within a cache line. In particular, each meta-

data entry is 4 bytes (described shortly), and we store 16 of them within a

cache line. The metadata entries within a cache line are stored in the following

format: tag-entry-tag-entry- · · · -tag-entry. On a metadata lookup, we first

choose a physical line from the metadata store, and we then find the relevant

metadata entry by comparing the sub-tags within each cache line.

To store the metadata within 4 bytes, we use a compressed tag. To

understand our compressed tag, realize that each address has a cache line offset

of 6 bits and set id of 11 bits, and the remaining bits are tags. We construct

a lookup table to compress the tag to 10 bits. Thus, in each metadata entry,

we record the compressed tag of the trigger address and the compressed tag

and set id of the next address, which sums to 31 bits2. The remaining 1 bit is

used as confidence counter.

2The set id of the trigger address is implicit in a set-associative cache, so we do not need
to store it.
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4.2 Evaluation

4.2.1 Methodology

We evaluate Triage using similar mechanisms as MISB, which is de-

scribed in section 3.2
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Figure 4.5: Triage outperforms BO and SMS

We evaluate two versions of Triage, static and dynamic. The static

version picks a fixed metadata store size that gives the best performance on

average and statically partitions the LLC using this size. For our industrial

strength simulator, the best static metadata store size for a 2MB LLC is

512KB, and for the ChampSim simulator, the best static metadata store size

is 1MB. The dynamic version of Triage modulates the size of the metadata

store dynamically as described in Section 4.1.

All prefetchers train on the L2 miss stream, and prefetches are inserted

in the last-level cache (L3). Unless specified, all prefetchers use a prefetch

46



degree of 1, which means that they issue at most one prefetch on every trigger

access.

4.3 Comparison With Prefetchers That Store Metadata

On Chip

Figure 4.5 shows that Triage outperforms state-of-the-art prefetchers

that have on-chip metadata only. In particular, Triage achieves a speedup

of 12.8% and 13.9% for the static and dynamic configurations, respectively,

whereas BO and SMS see a speedup of 4.8% and 2.3%, respectively. Triage’s

superior performance can be explained by its higher coverage (23% for Triage

vs. 16% for BO and 4% for SMS) and higher accuracy (82% for Triage vs.

44% for BO and 41% for SMS) as shown in Figure 4.8.

Triage-Dynamic is slightly better than Triage-Static as it modulates the

metadata store size for gcc and xalancbmk. As we will see later, the benefit of

our dynamic scheme is most pronounced in a shared cache setting where the

cache is shared by both regular and irregular benchmarks.

Figure 4.7 sheds more insight on Triage’s performance. We see that a

version of Triage that does not reduce LLC capacity achieves a 20.7% speedup.

Reducing the cache by 1 MB results in a 7.4% loss in performance, but we

find that this loss is compensated by Triage’s high coverage as Triage sees an

overall speedup of 12.8% with a 1MB metadata store.

For completeness, Figure 4.6 compares all prefetchers on the remaining

memory-intensive SPEC 2006 benchmarks. Because these benchmarks are
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Figure 4.6: Results on regular SPEC 2006 benchmarks.
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Figure 4.7: Breakdown of Triage’s Performance Improvements

regular, Triage does not outperform BO, but we see that Triage’s dynamic

partitioning scheme avoids hurting performance on most benchmarks. On

bzip2, Triage hurts performance because it detects metadata reuse, but the

prefetches issued by these metadata entries are not enough to cover the loss

in LLC space. More sophisticated partitioning schemes that account for cache

utility more accurately will help improve Triage in these scenarios.
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Sensitivity to Replacement Policy Figure 4.9 compares the performance

of Triage at different metadata store sizes and with different replacement poli-

cies (assuming no loss in LLC capacity). We make two observations. First,

with just 1MB of metadata store, Triage achieves 75% of the performance

of an idealized PC-localized temporal prefetcher, which is significant because

typical temporal prefetchers consume tens of megabytes of off-chip storage.

This result confirms the main insight of Triage that most prefetches can be

attributed to a small percentage of metadata entries. Our second observa-

tion is that a smart replacement policy can improve the effectiveness of Triage

at smaller metadata cache sizes, but when the metadata cache is sufficiently

large (1 MB), the gap between LRU and Hawkeye shrinks. In particular, with

a 256 KB metadata cache, Triage with an LRU policy achieves 7.7% speedup

whereas Triage with the Hawkeye policy sees a 13.7% speedup.

Hybrid Prefetchers Since Triage targets irregular memory accesses, it

makes sense to evaluate it as a hybrid with regular memory prefetchers, such

as BO. Figure 4.10 shows that a BO+Triage hybrid outperforms BO (24.8%

speedup for BO+Triage vs. 5.8% for BO), which shows that Triage successfully

prefetches lines that BO cannot.

4.3.1 Comparison With Prefetchers That Use Off-Chip Metadata

Existing temporal data prefetchers use tens of megabytes of off-chip

metadata. Compared to these prefetchers, Triage provides a simpler design
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and a more desirable tradeoff between performance and off-chip metadata

traffic. Figure 4.11 compares Triage against overly optimistic idealized versions

of STMS and Domino and against a realistic version of MISB [43]. We see

that Triage outperforms idealized STMS and Domino (23.5% for Triage vs

14.5% for Domino and 15.3% for STMS). Triage doesn’t match MISB’s 34.7%

performance, but we see that it incurs much less traffic overhead (bottom graph

in Figure 4.11). In particular, compared to a baseline with a 2 MB cache and

no prefetching, Triage increases traffic by 59.3%, whereas STMS, Domino and

MISB increase traffic by 482.9%, 482.7%, and 156.4% respectively.

To put these results in context, Figure 4.12 compares all temporal

prefetchers and the Best Offset (BO) prefetcher along two axes, namely per-

formance and traffic overhead. STMS, Domino, and MISB all use off-chip

metadata, so they incur high off-chip traffic overheads and are in general more

complex due to the complications introduced by storing metadata off chip.

Triage outperforms STMS and Domino while eliminating metadata overheads.

Triage has lower performance than MISB, but it reduces traffic by more than

half, offering an attractive design point for temporal prefetching. In fact,

Triage’s traffic overhead of 59.3% is comparable to BO’s 33.8% traffic over-

head. BO’s traffic overhead can be attributed to its large volume of inaccurate

prefetches on irregular programs. By contrast, Triage is more accurate, but it

incurs traffic due to an effectively smaller LLC.
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Energy Evaluation Triage is more energy-efficient than other temporal

prefetchers. Figure 4.13 shows that Triage’s metadata accesses are 4 − 22×

more energy efficient than MISB’s. To estimate the energy consumption of

Triage’s metadata accesses, we count the number of LLC accesses for meta-

data, assuming 1 unit of energy for each LLC access. To estimate the energy

consumption of MISB’s memory accesses, we count the number of off-chip

metadata accesses and multiply it by the average energy of a DRAM access.

Since a DRAM access can consume anywhere from 10× to 50× more energy

than an LLC access [4, 15], we assume that each DRAM access consumes 25

units of energy, and we add error bars to account for the lower bound (10 units

of energy per DRAM access) and upper bound (50 units of energy DRAM ac-

cess) of MISB’s overall energy consumption.

At higher degrees, Triage’s table-based design requires multiple LLC

lookups, which will increase its overall energy requirements. In particular, we

find that Triage’s energy consumption doubles at degree 8, which is still much

more energy efficient than MISB.

4.3.2 Evaluation on Server Workloads

To evaluate its effectiveness for server workloads, we evaluate Triage on

the CloudSuite benchmark suite running on a 4-core system (See Figure 4.14).

On the highly irregular Cassandra, Classification, and Cloud9 benchmarks,

Triage improves performance by 7.8%, whereas BO improves performance by

4.8% and SMS sees no performance gains. On the more regular Nutch and
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Streaming benchmarks, SMS and BO do well (10.9% and 14.7% performance

improvement), whereas Triage sees no performance improvement because tem-

poral prefetchers cannot prefetch compulsory misses.

In a hybrid setting, BO and Triage compose well, as Triage works well

for the irregular benchmarks and BO works well for the regular ones. In par-

ticular, a BO+Triage hybrid outperforms all other prefetchers as it improves

performance by 13.7%, whereas BO alone improves performance by only 8.6%

(50.6% miss reduction for BO+Triage vs. 31.4% miss reduction for BO). A

BO+SMS hybrid (5.8% speedup) does not provide much improvement and,

in fact, degrades performance compared to BO alone, because both BO and

SMS target regular access patterns, so when they are combined, their collective

inaccuracy creates more contention for bandwidth.

Figure 4.14 also shows that Triage-Dynamic provides benefit over a

static version of Triage in this setting, so we conclude that our dynamic scheme

makes good decisions about trading off cache space for metadata storage. This

benefit is most pronounced for the irregular benchmarks (Cassandra, Classifi-

cation, and Cloud9) where the dynamic version outperforms the static scheme

by 2.3% (7.8% for Triage-Dynamic vs. 5.5% for Triage-Static).

4.3.3 Evaluation on Multi-Programmed SPEC Mixes

Figure 4.15 shows that for multi-programmed mixes of SPEC programs

sharing the last-level cache, Triage-Dynamic is a significant improvement over

Triage-Static. In particular, for mixes of irregular workloads sharing an 8 MB
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LLC on a 4-core system, a static version of Triage with 4 MB of metadata and 4

MB of data improves performance by only 4.8%. By contrast, Triage-Dynamic

improves performance by 10.2%.

These results can be explained by noting that the LLC is a more valu-

able resource in shared systems. Triage-Dynamic works well in this setting

because it can (1) modulate the portion of the LLC dedicated to metadata de-

pending on the expected benefit of irregular prefetching, and (2) distribute the

available metadata store among individual applications such that the applica-

tion which benefits the most from irregular prefetching gets a larger portion

of the metadata store.

Comparison With Prefetchers That Store Metadata On Chip Fig-

ure 4.16 shows that Triage compares favorably to spatial prefetchers, such

as BO, on 4-core systems. In particular, a combination of BO and Triage-

Dynamic outperforms BO alone on a 4-core system, as we see that BO improves

performance by 10.6%, Triage-Dynamic improves performance by 10.2%, and

a combination of BO and Triage-Dynamic improves performance by 15.9%.

These results re-iterate that Triage can prefetch irregular memory accesses

that BO cannot.

We observe similar trends on 8-core and 16-core systems. On an 8-

core system, BO+Triage improves performance by 12.6% (vs. 7.4% for BO

alone), and on a 16-core system, BO+Triage improves performance by 10.0%

(vs. 4.4% for BO alone).
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Comparison With Prefetchers That Store Metadata Off Chip Fig-

ure 4.17 compares the average speedup of Triage with MISB on 2-core, 4-core,

8-core, and 16-core systems where the cache is shared among different irregu-

lar programs. We see that while MISB outperforms Triage on a 2-core system

(12.1% for Triage vs. 16.0% for MISB), its benefit shrinks on an 8-core system

(8.8% for Triage vs. 10.0% for MISB). On a 16-core system, Triage outper-

forms MISB (6.2% for Triage vs. 4.3% for MISB). These trends suggest that

MISB’s performance does not scale well to bandwidth-constrained environ-

ments because of its large metadata traffic overheads. By contrast, Triage’s

performance scales well with higher core counts.

Comparison On Mixes With Regular Programs For completeness, Fig-

ure 4.18 shows that Triage composes well with BO when the multi-programmed

mixes include both regular and irregular programs. In particular, for a 4-core

system, BO+Triage improves performance by 23%, whereas BO alone improves

performance by 19.3%. Triage alone does not work well in this setting (4.3%

speedup) because it cannot prefetch compulsory misses for regular programs.

The dynamic version of Triage is essential in these scenarios because

the cache is shared among irregular programs—which benefit from Triage—and

regular programs—which do not benefit from Triage. For regular programs, a

static version of Triage would reduce effective LLC capacity without providing

much prefetching benefit. Figure 4.19 shows the number of ways allocated to

each core on this 4-core system, and we see that (1) the total number of ways
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allocated to the metadata store varies across mixes, and (2) each application

receives varying amounts of metadata space depending on a dynamic estimate

of the usefulness of the metadata.

For example, the leftmost bar in Figure 4.19 represents a mix with

1 regular program (milc on core 0), two irregular programs (xalancbmk on

core 1 and omnetpp on core 3), and one regular/irregular program (bzip2

on core 2). For this mix, Triage-Dynamic allocates an average of 22% of

the LLC capacity to metadata (the maximum metadata allocation can go up

to 50% of the LLC). It distributes this metadata store appropriately among

different workloads: Milc is not allocated any metadata space because it does

not benefit from irregular prefetching, omnetpp is allocated the maximum

metadata space (10% of total LLC capacity) because it benefits the most from

irregular prefetching, and the other benchmarks are allocated 6% each.

4.4 Conclusion

Temporal prefetchers can be highly effective for irregular memory access

patterns, but they have yet to be commercially adopted because they need

to store large amounts of metadata in DRAM. This off-chip metadata adds

complexity and incurs significant traffic. To solve this problem, we presented

Triage, a temporal prefetcher that removes the off-chip metadata requirement

and stores metadata only on chip, making it practical to implement. Our

experiments show that Triage performs better than other spatial prefetchers

that only use on-chip metadata. We find that in a multi-core setting with
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workload mixes consisting of both regular and irregular workloads, a hybrid

prefetcher of Best Offset and Triage works well.

56



40
3.g

cc.
16

6

42
9.m

cf

45
0.s

op
lex

.ke
nn

47
1.o

mne
tpp

47
3.a

sta
r.la

kes

48
2.s

ph
inx

3

48
3.x

ala
ncb

mk

AVG (ir
reg

ula
r)

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra
cy

Prefetcher Accuracy for Spec2K6 Irregular Benchmarks

No PF
BO
SMS
Triage_512KB_Static
Triage_Dynamic

40
3.g

cc.
16

6

42
9.m

cf

45
0.s

op
lex

.ke
nn

47
1.o

mne
tpp

47
3.a

sta
r.la

kes

48
2.s

ph
inx

3

48
3.x

ala
ncb

mk

AVG (ir
reg

ula
r)

Benchmark

0.0

0.1

0.2

0.3

0.4

Co
ve

ra
ge

Prefetcher Coverage for Spec2K6 Irregular Benchmarks

No PF
BO
SMS
Triage_512KB_Static
Triage_Dynamic

40
3.g

cc.
16

6

42
9.m

cf

45
0.s

op
lex

.ke
nn

47
1.o

mne
tpp

47
3.a

sta
r.la

kes

48
2.s

ph
inx

3

48
3.x

ala
ncb

mk

AVG (ir
reg

ula
r)

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m
el
in
es
s

Prefetcher Timeliness for Spec2K6 Irregular Benchmarks

No PF
BO
SMS
Triage_512KB_Static
Triage_Dynamic

Figure 4.8: Triage improves coverage and accuracy.
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Figure 4.14: Triage works well for server workloads.
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Figure 4.15: Triage-Dynamic improves over Triage-Static for shared caches.
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Figure 4.16: Triage works well on multi-programmed mixes of irregular pro-
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Chapter 5

Reeses

Triage introduces a new design point for irregular prefetching by remov-

ing the need for off-chip metadata storage. By re-purposing part of last level

cache (LLC) into metadata storage, Triage stores the most useful metadata

on-chip and prefetches accordingly.

However, Triage causes a conflict between cache space and metadata

space. Since the overall space of LLC is fixed, increasing metadata size in-

evitably decreases cache size used to store actual data and causes loss in cache

hit rate. If we can reduce metadata size of Triage, more cache space can be

used to store data.

To optimize metadata size for Triage, we observe that Triage as a tem-

poral prefetcher does poorly for workloads with regular patterns. In particu-

lar, Triage records redundant information for regular patterns. For example,

in Figure 5.1, Triage needs to record 5 mappings (A,B), (B,B+1), (B+1, B+

Figure 5.1: This graph shows an access stream containing both regular and
irregular patterns.
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2), (B + 2, B + 3), (B + 3, B + 4) to prefetch the entire stream. Unlike Triage,

a regular prefetcher like IP-stride prefetcher [19, 30, 36] only needs to record a

single stride for prefetching B + 1, · · · , B + 4.

Integrated Stream Prefetcher (ISP) proposed by M. Pabst [29] reduces

space requirement for workloads with regular patterns by provides a method

to represent both temporal and spatial access patterns. In ISP, each entry

represents a spatial pattern instead of a single address. For example, ISP

represents Figure 5.1 by one metadata entry: (A,B, delta = 1, len = 5). Com-

pared to ISB [16], ISP reduces metadata storage for regular patterns and do

not impact irregular patterns. On average, ISP reduces metadata requirement

for SPEC2006 [13] by 2×.

However, simply applying ISP’s metadata representation to Triage does

not work. We observe the following two problems in naively applying ISP to

Triage.

First, directly applying ISP to Triage results in more conflict misses

compared to Triage. Triage represents its metadata in set associative cache.

Like other set associative cache, the set ID is determined by lower bits of

addresses. However, since stream length has to be represented as a limited

size value in hardware, trigger addresses in a long stream are not uniformly

distributed and tend to have similar lower bits. For example, Figure 5.2 shows

a long stream of length 1024 starting from fabcde0001000000. Assume ISP’s

maximum allowed stream length is 64. ISP breaks this stream into chunks like

(A, · · · , A+ 63), (A+ 64, · · · , A+ 127), · · · , (A+ 960, · · · , A+ 1023). All the
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trigger addresses are different by 64 in this stream and have the same lower

6 bits, which are all conflicted in the same set in the metadata. The conflict

misses problem is more severe in Triage since Triage does not have off-chip

metadata like ISP to back up these conflicted entries.

Figure 5.2: Set conflict in Reeses using Triage’s organization.

Second, Triage’s dynamic scheme uses OPTgen samplers to estimate

metadata hit rate for different metadata sizes. Since the amount of OPTgen

sampler is limited, Triage cannot experiment every possible value of metadata

sizes. So it can overestimate the amount of necessary metadata. This limits

the benefits of metadata reduction from ISP.

To solve these two problems, we propose a new resource management

schemes, Reeses, for Triage’s on-chip metadata. Reeses uses ISP’s compressed

metadata representation and makes the following two improvements to address

these two problems.

First, we propose a new method managing on-chip metadata in set-

associative cache by using hashed tags and set ID. This new scheme reduces

metadata entry size and amount of conflict misses in metadata and improves

performance from Triage.
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Second, we propose a new Size Based Allocation (SBA) scheme that

allocates metadata sizes based on metadata storage requirement dynamically.

Combined with ISP, it better utilizes last level cache and yields more perfor-

mance compared to old dynamic scheme of Triage.

Overall, by applying the compressed metadata representation and these

two mechanism, Reeses achieves 4.3% more speedup than Triage for irregular

benchmarks, and 2.7% for all SPEC2006 benchmarks. In a 4-core system,

Reeses achieves 0.6% more speedup for CloudSuite and 2.2% more speedup

for SPEC benchmark mixes.

5.1 Our Solution

The overall flow of Reeses is similar to Triage. For each LLC access, the

metadata store is queried to see if a metadata entry is found. Reeses generates

prefetches accordingly when such an entry is found. Regardless of whether an

entry is found, Reeses updates the training unit with the access address, and

the training unit decides whether a new metadata entry needs to be updated

to the metadata store.

The major differences between Reeses and Triage are the following three

parts. First, instead of a simple mapping from source address to target address,

each metadata entry contains a stream of addresses like in ISP. Second, we use

hashed tags and set ID to make metadata entries more compact and reduce

conflict misses in searching for a metadata entry. Third, we have a new method

SBA to determine the size of metadata store dynamically in the run. The rest
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of the section describes each of these three parts.

5.1.1 Metadata Entry Composition

Figure 5.3 shows the structure of metadata representation in Reeses.

Each Reeses entry is composed of four parts: tag, entry, stride and stream

length. Tag represents a compressed version of the previous address. The

compression scheme will be further described in section 5.1.2. The entry rep-

resents the first address in a strided stream following the previous address.

Stride and stream length depicts the stride and length of the strided stream.

Figure 5.3: Metadata Representation for Reeses. When there is a strided
stream, Reeses will consolidate them into one entry.

Training Table 5.1 shows the transition table on how the training unit cre-

ates metadata entries. When a new address comes in, Reeses first checks if it

belongs to the existing stream. If it does, Reeses simply updates the current

stream. If it doesn’t, Reeses writes out the current stream to metadata store

and prepares for the next stream.
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Prediction Upon seeing an address A, Reeses checks whether it has an

entry in the metadata store. If such an entry is found, all addresses from the

following address will be put in a prefetch buffer. Future access will prefetch

addresses from this prefetch buffer until it is exhausted.

Existing entry for PC New Address Action
(h(A), B, stride, len) Same address as last address Do nothing
(h(A), B, stride, len) C in the same stream Update entry to

(h(A), B, len+1)
(h(A), B, stride, len) C in different stream Move entry to on-chip

metadata, Update TU to
(h(B+stride*(len-1)), C, 1,
1)

Table 5.1: Reeses Training Transition Table

5.1.2 Metadata Organization

In Triage, the lower bits in cache line address is used as set ID in

metadata. This approach works well in Triage because the lower bits of line

addresses is uniformly distributed in the address space. However, in Reeses it

is not the case and Figure 5.2 shows why.

Since stream length has limited bits in metadata, long streams need

to be broken into small streams. When we look at all streams in Figure 5.2,

the lower bits of adjacent streams tend to be similar, which are different by a

multiple of stream length. As a result, this value is not uniformly distributed.

Using it as set ID results in more conflict misses than desired.

Simply moving set ID to higher bits doesn’t work either. When a
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workload has all irregular patterns, different addresses in the same region can

point to different addresses, causing a lot of conflict misses.

To solve this problem we would like to have a method mapping address

to set ID such that each set ID has roughly the same amount of address

assigned to it. Hong et al. [14] propose Touche, a compressed cache tag method

by applying XOR on different sections of address. We use a similar approach

here for the set ID. However, instead using the property of compressing, we

use them as a hash function to hash address into different buckets labeled by

their set IDs. Figure 5.4 shows how our scheme works.

Figure 5.4: The computation method of SetID.

Similar technique can be used to compress tags for metadata. Figure 5.5

shows how the compression of tag works.
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Figure 5.5: The computation method of Tag.

5.1.3 Dynamic Metadata Store Size

Reeses uses size based allocation (SBA) for metadata storage allocation.

Similar to Triage, Reeses assigns separate ways to data and metadata. Unlike

Triage, the number of ways is determined by the amount of required metadata

size.

We have a Bloom filter [3] to record whether an address has been visited

before and a global counter to record the amount of addresses we have seen.

When we add a new entry to the metadata store, we also add it to this bloom

filter. If an address is not present in the Bloom filter, it increments the global

counter. The global counter indicates the amount of metadata Reeses needs.

Since Bloom Filters can yield false positives on a query, this scheme
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can under-estimate the number of unique metadata entries. To accommodate

false positives, we randomly increase the global counter on Bloom Filter hits.

In particular, the false positive rate can be computed as

fp rate = (1− ekn/m)k

where k is the number of hash functions in the Bloom filter, n is the number

of unique entries and m is the number of bits in the Bloom filter [3]. On each

hit in the Bloom filter, we generate a random value r. If r < fp rate, we also

increment the global counter. This modification simulates the false positives

in the Bloom filter.

5.2 Evaluation

5.2.1 Methodology

We use ChampSim [11, 23], a trace-based simulator that includes an

out-of-order core model with a detailed memory system, to evaluate our results

for Reeses. The detail description of ChampSim can be find in Section 3.2 Our

configuration in Table 5.2. Both prefetchers are evaluated with degree of 16,

which is the best configuration for both (See Figure 5.13).

Benchmarks We present single-core results for all memory-bound work-

loads from SPEC2006 [13], especially its irregular subset. For multi-core re-

sults we use CloudSuite [9] and multi-programmed SPEC benchmarks. More

details of the benchmarks have been described in Section 3.2

71



Core Out-of-order, 2GHz,
4-wide fetch, decode, and dispatch

128 ROB entries
TLB 48-entry fully-associative L1 I/D-TLB

1024-entry 4-way L2 TLB
L1I 64KB private, 4-way, 3-cycle latency
L1D 64KB private, 4-way, 3-cycle latency

Stride prefetcher
L2 512KB private, 8-way, 7-cycle latency
L3 2MB per core, shared, 16-way

12-cycle latency
DRAM 8B channel width, 800MHz,

tCAS=20, tRP=20, tRCD=20
2 channels, 8 ranks, 8 banks, 32K rows

32GB/s bandwidth total

Table 5.2: Machine Configuration

Cache Replacement Policy We experiment with two cache replacement

policies: LRU and Hawkeye [17] replacement policies.

5.2.2 Single Core Results

Figure 5.6 shows that Reeses outperforms Triage. Compared to Triage’s

25.3% speedup, applying the SBA dynamic allocation achieves 28.2% speedup

on irregular SPEC2006 benchmarks, applying Reeses’s metadata representa-

tion but using old allocation scheme achieves 27.9% speedup, while applying

both of the optimizations achieve 29.6% speedup.

For all SPEC2006 benchmarks, Triage achieves 8.1% speedup, while

Triage+SBA achieves 9.8%, Reeses with old dynamic scheme achieves 9.3%

and Reeses with SBA achieves 10.8%.
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Figure 5.6: Speedup over no Prefetch on LRU Replacement Policy.
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5.2.3 Multi Core Results

CloudSuite Benchmarks Figure 5.7 shows the performance of Reeses com-

pared to Triage. Reeses has 4.6% speedup over no prefetch while Triage has

4.0%.

Figure 5.7: Speedup Comparison on CloudSuite

Multi-Programmed SPEC Benchmarks Reeses performs well on multi-

programmed SPEC benchmarks. Figure 5.8 shows the performance for Reeses

in 4, 8, 16 core multi-core SPEC benchmarks. On 4-core multi-programmed

workloads, Reeses has 8.4% speedup compared to 6.2% for Triage. On 8-cores,

Reeses has 7.1% speedup compared to 5.6% for Triage. On 16-cores, Reeses

has 6.7% compared to 6.2% for Triage. On irregular-only benchmarks, Reeses

achieves 14.2%, 13.5%, 14.0% for 4, 8, 16 cores respective, compared to 13.5%,

12.9%, 13.6% for Triage, as shown in Figure 5.9.

5.2.4 Understanding Reeses’s Performance
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Metadata Reduction Figure 5.11 shows the amount of metadata required

between Triage and Reeses. On average, Reeses reduces the total amount

of metadata from 448KB to 278KB, a reduction of 38%. The amount of

reduction is larger for benchmarks with regular patterns. For example, Reeses

reduces the amount of metadata for libquantum by 94%.

Reduction of Conflict Misses Figure 5.11 shows the amount of non-

compulsory misses in metadata between old and new scheme of generating

set ID for Reeses. The amount of averages is reduced from 2546 to 1881, a

reduction of 26%.

5.2.5 Sensitivity Study

Compressed Tag Bits Figure 5.12 shows the impact of compressed tag

bits to average performance. The average difference for different bits is within

0.5%.

Degree Analysis Figure 5.13 shows the average performance for difference

degrees between Triage and Reeses. For all degrees Reeses is better than

original Triage. Degree of 16 has the best performance for both prefetchers,

so we will compare between them.
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5.3 Conclusion

On-chip only prefetcher like Triage reduces hardware complexity and

traffic overhead for temporal prefetching. However, handling allocation of on-

chip metadata is a challenge. Reeses improves on-chip metadata by applying a

more compact metadata representation and more efficient metadata allocation

method. It achieves better performance compared to original Triage.
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Figure 5.8: Reeses’s performance on multi-core SPEC2006 benchmarks.77



Figure 5.9: Reeses’s performance on multi-core irregular SPEC2006 bench-
marks.

78



Figure 5.10: Amount of metadata required between Triage and Reeses.

Figure 5.11: Number of capacity and conflict misses between old and new
method of generating set ID.
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Figure 5.12: Impact of performance for different compressed tag bit count.

Figure 5.13: Average Performance for different degree.
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Chapter 6

Conclusion and Future Work

In this thesis, we present several solutions for improving irregular prefetch-

ing and for making it practical.

First, we present MISB, an efficient method for managing off-chip meta-

data for temporal prefetching. Second, we present Triage, the first on-chip

only temporal prefetcher. Finally, we present Reeses, a metadata manage-

ment scheme that improves metadata efficiency for Triage. All these work

towards building a practical irregular prefetcher.

Looking into future, this thesis leaves the following two future research

questions:

• How can we further improve irregular prefetching?

• Can we apply temporal prefetching to areas other than data prefetching?

6.1 Further Improvement

Despite all the benefits, temporal prefetchers have limitations that re-

stricts amount of benefits. First, temporal prefetchers cannot get compulsory
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misses. Second, temporal prefetchers’ metadata does not scale to workload

size. Third, temporal prefetchers suffer from aliasing problem.

Compulsory Misses Temporal prefetchers exploit past temporal correla-

tions to do prefetch. As a result, they cannot prefetch compulsory misses since

these misses are addresses that have not occurred. Previous work [16, 37, 42, 43]

solve this problem by running a spatial prefetcher for these compulsory misses.

These spatial prefetchers do not work well for irregular workloads. To cover

compulsory misses on irregular workloads, further work need to be researched

to apply temporal correlations to addresses that have not been visited.

Workload Scalability Temporal prefetchers record past temporal correla-

tions for accesses. When workload size grows, the amount of required metadata

also grows. The problem is more severe for on-chip only prefetchers like Triage

because they do not have an off-chip metadata to back up growing metadata.

One idea to solve this problem is to classify different types of metadata.

Metadata can be classified into three types: those won’t be reused, those will

be reused in short-term and those will be reused in long-term. We do not need

to store the ones that won’t be reused. We can store the short-term ones in on-

chip metadata and long-term ones in off-chip metadata. Classifying metadata

in the run is the challenge here.
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Aliasing Temporal correlation is not guaranteed to be one-on-one. Multiple

addresses can correlate to the same address, which causes aliasing. Temporal

prefetchers could prefetch wrong addresses from the candidates, which reduces

prefetching coverage and increases cache pollution.

Contextual information can be used to distinguish between aliasing. For

example, different successor of an address can come from different instruction,

different branch history or different previous accesses. Using this information

can potentially distinguish between aliased accesses.

There are two challenges for using contextual information. First, it is

difficult to identify which information is useful. Using incorrect information

can hurt performance. Second, storing contextual information requires more

metadata storage, increasing the already existing massive hardware resource

usage problem.

6.2 Other Applications

As Ayers et al. points out, instruction cache misses contribute to sig-

nificantly cost in warehouse scale workloads. For example, 13.8% of the per-

formance potential of a Google’s web search load test is wasted in front end

latencies which are dominated by instruction cache misses. [1]

Previous work [10, 20] have already applied temporal prefetching to

instruction prefetching and achieved reasonable performance benefits. For

example, SHIFT proposed by Kaynak et al. [20] eliminates 81% of instruction
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cache misses in 16-core server workload.

Instruction prefetching faces different challenges than data prefetching.

First, time different between consecutive instruction fetches is much lower than

consecutive data accesses. As a result, timely prefetching is more important

in instruction prefetching. Second, instruction streams are more regular since

only jump and call instructions can change the direction of instruction flow.

Therefore, there are more potential in applying compression scheme like Reeses

in instruction prefetching. Third, instruction prefetching can utilize branch

information [21, 24].
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