
Copyright

by

Benjamin Charles Hardekopf

2009

The Dissertation Committee for Benjamin Charles Hardekopf
certifies that this is the approved version of the following dissertation:

Pointer Analysis: Building a Foundation for Effective Program

Analysis

Committee:

Calvin Lin, Supervisor

Kathryn McKinley

Keshav Pingali

William Cook

Michael Hind

Pointer Analysis: Building a Foundation for Effective Program

Analysis

by

Benjamin Charles Hardekopf, B.S.; M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2009

Dedicated to my mother, Celia Mullane Hardekopf.

Acknowledgments

I owe a great deal to a great many people who have helped shapedmy life
and my career. My greatest thanks goes to my parents, who provided me with a
strong foundation growing up and instilled in me an appreciation for knowledge
and learning that have stood me in good stead for my entire life. I wouldn’t be
where I am or who I am without them.

I would also like to thank my advisor, Calvin Lin, for giving me the support
and encouragement I’ve desperately needed while working towards my degree. It
took a long haul, with many detours along the way, but he neverwaivered. My other
committee members, Kathryn McKinley, William Cook, KeshavPingali, and Mike
Hind, have also contributed a great deal to my development asa scientist by giving
me the benefit of their time and advice. All of them, by their advice and examples,
have greatly influenced my approach to computer science research and have shown
me what to strive for in my own career.

Finally, I would like to thank my fellow students, both within and without
my research group. Their companionship and support during these many years have
helped me make it through the long slog to the very end.

v

Pointer Analysis: Building a Foundation for Effective Program

Analysis

Publication No.

Benjamin Charles Hardekopf, Ph.D.

The University of Texas at Austin, 2009

Supervisor: Calvin Lin

Pointer analysis is a fundamental enabling technology for program analy-
sis. By improving the scalability of precise pointer analysis we can make a positive
impact across a wide range of program analyses used for many different purposes,
including program verification and model checking, optimization and paralleliza-
tion, program understanding, hardware synthesis, and more.

In this thesis we present a suite of new algorithms aimed at improving
pointer analysis scalability. These new algorithms make inclusion-based analy-
sis (the most precise flow- and context-insensitive pointeranalysis) over 4× faster
while using 7× less memory than the previous state-of-the-art; they also enable
flow-sensitive pointer analysis to handle programs with millions of lines of code,
two orders of magnitude greater than the previous state-of-the-art.

We present a formal framework for describing the space of pointer analy-
sis approximations. The space of possible approximations is complex and multi-
dimensional, and until now has not been well-defined in a formal manner. We
believe that the framework is useful as a method to meaningfully compare the preci-
sion of the multitude of existing pointer analyses, as well as aiding in the systematic
exploration of the entire space of approximations.

vi

Table of Contents

Acknowledgments v

Abstract vi

Chapter 1. Introduction 1
1.1 Pointer Analysis Background . 2

1.1.1 Dimensions of Precision . 2

1.2 Thesis Contributions . 3

1.3 Outline of Thesis . 4

Chapter 2. Inclusion-based Analysis 5
2.1 Background . 5

2.2 Related Work . 7

2.3 Online Cycle Detection . 11

2.3.1 Lazy Cycle Detection . 12

2.3.2 Hybrid Cycle Detection . 13

2.3.2.1 Offline Component 14

2.3.2.2 Online Component 16

2.3.3 Evaluation . 18

2.3.3.1 Time and Memory Consumption 20

2.3.3.2 Understanding the Results 26

2.3.3.3 Representing Points-to Sets 28

2.4 Offline Optimizations . 31

2.4.1 Pointer Equivalence . 31

2.4.1.1 Hash-based Value Numbering (HVN) 33

2.4.1.2 Extending HVN 35

2.4.2 Location Equivalence . 38

2.4.3 Evaluation . 39

vii

2.4.3.1 Cost of Optimizations 40
2.4.3.2 Benefit of Optimizations 41
2.4.3.3 Bitmaps vs. BDDs. 45

2.5 Chapter Summary . 46

Chapter 3. Flow-Sensitive Analysis 48
3.1 Background . 48

3.1.1 Flow-Sensitive Pointer Analysis 48
3.1.2 The Importance of Flow-Sensitive Pointer Analysis 50
3.1.3 Challenges Facing Flow-Sensitive Pointer Analysis 51

3.2 Related Work . 52
3.2.1 SSA . 54

3.2.1.1 LLVM . 55
3.3 Semi-Sparse Analysis . 57

3.3.1 The Dataflow Graph . 58
3.3.2 The Analysis . 61

3.3.2.1 Optimizations . 65
3.3.3 Symbolic Analysis . 70
3.3.4 Evaluation . 71

3.3.4.1 Performance Results 73
3.3.4.2 Performance Discussion 76
3.3.4.3 SSOPrecision . 79

3.4 Staged Analysis . 80
3.4.1 Staging the Analysis . 82

3.4.1.1 Auxiliary Pointer Analysis 82
3.4.1.2 Sparse Flow-Sensitive Pointer Analysis 83
3.4.1.3 Access Equivalence 86
3.4.1.4 Interprocedural Analysis 88

3.4.2 The Final Algorithm . 89
3.4.2.1 Further Optimization 93

3.4.3 Evaluation . 93
3.4.3.1 Performance Results 94
3.4.3.2 Performance Discussion 96

3.5 Chapter Summary . 97

viii

Chapter 4. Formal Framework 102
4.1 Framework Strategy . 103

4.2 Background . 104

4.2.1 Dataflow and Pointer Analysis 104

4.2.2 Interprocedural analysis . 106
4.2.3 Other Approximations . 106

4.3 Related Work . 107

4.4 Intraprocedural Reference Model108
4.4.1 Overview . 109

4.4.2 Syntax . 109

4.4.3 Semantic Domain . 110

4.4.4 Semantics . 114
4.5 Intraprocedural Pointer Analysis 116

4.5.1 FS-MOP vs FS-MFP . 117

4.5.2 Flow-Sensitivity vs Flow-Insensitivity 121

4.5.3 Variable Equivalence . 122
4.6 Interprocedural Reference Model124

4.6.1 Overview . 124

4.6.2 Syntax . 125

4.6.3 Semantic Domain . 126
4.6.4 Semantics . 129

4.7 Interprocedural Pointer Analysis 129

4.7.1 Context-Sensitivity . 131

4.7.1.1 Call-string Equivalence 131
4.7.1.2 Functional Equivalence 132

4.7.1.3 Limitations . 133

4.7.2 Heap Model . 133
4.8 Soundness and Termination . 135

4.8.1 Soundness . 135

4.8.2 Termination . 136

4.9 Chapter Summary . 136

Chapter 5. Conclusion 137

ix

Bibliography 139

Vita 148

x

Chapter 1

Introduction

One of the most important problems facing computer science today is the
sheer size and complexity of modern software. Software is becoming one of the
foundations of society, and yet at the same time software is becoming more diffi-
cult to understand, more difficult to guarantee correct, andmore difficult to opti-
mize. Program analysis is a key tool to manage this complexity; it has been used
for such diverse purposes as model checking [4, 42], security analysis [13, 30, 74],
error-checking [34], hardware synthesis [86], software refactoring [41], and paral-
lelization [16, 72], among many others.

While program analysis can do a great deal to help deal with software com-
plexity, there is a fly in the ointment: software containsindirection, and this in-
direction makes program analysis both more difficult and less effective. The two
main forms of indirection areindirect data-flow(e.g., pointer dereferences in C
and object accesses in Java) andindirect control-flow(e.g., function pointers in C,
virtual method dispatch in object-oriented languages suchas Java, and closures in
higher-order languages such as Lisp). While some languagesdon’t contain explicit
pointers or pointer dereferences, at a low level (such as a compiler’s intermediate
representation), all of these kinds of indirection are implemented using pointers.
The goal of pointer analysis is to resolve this indirection by computingpoints-to
sets: for each program entity (variable, object reference, etc), its points-to set is the
set of memory locations that can be indirectly referenced via that entity.

Because indirection is so ubiquitous and central to programming languages,
pointer analysis is a fundamental enabling technology for program analysis: in or-
der to analyze a program’s behavior and properties, the indirection present in the
program must be resolved as precisely as possible (i.e., thepoints-to sets should
be as small as possible). The more precisely the indirectionis resolved, the more
effective program analysis can be. By improving the precision and scalability of

1

pointer analysis, we can directly contribute to the effectiveness of a wide variety of
program analyses such as the ones listed above.

1.1 Pointer Analysis Background

Pointer analysis, like most static analyses, is an undecidable problem [49].
However, even after making common approximations which make many static anal-
yses tractable (e.g., restricting dynamic memory and ignoring branch conditions),
pointer analysis remains NP-hard [12]. Therefore, practical pointer analysis re-
quires further approximations.

The space of possible approximations for pointer analysis is complex and
multi-dimensional; some of the dimensions of precision that can be approximated
include: flow-sensitivity, context-sensitivity, field-sensitivity, the heap model, rep-
resentation of pointer information, branch conditions, and array indexing, among
others. Pointer analysis is a very mature field, having been studied for decades with
many papers published on the subject (for examples, see Hind’s survey on pointer
analysis research [43]). Researchers have studied many different combinations of
approximations using many techniques, such as dataflow analysis [44, 50], set con-
straints [29, 37], type systems [25, 78], and CFL reachability [77, 84].

1.1.1 Dimensions of Precision

As pointed out above, there are many different dimensions ofprecision that
can be modeled when approximating pointer analysis. We willfocus here on two
of the most important dimensions, flow- and context-sensitivity.

Flow-Sensitivity. Flow-sensitivity determines whether the analysis models the
fact that a variable’s value can change over time. A flow-sensitive analysis respects
a program’s control-flow and computes a separate solution for each program point,
as opposed to a flow-insensitive analysis which ignores control-flow and computes
for each variable a single solution that conservatively holds over the entire program.

2

Context-Sensitivity. Context-sensitivity determines whether the analysis models
the fact that each separate invocation of a procedure is independent from all other
invocations. A context-sensitive analysis analyzes a procedure independently for
each calling context, as opposed to a context-insensitive analysis which merges all
of the calling contexts together and analyzes them together.

Current State-of-the-Art. Flow- and context-sensitivity are independent of each
other; an analysis can be either flow-sensitive or flow-insensitive and at the same
time either context-sensitive or context-insensitive. Flow- and context-insensitive
analyses are the most scalable type of pointer analysis. Inclusion-based analysis
(the most precise analysis in this class) can analyze on the order of a million lines
of code [41]. Adding either flow- or context-sensitivity severely degrades scalabil-
ity. A context-sensitive analysis can only analyze on the order of a few hundred
thousand lines of code [64], while a flow-sensitive analysiscan only analyze on the
order of a few tens of thousands of lines of code [44].

1.2 Thesis Contributions

This thesis makes the following contributions:

• A set of new algorithms for inclusion-based pointer analysis (the most precise
flow- and context-insensitive pointer analysis) that make the analysis over 4×
faster while using 7× less memory than the previous state-of-the-art.

• Two new algorithms for flow-sensitive, context-insensitive pointer analysis
that make the analysis almost 200× faster while using almost 50× less mem-
ory, increasing the scalability of the analysis by two orders of magnitude
(from a tens of thousands of lines of code to millions of linesof code).

• A formal framework, based on operational semantics, for describing the space
of pointer analysis approximations, which makes this spacewell-defined and
amenable to systematic exploration.

Several of these new algorithms have already had a practicalimpact out-
side the research community—they are used by a number of groups, including the

3

GCC compiler infrastructure, the LLVM compiler infrastructure, and Semantic De-
signs (a company that builds software engineering tools to analyze and transform
programs with tens of millions of lines of code).

1.3 Outline of Thesis

Chapter 2 describes inclusion-based analysis, the most precise of the flow-
and context-insensitive analyses. The chapter gives background on the analysis
and describes some related work, then details and evaluatesour new algorithms for
improving the scalability of inclusion-based analysis.

Chapter 3 describes flow-sensitive, context-insensitive analysis. The chap-
ter gives background on the analysis, including why flow-sensitivity is important
and what makes it so expensive, and it describes some relatedwork on making
flow-sensitive analysis scalable. Then the chapter detailsand evaluates our new
algorithms for scalable flow-sensitive analysis.

Chapter 4 pulls back and looks at the bigger picture of pointer analysis,
addressing the ill-defined and largely unexplored space of pointer analysis approxi-
mations. The chapter describes a formal framework based on operational semantics
that precisely describes the precision of the majority of existing pointer analysis
algorithms, something not previously possible.

Finally, Chapter 5 concludes the thesis by recapping our contributions and
speculating on future work.

4

Chapter 2

Inclusion-based Analysis

Inclusion-based analysis is the most precise of the flow- andcontext-insensitive
pointer analyses. This chapter describes a set of new algorithms for inclusion-based
pointer analysis that significantly increase its scalability, both in terms of analysis
time and memory consumption. Section 2.1 provides background on the basic con-
cept of inclusion-based analysis; Section 2.2 describes related work for scalable
inclusion-based algorithms; then Sections 2.3 and 2.4 describe our new algorithms
and evaluate their performance with respect to the current state-of-the-art.

While several algorithms for inclusion-based analysis have been proposed
prior to this work, the competing algorithms have never beencompared head-to-
head to determine their relative performance. Besides the new algorithms we de-
scribe, our empirical comparison of all the related work is another contribution of
this thesis. When utilized together, our new algorithms areon average over 4×
faster and use over 7× less memory than the best of the previous state of the art
algorithms. The work described in this chapter has been previously published by
Hardekopf and Lin [37] and Hardekopf and Lin [38].

2.1 Background

Inclusion-based analysis relies on two fundamental approximations to make
pointer analysis tractable. The first approximation eliminates control-flow from a
program, leaving only an unordered set of assignment statements. These assign-
ment statements include parameter assignments that soundly approximate the ef-
fects of function calls (which were removed as part of the control-flow). For ex-
ample, a function callx = f oo(y) to a functionf oowith parameterp and returning
valuer would be replaced by the set of assignmentsp = y andx = r. The result
of removing all control-flow is an approximate program whichcan execute any as-

5

Constraint Type Program Code Constraint Meaning
Init a = &b a⊇ {b} loc(b) ∈ pts(a)

Direct a = b a⊇ b pts(a)⊇ pts(b)
Indirect1 a = ∗b a⊇ ∗b ∀v∈ pts(b) : pts(a)⊇ pts(v)
Indirect2 ∗a = b ∗a⊇ b ∀v∈ pts(a) : pts(v)⊇ pts(b)

Table 2.1: Constraint Types

signment after any other assigment and which can execute assignments an arbitrary
number of times.

The second approximation replaces each assignment with an inclusion con-
straint. Whereas an assignmentx = y means thatx takes on the value ofy, the new,
corresponding constraintx⊇ y means thatx’s value includesy’s value. This ap-
proximation together with the first approximation guarantees that the final analysis
solution at any point in the program is identical to the solution at any other point in
the program, and therefore we can safely compute a single solution for the entire
program rather than a separate solution for each program point.

Since the values we’re interested in for pointer analysis are points-to sets,
the resulting set of constraints form a system of equations that constrain the possible
points-to sets of each program variable. The goal of inclusion-based analysis is to
compute the smallest points-to set for each variable such that all of the constraints
are satisfied. For simplicity we will assume that all of the generated constraints are
of the types shown in Table 2.1. For a variablev, pts(v) representsv’s points-to set
andloc(v) represents the memory location denoted byv.

Computing the points-to sets is done with the help of a data structure called
theconstraint graph. A constraint graphG has one node for each program variable.
For each direct constrainta⊇ b, G has a directed edgeb→ a. Each node also has
a points-to set associated with it, initialized using the init constraints: for each init
constrainta⊇ {b}, nodea’s points-to set containsloc(b). The indirect constraints
are not explicitly represented in the graph; instead they are maintained in a separate
list.

The edges of the constraint graph represent the constraintsbetween vari-
ables. If an edge goes from variablex to variabley, theny’s points-to set must

6

includex’s points-to set. The analysis can satisfy the constraints represented in the
graph by propagating the variables’ points-to sets along the edges of the graph: for
each edgex→ y, pts(y) ←֓ pts(x) (where←֓ represents set update). However, not
all the constraints are represented in the graph: indirect constraints can’t be repre-
sented because (as shown in Table 2.1) we need to know the variables’ points-to
sets in order to know what edges to add; since the whole point of the analysis is to
compute the variables’ points-to sets, this presents a quandary.

The analysis solves this quandary by dynamically adding edges to the graph
during the analysis itself. As the analysis updates variables’ points-to sets, it adds
new edges to the graph to represent the indirect constraintsthat can be resolved
using the new points-to information. If variableb’s points-to set is updated, then
for each constrainta⊇ ∗b and eachloc(v) ∈ pts(b), we add a new edgev→ a.
Similarly, for each constraint∗b⊇ a we add a new edgea→ v.

Figure 1 shows a basic worklist algorithm that maintains theexplicit transi-
tive closure ofG by continually propagating points-to sets alongG’s edges, adding
new edges when appropriate. The worklist is initialized with all nodes inG that
have a non-empty points-to set. The←֓ operator represents set update. For each
noden taken off the worklist, we proceed in two steps:

1. For eachloc(v) ∈ pts(n): for each constrainta⊇ ∗n add an edgev→ a, and
for each constraint∗n⊇ b add an edgeb→ v. Any node that has had a new
outgoing edge added is inserted into the worklist.

2. For each outgoing edgen→ v, propagatepts(n) to nodev, i.e., pts(v) :=
pts(v)∪ pts(n). Any node whose points-to set has been modified is inserted
into the worklist.

The algorithm is presented as it is for clarity of exposition; various optimizations
are possible to improve its performance.

2.2 Related Work

Inclusion-based pointer analysis was first described by Andersen in his Ph.D.
thesis [1], in which he formulates the problem in terms of type theory. The algo-
rithm presented in the thesis doesn’t use a constraint graph; instead it solves the

7

Algorithm 1 Basic inclusion-based analysis.
Require: G = 〈N,E〉, Worklist= N

while Worklist 6= /0 do
n←SELECT(Worklist)
for all v∈ pts(n) do

for all constraintsa⊇ ∗n do
if v→ a /∈ E then

E ←֓ {v→ a}
Worklist←֓ {v}

for all constraints∗n⊇ b do
if b→ v /∈ E then

E ←֓ {b→ v}
Worklist←֓ {b}

for all n→ z∈ E do
pts(z) ←֓ pts(n)
if pts(z) changedthen

Worklist←֓ {z}

inclusion constraints in a fairly naive manner by repeatedly iterating through a con-
straint vector. There have been several significant updatessince that time.

Faehndrich et al. [29] were the first to represent the constraints using a
graph and formulate the problem as computing the dynamic transitive closure of
that graph. This work introduces the notion ofcycle detection, an important opti-
mization for inclusion-based analysis that will be discussed further in Section 2.3.
The authors propose a method for partial online cycle detection and demonstrate
that cycle detection is critical for scalability of inclusion-based analysis. In their
method, a depth-first search of the graph is performed upon every edge insertion,
but the search is artificially restricted for the sake of performance, making cycle
detection incomplete.

Heintze and Tardieu introduce a new algorithm for computingthe dynamic
transitive closure [41]. As new edges are added to the constraint graph from the
indirect constraints, the new points-to information is notautomatically propagated
across the edges. Instead, the constraint graph retains itspre-transitive form. During
the analysis, indirect constraints are resolved via reachability queries on the graph.
Cycle detection is performed as a side-effect of these queries. The main drawback

8

to this technique is unavoidable redundant work—it is impossible to know whether
a reachability query will encounter a newly-added inclusion edge (inserted earlier
due to some other indirect constraint) until after it completes, which means that
potentially redundant queries must still be carried out on the off-chance that a new
edge will be encountered. Heintze and Tardieu report excellent results, analyzing a
C program with 1.3M LOC in less than a second, but these results are for a field-
based implementation. A field-based analysis treats each field of a struct as its own
variable—assignments tox. f , y. f , and(∗z). f are all treated as assignments to a
variable f , which tends to decrease both the size of the input to the pointer analysis
and the number of dereferenced variables (an important indicator of performance).
Field-based analysis is unsound for C programs, and while such an analysis is ap-
propriate for the work described by Heintze and Tardieu (theclient is a dependency
analysis that is itself field-based), it is inappropriate for many others. For the results
in this dissertation, we use a field-insensitive version of their algorithm, which is
dramatically slower than the field-based version1.

Pearce et al. have proposed two different approaches to inclusion-based
analysis, both of which differ from Heintze and Tardieu in that they maintain the
explicit transitive closure of the constraint graph (i.e.,they propagate points-to in-
formation as in the basic algorithm given by Figure 1). Pearce et al. first proposed
an analysis [67] that uses a more efficient and complete algorithm for online cycle
detection than Faehndrich et al. [29]. In order to avoid cycle detection at every edge
insertion, the algorithm dynamically maintains a topological ordering of the con-
straint graph. Only a newly-inserted edge that violates thecurrent ordering could
possibly create a cycle, so only in this case are cycle detection and topological re-
ordering performed. This algorithm proves to still have toomuch overhead (mainly
due to continually updating the topological order), so Pearce et al. later proposed a
new and more efficient algorithm [66]. Rather than detect cycles at the point when a
new edge is inserted, the entire constraint graph is periodically swept to detect and
collapse any cycles that have formed since the last sweep. This second algorithm is
the one we compare against in our evaluation.

1To ensure that the performance difference is in fact due to field-insensitivity, we also bench-
marked a field-based version of our HT implementation. We observed comparable performance to
that reported by Heintze and Tardieu [41].

9

Berndl et al. [7] describe an inclusion-based pointer analysis for Java that
uses BDDs [10] to represent both the constraint graph and thepoints-to solution.
BDDs have been extensively used in model checking as a way to represent and
manipulate large graphs in a very compact and efficient way. Berndl et al. were one
of the first to use BDDs for pointer analysis. The analysis they describe is specific to
the Java language; it also doesn’t handle indirect functioncalls because it depends
on a prior analysis to construct the complete call-graph. Weimplement a version of
the algorithm for comparison in this thesis that is targetedfor C programs and that
does handle indirect function calls.

Rountev et al. [70] introduce Offline Variable Substitution(OVS), a linear-
time offline analysis (i.e., carried out before the inclusion-based analysis), whose
aim is to find and collapse pointer-equivalent variables (i.e., variables with identical
points-to sets). OVS is complementary to cycle detection and is orthogonal to the
actual inclusion-based algorithm used; it can be combined with any of the algo-
rithms we’ve discussed. Our offline algorithms, described in Section 2.4, subsume
and improve upon OVS.

Because inclusion-based analysis has in the past been considered to be non-
scalable, other algorithms, including Steensgaard’s near-linear time analysis [78]
and Das’ One-Level Flow analysis [25], have been proposed toimprove perfor-
mance by making further approximations and sacrificing additional precision. While
Steensgaard’s analysis has much greater imprecision than inclusion-based analysis,
Das reports that for C programs the One-Level Flow analysis has precision very
close to that of inclusion-based analysis. This precision is based on the assumption
that multi-level pointers are less frequent and less important than single-level point-
ers, which Das’ experiments indicate is usually (though notalways) true for C; this
assumption may not hold true for other languages, such as Java and C++. In ad-
dition, for the sake of performance Das conservatively unifies non-equivalent vari-
ables, much like Steensgaard’s analysis; this unification makes it difficult to trace
dependency chains among variables. Dependency chains are very useful for under-
standing the results of program analyses such as program verification and program
understanding, and also for use in tools such as Broadway [34]. Inclusion-based
pointer analysis is a better choice than either Steensgaard’s analysis or One-Level
Flow, if it can be made to run in reasonable time even on large programswith mil-
lions of lines of code; this is the challenge that we address in this thesis.

10

In the other direction of increasing precision, there have been several at-
tempts to scale a context-sensitive version of inclusion-based pointer analysis. One
of the most scalable of these attempts is the algorithm by Whaley et al. [81], which
uses BDDs to scale a context-sensitive inclusion-based pointer analysis for Java
to roughly 600K LOC (measuring bytecode rather than source lines). However,
Whaley et al.’s algorithm is only context-sensitive for top-level variables, meaning
that all variables in the heap are treated context-insensitively. Its efficiency de-
pends heavily on certain characteristics of the Java language—attempts to use the
same technique for analyzing programs in C have shown greatly reduced perfor-
mance [2].

Nystrom et al. [64] present a context-sensitive algorithm based on the in-
sight that inlining all function calls makes a context-insensitive analysis equivalent
to a context-sensitive analysis of the original program. Ofcourse, inlining all func-
tion calls can increase the program size exponentially, butintelligent heuristics can
help prevent exponential growth. An important building block of this approach is
context-insensitive inclusion-based analysis—it is usedwhile inlining the functions
and also for analyzing the resulting program. Nystrom et al.manage to scale the
context-sensitive analysis to a C program with 200K LOC. Thenew techniques
described in this dissertation should scale their algorithm even further.

2.3 Online Cycle Detection

Faehndrich et al. [29] observed that, given a cycle in the constraint graph,
every variable in the cycle must necessarily have identicalpoints-to sets. This ob-
servation follows because as soon as the points-to set for one variable changes, that
change gets propagated to every other variable in the cycle.Because these variables
are identical, they can all be collapsed together into a single node in the constraint
graph without losing precision.

The important question is how to detect these cycles. Most cycles in the
constraint graph aren’t present in the initial graph; they only appear during the
analysis as it adds new edges. This observation motivatesonline cycle detection,
i.e., cycle detection conducted periodically during the course of the inclusion-based
analysis. Online cycle detection has an inherent tension between aggressiveness
and overhead. In one extreme, the analysis could check to seeif a cycle was created

11

each time a new edge is added to the graph; this strategy has a tremendous amount
of overhead that negates any benefit of the cycle detection optimization. In the other
extreme, the analysis could wait until the end of the analysis to check for cycles;
however, this strategy loses any opportunity for optimizing the analysis itself. We
need a strategy that finds a sweet spot between these two extremes.

The particular method used for detecting cycles will in large part determine
the efficiency of the inclusion-based analysis. We now present two new approaches
for online cycle detection that balance this tension in different ways.

2.3.1 Lazy Cycle Detection

The central insight behind cycle detection is that cycles inthe constraint
graph can be collapsed because nodes in the same cycle are guaranteed to have
identical points-to sets. We turn this fact around to createa heuristic for cycle de-
tection: nodes with identical points-to sets might be part of a cycle. The insight
is to balance aggression versus overhead by only looking fora cycle when there is
evidence that a cycle might exist. Before propagating points-to information across
an edge of the constraint graph, we check to see if the source and destination al-
ready have equal points-to sets; if so then we use a depth-first search to check for a
possible cycle.

This technique is lazy because rather than trying to detect cycles when they
are created, i.e., when the final edge is inserted that completes the cycle, it waits
until the effect of the cycle—identical points-to sets—becomes evident. The advan-
tage of this technique is that we only attempt to detect cycles when we are likely to
find them. A potential disadvantage is that cycles may be detected well after they
are formed, since we must wait for the points-to informationto propagate all the
way around the cycle before we can detect it.

The efficiency of this technique depends upon the assumptionthat two nodes
usually have identical points-to sets only because they arein the same cycle; oth-
erwise it would waste time trying to detect non-existent cycles. One additional
refinement is necessary to bolster this assumption: we nevertrigger cycle detection
on the same edge twice. We thus avoid making repeated cycle detection attempts
involving nodes with identical points-to sets that are not in a cycle. This additional

12

restriction implies that Lazy Cycle Detection is incomplete—it is not guaranteed to
find all cycles in the constraint graph.

The Lazy Cycle Detection algorithm is shown in Figure 2. Before we prop-
agate a points-to set from one node to another, we check to seeif two conditions
are met: (1) the points-to sets are identical; and (2) we haven’t triggered a search
on this edge previously. If these conditions are met, then wetrigger cycle detection
rooted at the destination node. If there exists a cycle, we collapse together all the
nodes involved; we also remember this edge so that if no cycleexists we won’t
repeat the attempt later.

Algorithm 2 Lazy cycle detection.
Require: G = 〈N,E〉, Worklist= N, R= /0

while Worklist 6= /0 do
n←SELECT(Worklist)
for all v∈ pts(n) do

for all constraintsa⊇ ∗n do
if v→ a /∈ E then

E ←֓ {v→ a}
Worklist←֓ {v}

for all constraints∗n⊇ b do
if b→ v /∈ E then

E ←֓ {b→ v}
Worklist←֓ {b}

for all n→ z∈ E do
if pts(z) == pts(n)∧n→ z /∈ R then

DETECT-AND-COLLAPSE-CYCLES(z)
R←֓ {n→ z}

pts(z) ←֓ pts(n)
if pts(z) changedthen

Worklist←֓ {z}

2.3.2 Hybrid Cycle Detection

Cycle detection can be done offline, in a static analysis prior to the actual
pointer analysis, such as with Offline Variable Substitution described by Rountev

13

et al. [70]. However, as mentioned earlier many cycles don’texist in the initial
constraint graph and only appear as new edges are added during the pointer anal-
ysis itself, thus the need for online cycle detection techniques such as Lazy Cycle
Detection. The drawback to online cycle detection is that itrequires traversing the
constraint graph multiple times searching for cycles; these repeated traversals can
become extremely expensive. Hybrid Cycle Detection (HCD) is so-called because
it combines both offline and online analyses to detect cycles, thereby getting the
best of both worlds—detecting cycles created online duringthe pointer analysis,
without requiring any traversal of the constraint graph.

2.3.2.1 Offline Component

The HCD offline analysis is a linear-time static analysis done prior to the
actual pointer analysis. We build an offline version of the constraint graph, with
one node for each program variable plus an additionalref node for each variable
dereferenced in the constraints (e.g.,∗n). There is a directed edge for each direct
and indirect constraint:a⊇ b yields edgeb→ a, a⊇ ∗b yields edge∗b→ a, and
∗a⊇ b yields edgeb→ ∗a. Init constraints are ignored. Figure 2.1 illustrates this
process.

Once the graph is built we detect strongly-connected components (SCCs)
using Tarjan’s linear-time algorithm [79]. Any SCCs containing only non-ref nodes
can be collapsed immediately. SCCs containing ref nodes aremore problematic: a
ref node in the offline constraint graph is a stand-in for a variable’s unknown points-
to set, e.g., the ref node∗n stands for whatevern’s points-to set will be when the
pointer analysis is complete. An SCC containing a ref node such as∗n actually
means thatn’s points-to set is part of the SCC; but since we don’t yet knowwhat
that points-to set will be, we can’t collapse that SCC. The offline analysis knows
which variables’ points-to sets will be part of an SCC, whilethe online analysis
(i.e., the pointer analysis) knows the variables’ actual points-to sets. The purpose
of Hybrid Cycle Detection is to bridge this gap. Figure 2.2 shows how the online
analysis is affected when an SCC contains a ref node in the offline constraint graph.

We finish the offline analysis by looking for SCCs in the offlineconstraint
graph that consist of more than one node and that also containat least one ref
node. Because there are no constraints of the form∗p⊇ ∗q, no ref node can have

14

a = &c;

d = c;

b = ∗a;

∗a = b;

(a) Program

a⊇ {c}

d⊇ c

b⊇ ∗a

∗a⊇ b

(b) Constraints

c d

*a b

(c) Offline Constraint Graph

Figure 2.1: HCD Offline Analysis Example: (a) Program code; (b) constraints gen-
erated from the program code; (c) the offline constraint graph corresponding to the
constraints. Note that∗a andb are in a cycle together; from this we can infer that in
the online constraint graph,b will be in a cycle with all the variables ina’s points-to
set.

15

a→{c}

(a) Points-to Info

c d

b

(b) Before edges added

c d

b

(c) After edges added

Figure 2.2: HCD Online Analysis Example: (a) The initial points-to information
from the constraints in Figure 2.1; (b) the online constraint graph before any edges
are added; (c) the online constraint graph after the edges are added due to the indi-
rect constraints in Figure 2.1. Note thatc andb are now in a cycle together.

a reflexive edge and any non-trivial SCC containing a ref nodemust also contain a
non-ref node. For each SCC of interest we select one non-ref nodeb, and for each
ref node∗a in the same SCC, we store the tuple(a,b) in a listL. This tuple signifies
to the online analysis thata’s points-to set belongs in an SCC withb, and therefore
everything ina’s points-to set can safely be collapsed withb.

2.3.2.2 Online Component

The online analysis is shown in Figure 3. The algorithm is similar to the
basic algorithm shown in Figure 1, except when processing noden we first checkL
for a tuple of the form(n,a). If one is found then we preemptively collapse together
nodea and all members ofn’s points-to set, knowing that they belong to the same
cycle. For simplicity’s sake the pseudo-code ignores some obvious optimizations.

Hybrid Cycle Detection is not guaranteed to find all cycles inthe online
constraint graph, only those that can be inferred from the offline version of the
graph. Those cycles that it does find, however, are discovered at the earliest possible
opportunity and without requiring any traversal of the constraint graph. In addition,

16

Algorithm 3 Hybrid cycle detection.
Require: G = 〈N,E〉, Worklist= N

while Worklist 6= /0 do
n←SELECT(Worklist)
for all (n,a) ∈ L do

for all v∈ pts(n) do
COLLAPSE(v,a)
W ←֓ {a}

for all v∈ pts(n) do
for all constraintsa⊇ ∗n do

if v→ a /∈ E then
E ←֓ {v→ a}
Worklist←֓ {v}

for all constraints∗n⊇ b do
if b→ v /∈ E then

E ←֓ {b→ v}
Worklist←֓ {b}

for all n→ z∈ E do
pts(z) ←֓ pts(n)
if pts(z) changedthen

Worklist←֓ {z}

17

Name LOC Constraints Init Direct Indirect
Emacs-21.4a 169K 21,460 4,088 11,095 6,277

Ghostscript-8.15K 169,312 67,310 12,154 25,880 29,276
Gimp-2.2.8 554K 96,483 17,083 43,878 35,522
Insight-6.5 603K 85,375 13,198 35,382 36,795

Wine-0.9.21 1,338K 171,237 39,166 62,499 69,572
Linux-2.4.26 2,172K 203,733 25,678 77,936 100,119

Table 2.2: Benchmarks: For each benchmark we show the numberof lines of code
(computed as the number of non-blank, non-comment lines in the source files), the
number of constraints generated using CIL after being optimized with OVS, and a
break-down of the types of constraints.

while HCD can be used on its own as shown in Figure 3, it can alsobe easily
combined with other cycle detection mechanisms, such as LCD, to enhance their
performance.

2.3.3 Evaluation

To compare the various inclusion-based pointer analyses, we implement
field-insensitive versions of five main algorithms: Heintzeand Tardieu (HT), Berndl
et al. (BLQ), Pearce et al. (PKH), Lazy Cycle Detection (LCD), and Hybrid Cy-
cle Detection (HCD). We also implement four additional algorithms by integrating
HCD with the other four main algorithms: HT+HCD, PKH+HCD, BLQ+HCD,
and LCD+HCD. The algorithms are written in C++ and handle allaspects of the
C language except for varargs. They use as many common components as possi-
ble to provide a fair comparison, and they have all been highly optimized. Some
highlights of the implementations include:

• Indirect function calls are handled as described by Pearce et al [66]. Func-
tion parameters are numbered contiguously starting immediately after their
corresponding function variable, and when resolving indirect calls they are
accessed as offsets to that function variable.

• Cycles are detected using Nuutila et al.’s [63] variant of Tarjan’s algorithm,

18

and they are collapsed using a union-find data structure withboth union-by-
rank and path compression heuristics.

• BLQ uses the incrementalization optimization described byBerndl et al. [7].
We use the BuDDy BDD library [54] to implement BDDs.

• LCD and HCD are both worklist algorithms—we use the workliststrategy
LRF,2 suggested by Pearce et al. [67], to prioritize the worklist.We also di-
vide the worklist into two sections,currentandnext, as described by Nielson
et al. [61]; items are selected fromcurrentand pushed ontonext, and the two
are swapped whencurrentbecomes empty. For our benchmarks, the divided
worklist yields significantly better performance than a single worklist (the ex-
act reason is unclear, other than the fact that the evaluation order of the nodes
can significantly impact performance).

• Aside from BLQ, all the algorithms use sparse bitmaps to implement both the
constraint graph and the points-to sets. The sparse bitmap implementation is
taken from the GCC 4.1.1 compiler.

• We also experiment with the use of BDDs to represent the points-to sets. Un-
like BLQ, which stores the entire points-to solution in a single BDD, we give
each variable its own BDD to store its individual points-to set. For example,
if a→ {b,c} andd→ {c,e}, BLQ would have a single BDD representing
the set of tuples{(a,b),(a,c),(d,c),(d,e)}. Instead, we givea a BDD rep-
resenting the set{b,c} and we gived a BDD representing the set{c,e}. The
use of BDDs instead of sparse bitmaps is a simple modificationthat requires
minimal changes to the code.

The benchmarks for our experiments are described in Table 2.2. Emacs is a
text editor; Ghostscript is a postscript viewer; Gimp is an image manipulation pro-
gram; Insight is a GUI overlaid on top of the gdb debugger; Wine is a Windows em-
ulator; and Linux is the Linux operating system kernel. The constraint generator is
separate from the constraint solvers: we generate constraints from the benchmarks
using the CIL C front-end [60], ignoring any assignments involving types too small

2Least Recently Fired—the node processed furthest back in time is given priority.

19

to hold a pointer. External library calls are summarized using hand-crafted func-
tion stubs. We pre-process the resulting constraint files using a variant of Offline
Variable Substitution [70], which reduces the number of constraints by 60–77%.
This pre-processing step takes less than a second for Emacs and Ghostscript, and
between 1 and 3 seconds for Gimp, Insight, Wine, and Linux. The results reported
are for these reduced constraint files; they include everything from reading in the
constraint file from disk, creating the initial constraint graph, and solving that graph.

We run the experiments on a dual-core 1.83 GHz processor with2 GB of
memory, using the Ubuntu 6.10 Linux distribution. Though the processor is dual-
core, the executables themselves are single-threaded. Allexecutables are compiled
using gcc-4.1.1 and the ’– O3’ optimization flag. We repeat each experiment three
times and report the smallest time; all the experiments havevery low variance in
performance.

2.3.3.1 Time and Memory Consumption

Table 2.3 shows the performance of the various algorithms. The times for
HCD’s offline analysis are shown separately and not includedin the times for the
various algorithms using HCD—they are small enough to be essentially negligible.
Table 2.4 shows the memory consumption of the algorithms. Figure 2.3 graph-
ically compares (using a log-scale) the performance of our combined algorithm
LCD+HCD—the fastest of all the algorithms—against the current state-of-the-art
algorithms. All these numbers were gathered using the sparse-bitmap implementa-
tions of the algorithms (except for BLQ).

BLQ’s memory allocation is fairly constant across all the benchmarks. We
allocate an initial pool of memory for the BDDs, which dominates the memory
usage and is independent of benchmark size. While we can decrease the initial pool
size for the smaller benchmarks without decreasing performance, there is no easy
way to calculate the minimum pool size for a specific benchmark, so for all the
benchmarks we use the smallest pool size that doesn’t impairthe performance of
our largest benchmark.

It is interesting to note the vast difference in analysis time between Wine and
Linux for all algorithms other than BLQ. While Wine has 32.5Kfewer constraints
than Linux, it takes 1.7–7.3× longer to be analyzed, depending on the algorithm

20

Emacs Ghostscript Gimp Insight Wine Linux
HCD-Offline 0.05 0.17 0.26 0.23 0.51 0.62

HT 1.66 12.03 59.00 42.49 1,388.51 393.30
PKH 2.05 20.05 92.30 117.88 1,946.16 1,181.59
BLQ 4.74 121.60 167.56 265.94 5,117.64 5,144.29
LCD 3.07 15.23 39.50 39.02 1,157.10 327.65
HCD 0.46 49.55 59.70 73.92 OOM 659.74

HT+HCD 0.46 7.29 11.94 14.82 643.89 102.77
PKH+HCD 0.46 10.52 17.12 21.91 838.08 114.45
BLQ+HCD 5.81 115.00 173.46 257.05 4,211.71 4,581.91
LCD+HCD 0.56 7.99 12.50 15.97 492.40 86.74

Table 2.3: Performance (in seconds), using bitmaps for points-to sets. The HCD-
Offline analysis is reported separately and not included in the times for those algo-
rithms using HCD. The HCD algorithm runs out of memory (OOM) on the Wine
benchmark.

Emacs Ghostscript Gimp Insight Wine Linux
HT 17.7 84.9 279.0 231.5 1,867.2 901.3

PKH 17.6 83.9 269.5 194.7 1,448.3 840.7
BLQ 215.6 216.1 216.2 216.1 216.2 216.2
LCD 14.3 74.6 269.0 184.4 1,465.1 830.1
HCD 18.1 138.7 416.1 290.5 OOM 1,301.5

HT+HCD 12.4 80.8 253.9 186.5 1,391.4 842.5
PKH+HCD 13.9 79.1 264.6 186.0 1,430.2 807.5
BLQ+HCD 215.8 216.2 216.2 216.2 216.2 216.2
LCD+HCD 13.9 73.5 263.9 183.6 1,406.4 807.9

Table 2.4: Memory consumption (in megabytes), using bitmaps for points-to sets..

21

Em
ac

s

Gho
sts

cr
ipt

Gim
p

In
sig

ht

W
ine

Lin
ux

1

10

100

1000

T
im

e
(s

ec
)

LCD+HCD

HT

PKH

BLQ

Figure 2.3: Performance (in seconds) of our new combined algorithm (LCD+HCD)
versus three state-of-the art inclusion-based algorithms. Note that the Y-axis is log-
scale.

22

used. This discrepancy points out the danger in using the size of the initial input to
predict performance when other factors can have at least as much impact. Wine is
a case in point: while its initial constraint graph is smaller than that of Linux, its
final constraint graph at the end of the analysis is an order-of-magnitude larger than
that of Linux, due mostly to Wine’s larger average points-toset size. BLQ doesn’t
display this same behavior, because of its radically different analysis mechanism
that uses BDDs and because it lacks cycle detection.

Comparing HT, PKH, BLQ, LCD, and HCD. Figure 2.4 compares the perfor-
mance of the main algorithms by normalizing the times for HT,PKH, BLQ, and
HCD by that of LCD. Focusing on the current state-of-the-artalgorithms, HT is
clearly the fastest: 1.9× faster than PKH and 6.5× faster than BLQ. LCD is on av-
erage 1.05× faster than HT and uses 1.2× less memory. HCD runs out of memory
for Wine, but excluding that benchmark it is on average 1.8× slower than HT and
1.9× faster than PKH, and uses 1.4×more memory than HT.

Effects of HCD. Figure 2.5 normalizes the performance of the main algorithms
by that of their HCD-enhanced counterparts. On average, theuse of HCD increases
HT performance by 3.2×, PKH performance by 5×, BLQ performance by 1.1×,
and LCD performance by 3.2×. HCD also leads to a small decrease in memory
consumption for all the algorithms except BLQ—it decreasesmemory consumption
by 1.2× for HT, by 1.1× for PKH, and by 1.02× for LCD. Most of the memory
used by these algorithms comes from the representation of points-to sets. HCD
improves performance by finding and collapsing cycles much earlier than normal,
but it doesn’t actually find many more cycles than were already detected without
using HCD, so it doesn’t significantly reduce the number of points-to sets that need
to be maintained. HCD doesn’t improve BLQ’s performance by much because
even though no extra effort is required to find cycles, there is still some overhead
involved in collapsing those cycles. Also, the performanceof BLQ depends on
the sizes of the BDD representations of the constraint and points-to graphs, and
because of the properties of BDDs, removing edges from the constraint graph can
potentially increase the size of the constraint graph BDD.

The combination of our two new algorithms, LCD+HCD, yields the fastest
algorithm among all those studied: It is 3.2× faster than HT, 6.4× faster than PKH,

23

Em
ac

s

Gho
sts

cr
ipt

Gim
p

In
sig

ht

W
ine

Lin
ux

Ave
ra

ge
0

5

10

15

N
or

m
al

iz
ed

 T
im

e

HT
PKH
BLQ
HCD

Figure 2.4: Performance comparison of individual benchmarks, where performance
is normalized against LCD. HCD runs out of memory for Wine, sothere is no HCD
bar for that benchmark.

24

Em
ac

s

Gho
sts

cr
ipt

Gim
p

In
sig

ht

W
ine

Lin
ux

Ave
ra

ge
0

2

4

6

8

10

N
or

m
al

iz
ed

 T
im

e

HT
PKH
BLQ
LCD

Figure 2.5: Performance comparison of the individual benchmarks, where the
performance of each main algorithm is normalized against its respective HCD-
enhanced counterpart.

25

Emacs Ghostscript Gimp Insight Wine Linux
HT 3.44 18.55 46.98 65.00 1,551.89 419.38

PKH 4.23 19.55 81.53 96.50 1,172.15 801.13
LCD 4.96 19.34 47.29 64.57 1,213.43 380.26
HCD 3.96 24.65 49.11 65.01 731.20 267.69

HT+HCD 2.58 15.65 33.69 42.33 737.37 209.90
PKH+HCD 3.06 14.70 33.71 43.20 744.35 172.43
LCD+HCD 3.09 13.69 33.04 43.17 625.82 183.97

Table 2.5: Performance (in seconds), using BDDs for points-to sets.

Emacs Ghostscript Gimp Insight Wine Linux
HT 33.1 49.3 100.7 100.0 811.2 274.3

PKH 33.2 33.6 50.4 66.8 226.4 182.1
LCD 33.2 33.2 40.1 33.9 251.1 73.5
HCD 33.1 37.1 36.8 37.0 239.6 65.8

HT+HCD 33.1 37.8 51.2 53.9 410.6 100.7
PKH+HCD 33.1 33.2 36.0 33.2 103.9 45.2
LCD+HCD 33.1 33.2 33.2 33.2 173.6 42.6

Table 2.6: Memory consumption (in megabytes), using BDDs for points-to sets.

and 20.6× faster than BLQ.

2.3.3.2 Understanding the Results

There are a number of factors that determine the relative performance of
these algorithms, but three of the most important are: (1) the number of nodes col-
lapsed due to strongly-connected components; (2) the number of nodes searched
during the depth-first traversals of the constraint graph; and (3) the number of prop-
agations of points-to information across the edges of the constraint graph.

The number of nodes collapsed is important because it reduces both the
number of nodes and the number of edges in the constraint graph; the more nodes
that are collapsed, the smaller the input and the more efficient the algorithm.

26

The depth-first searches are pure overhead due to cycle detection. As long
as roughly as many cycles are being detected, then the fewer nodes that are searched
the better.

The number of points-to information propagations is an important metric
because propagation is one of the most expensive operationsin the analysis. It is
strongly influenced by both the number of cycles collapsed and by how quickly they
are collapsed. If a cycle is not detected quickly, then points-to information could be
redundantly circulated around the cycle a number of times.

We now examine these three quantities to help explain the performance re-
sults seen in the previous section. Due to its radically different analysis mechanism,
we don’t include BLQ in this examination.3

Nodes Collapsed. PKH is the only algorithm guaranteed to detect all strongly-
connected components in the constraint graph; however, HT and LCD both do a
very good job of finding and collapsing cycles—for each benchmark they detect
and collapse over 99% of the nodes collapsed by PKH. HCD by itself doesn’t do
as well, collapsing only 46–74% of the nodes collapsed by PKH. This deficiency is
primarily responsible for HCD’s greater memory consumption.

Nodes Searched. HCD is, of course, the most efficient algorithm in terms of
searching the constraint graph, since it doesn’t search at all. HT is the next most
efficient algorithm, because it only searches the subset of the graph necessary for
resolving indirect constraints. PKH searches 2.6× as many nodes as HT, as it pe-
riodically searches the entire graph for cycles. LCD is the least efficient, searching
8× as many nodes as HT.

Propagations. LCD has the fewest propagations, showing that its greater effort
at searching for cycles pays off by finding those cycles earlier than HT or PKH.

3It is difficult to find statistics to directly explain BLQ’s performance relative to HT, PKH, LCD,
and HCD. It doesn’t use cycle detection, so it adds orders of magnitude more edges to the constraint
graph—but propagation of points-to information is done simultaneously across all the edges using
BDD operations, and the performance of the algorithm is due more to how well the BDDs compress
the constraint and points-to graphs than anything else.

27

HT has 1.8× as many propagations, and PKH has 2.2× as many. Since they both
find as many cycles as LCD (as shown by the number of nodes collapsed), this
difference is due to the relative amount of time it takes for each of the algorithms
to find cycles. HCD has the most propagations, 5.2× as many as LCD. HCD finds
cycles as soon as they are formed, so it finds them much faster than LCD does, but
as shown above, it finds substantially fewer cycles than the other algorithms.

Effects of HCD. The main benefit of combining HCD with the other algorithms
is that it helps these algorithms find cycles much sooner thanthey would on their
own. While it does little to increase the number of nodes collapsed or decrease the
number of nodes searched, it greatly decreases the number ofpropagations, because
cycles are collapsed before the points-to information has achance to propagate
around the cycles. The addition of HCD decreases the number of propagations by
10× for HT and by 7.4× for both PKH and LCD.

Discussion. Despite its lazy nature, LCD searches more nodes than eitherHT or
PKH, and it propagates less points-to information than either as well. It appears
that being more aggressive pays off, which naturally leads to the question: could
we do better by being even more aggressive? However, past experience has shown
that we must carefully balance the work we do—too much aggression can lead to
overhead that overwhelms any benefits it may provide. This point is shown in both
Faehndrich et al.’s algorithm [29] and Pearce et al.’s original algorithm [67]. Both
of these algorithms are very aggressive in seeking out cycles, and both are an order
of magnitude slower than any of the algorithms evaluated in this paper.

2.3.3.3 Representing Points-to Sets

Table 2.4 shows that the memory consumption of all the algorithms that use
sparse bitmaps is extremely high. Profiling reveals that themajority of this memory
usage comes from the bitmap representation of points-to sets. BLQ, on the other
hand, uses relatively little memory even for the largest benchmarks, due to its use
of BDDs. It is thus natural to wonder how the other algorithmswould compare—in
terms of both analysis time and memory consumption—if they were to instead use
BDDs to represent points-to sets.

28

HT
PKH

LC
D

HCD

HT+H
CD

PKH+H
CD

LC
D+H

CD
0

1

2

3
N

or
m

al
iz

ed
 T

im
e

Figure 2.6: Performances of the BDD-based implementationsnormalized by their
bitmap-based counterparts, averaged over all the benchmarks.

Tables 2.5 and 2.6 show the performance and memory consumption of the
modified algorithms. Figure 2.6 graphically shows the performance cost of the
modified algorithms by normalizing them by their bitmap-based counterparts, and
Figure 2.7 shows the memory savings by normalizing the bitmap-based algorithms
by their BDD-based counterparts. As with BLQ, we allocate aninitial pool of
memory for the BDDs that is independent of the benchmark size, which is why
memory consumption actually increases for the smallest benchmark, Emacs, and
never goes lower than 33.1MB for any benchmark.

On average, the use of BDDs increases running time by 2× while it de-
creases memory usage by 5.5×. Most of the extra time comes from a single func-
tion, bdd_allsat, which is used to extract all the elements of a set contained in a
given BDD. This function is used when iterating through a variable’s points-to set
while adding new edges according to the indirect constraints. However, both PKH

29

HT
PKH

LC
D

HCD

HT+H
CD

PKH+H
CD

LC
D+H

CD
0

2

4

6

8

N
or

m
al

iz
ed

 M
em

or
y

U
sa

ge

Figure 2.7: Memory consumption of the bitmap-based implementations normalized
by their BDD-based counterparts, averaged over all the benchmarks.

30

and HCD are actually faster with BDDs on all benchmarks except for Emacs (Fig-
ure 2.6 shows that they are slower on average, but this is solely because of Emacs).
These are the two algorithms that propagate the most points-to information across
constraint edges. BDDs make this operation much faster thanusing sparse bitmaps,
and this advantage makes up for the extra time taken by bdd_allsat.

When BDDs are used, HCD is less effective in improving performance than
it was when using bitmaps because HCD decreases the number ofpropagations re-
quired, but using BDDs already makes propagation a fairly cheap operation. How-
ever, with BDDs, HCD’s effect on memory consumption is much more noticeable,
since the constraint graph represents a much larger proportion of the memory usage.

A possible optimization for the BDD-based points-to sets would be to cache
the results of thebdd_allsatfunction, using a map from BDDs to a list of the BDD
elements. While such a map seems to counter the memory-consumption advantage
of using BDDs, the fact that many of the BDDs encode identicalpoints-to sets
would probably mitigate this problem.

2.4 Offline Optimizations

Offline optimizations are performed on the set of inclusion constraints prior
to the actual inclusion-based analysis in order to reduce the input size of the prob-
lem. Rountev et al.’s Offline Variable Substitution (OVS) isan example of this
technique. Prior work (including OVS) targetspointer equivalence, i.e., detect-
ing and collapsing variables that are guaranteed to have identical points-to sets.
Section 2.4.1 describes several techniques that also target pointer equivalence and
improve on the state-of-the-art. Section 2.4.2 describes an optimization that tar-
getslocation equivalence, a new type of equivalence that has never been defined or
exploited for pointer analysis prior to this work.

2.4.1 Pointer Equivalence

Let V be the set of all program variables andN be the set of natural num-
bers; forv∈ V : pts(v)⊆ V is v’s final points-to set, andpe(v) ∈N is thepointer
equivalence labelof v. Variablesx andy are pointer equivalent iffpts(x) = pts(y).
Our goal is to assign pointer equivalence labels such thatpe(x) = pe(y) implies that

31

x andy are pointer equivalent. Pointer equivalent variables can safely be collapsed
together in the constraint graph to reduce both the number ofnodes and edges in
the graph. The benefits are two-fold: (1) there are fewer points-to sets to maintain;
and (2) there are fewer propagations of points-to information along the edges of the
constraint graph.

The offline optimization begins by using the set of inclusionconstraints to
create anoffline constraint graph,4 with VAR nodes to represent each variable,REF

nodes to represent each dereferenced variable, andADR nodes to represent each
address-taken variable. AREF node∗a stands for the unknown points-to set of
variablea, while ADR node &a stands for the address of variablea. Edges represent
the inclusion relationships:a⊇{b} yields edge &b→ a; a⊇ b yieldsb→ a; a⊇∗b
yields∗b→ a; and∗a⊇ b yieldsb→∗a.

Before describing the optimizations, we first explain the concepts ofdirect
andindirect nodes [70]. Direct nodes have all of their points-to relations explicitly
represented in the constraint graph: for direct nodex and the set of nodesS =

{y : y→ x}, pts(x) =
S

y∈S
pts(y). Indirect nodes are those that may have points-to

relations that are not represented in the constraint graph.All REF nodes are indirect
because the unknown variables that they represent may have their own points-to
relations. VAR nodes are indirect if they (1) have had their address taken, which
means that they can be referenced indirectly via aREF node; (2) are the formal
parameter of an function targeted by an indirect call; or (3)are assigned the return
value of an indirect function call. All otherVAR nodes are direct.

All indirect nodes are conservatively treated as possible sources of points-
to information, and therefore each is given a distinct pointer equivalence label at
the beginning of the algorithm.ADR nodes are definite sources of points-to infor-
mation, and they are also given distinct labels. For convenience, we will use the
term ’indirect node’ to refer to bothADR nodes and true indirect nodes because our
optimizations treat them equivalently.

Figure 2.8 shows a set of constraints and the corresponding offline constraint
graph. In Figure 2.8 all theREF andADR nodes are marked indirect, as well asVAR

nodesa andd, because they have their address taken. Becausea andd can now be

4The offline constraint graph is akin to thesubset graphdescribed by Rountev et al. [70].

32

b⊇ {a} a⊇ h h⊇ ∗b
b⊇ {d} c⊇ b i ⊇ ∗e
c⊇ {a} d⊇ i k⊇ ∗ j
e⊇ {a} e⊇ f
e⊇ {d} f ⊇ e

g⊇ f
(a) Set of constraints.

&a 6 b

c

e &d 7*b 3 h

*e 2 i

1 k

a 5

d 4

f g

*j

(b) Offline constraint graph.

Figure 2.8: Example offline constraint graph. Indirect nodes are grey and have
already been given their pointer equivalence labels. Direct nodes are black and
have not been given pointer equivalence labels.

accessed indirectly through pointer dereference, we can nolonger assume that they
only acquire points-to information via nodesh andi, respectively.

2.4.1.1 Hash-based Value Numbering (HVN)

The goal of HVN is to give each direct node a pointer equivalence label
such that two nodes share the same label only if they are pointer equivalent. HVN
can also identify non-pointers—variables that are guaranteed to never point to any-
thing. Non-pointers can arise in languages with weak types systems, such as C:
the constraint generator can’t rely on the variables’ type declarations to determine
whether a variable is a pointer or not, so it conservatively assumes that everything
is a pointer. HVN can eliminate many of these superfluous variables; they are iden-
tified by assigning a pointer equivalence label of 0. The algorithm proceeds as
follows:

1. Find and collapse strongly-connected components (SCCs)in the offline con-
straint graph. If any node in the SCC is indirect, the entire SCC is indirect.

33

In Figure 2.8,eand f are collapsed into a single (direct) node.

2. Proceeding in topological order, for each direct nodex letL be the set of pos-
itive incoming pointer equivalence labels, i.e.,L = {pe(y) : y→ x∧ pe(y) 6=
0}. There are three cases:

(a) L is empty. Thenx is a non-pointer andpe(x) = 0.

Explanation: in order forx to potentially be a pointer, there must exist
a path tox either from anADR node or some indirect node. If there is
no such path, thenx must be a non-pointer.

(b) L is a singleton, withp∈ L . Thenpe(x) = p.

Explanation: if every points-to set coming in tox is identical, thenx’s
points-to set, being the union of all the incoming points-tosets, must be
identical to the incoming sets.

(c) L contains multiple labels. The algorithm looks upL in a hashtable to
see if it has encountered the set before. If so, it assignspe(x) the same
label; otherwise it creates a new label, stores it in the hashtable, and
assigns it tope(x).

Explanation: x’s points-to set is the union of all the incoming points-to
sets;x must be equivalent to any node whose points-to set results from
unioning the same incoming points-to sets.

Following these steps for Figure 2.8, the final assignment ofpointer equiv-
alence labels for the direct nodes is shown in Figure 2.9. Once we have assigned
pointer equivalence labels, we merge nodes with identical labels and eliminate all
edges incident to nodes labeled 0.

Complexity. The complexity of HVN is linear in the size of the graph. Using
Tarjan’s algorithm for detecting SCCs [79], step 1 is linear. The algorithm then
visits each direct node exactly once and examines its incoming edges. This step is
also linear.

34

&a 6 b 8
c 9

e 8&d 7*b h 3

2 i 2

*j 1 k 1

a 5

d 4

f 8 g 8

*e

3

Figure 2.9: The assignment of pointer equivalence labels after HVN.

Comparison to OVS. HVN is similar to Rountev et al.’s [70] OVS optimization.
The main difference lies in our insight that labeling the condensed offline con-
straint graph is essentially equivalent to performing value-numbering on a block
of straight-line code, and therefore we can adapt the classic compiler optimization
of hash-based value numbering for this purpose. The advantage lies in step 2c: in
this case OVS would give the direct node a new label without checking to see if
any other direct nodes have a similar set of incoming labels,potentially missing
a pointer equivalence. In the example, OVS would not discover that b ande are
equivalent and would give them different labels.

2.4.1.2 Extending HVN

HVN does not find all pointer equivalences that can be detected prior to
pointer analysis because it does not interpret theunionanddereferenceoperators.
Recall that the union operator is implicit in the offline constraint graph: for direct
nodex with incoming edges from nodesy and z, pts(x) = pts(y)∪ pts(z). By
interpreting these operators, we can increase the number ofpointer equivalences
detected, at the cost of additional time and space.

HR algorithm. By interpreting the dereference operator, we can relate aVAR

nodev to its correspondingREF node∗v. There are two relations of interest:

1. ∀x,y∈ V : pe(x) = pe(y)⇒ pe(∗x) = pe(∗y).

2. ∀x∈ V : pe(x) = 0⇒ pe(∗x) = 0.

35

&a 6 b 8
c 8

e 8&d 7*b 2 h 2

*e 2 i 2

*j 0 k 0

a 5

d 4

f 8 g 8

Figure 2.10: The assignment of pointer equivalence labels after HR and HU.

The first relation states that if variablesx andy are pointer-equivalent, then
so are∗x and∗y. If x andy are pointer-equivalent, then by definition∗x and∗y will
be identical. Whereas HVN would give them unique pointer equivalence labels, we
can now assign them the same label. By doing so, we may find additional pointer
equivalences that had previously been hidden by the different labels.

The second relation states that if variablex is a non-pointer, then∗x is also
a non-pointer. It may seem odd to have a constraint that dereferences a non-pointer,
but this can happen when code that initializes pointer values is linked but never
called, for example with library code. Exposing this relationship can help identify
additional non-pointers and pointer equivalences.

Figure 2.10 provides an example. HVN assignsb ande identical labels; the
first relation above tells us we can assign∗b and∗e identical labels, which exposes
the fact thati andh are equivalent to each other, which HVN missed. Also, variable
j is not mentioned in the constraints, and therefore theVAR node j isn’t shown in
the graph, and it is assigned a pointer equivalence label of 0. The second relation
above tells us that becausepe(j) = 0, pe(∗ j) should also be 0; therefore both∗ j
andk are non-pointers and can be eliminated.

The simplest method for interpreting the dereference operator is to itera-
tively apply HVN to its own output until it converges to a fixedpoint. Each iteration
collapses equivalent variables and eliminates non-pointers, fulfilling the two rela-
tions we describe. This method adds an additional factor ofO(n) to the complexity
of the algorithm, since in the worst case it eliminates a single variable in each iter-
ation until there is only one variable left. The complexity of HR is thereforeO(n2),
but in practice we observe that this method generally exhibits linear behavior.

36

HU algorithm. By interpreting the union operator, we can more precisely track
the relations among points-to sets. Figure 2.10 gives an example in VAR nodec.
Two different pointer equivalence labels reachc, one from &aand one fromb. HVN
therefore givesc a new pointer equivalence label. However,pts(b)⊇ pts(&a), so
when they are unioned together the result is simplypts(b). By keeping track of this
fact, we can assignc the same pointer equivalence label asb.

Let fn be a fresh number unique ton; the algorithm will use these fresh
values to represent unknown points-to information. The algorithm operates on the
condensed offline constraint graph as follows:

1. Initialize points-to sets for each node.∀v ∈ V : pts(&v) = {v}; pts(∗v) =

{ f∗v}; if v is direct thenpts(v) = /0, elsepts(v) = { fv}.

2. In topological order: for each nodex, letS = {y : y→ x}∪{x}. Thenpts(x) =
S

y∈S
pts(y).

3. Assign labels s.t.∀x,y∈V : pts(x) = pts(y)⇔ pe(x) = pe(y).

Since this algorithm is effectively computing the transitive closure of the
constraint graph, it has a complexity ofO(n3). While this is the same complexity
as the pointer analysis itself, HU is significantly faster because, unlike the pointer
analysis, we do not add additional edges to the offline constraint graph, making the
offline graph much smaller than the graph used by the pointer analysis.

Putting It Together: HRU. The HRU algorithm combines the HR and HU al-
gorithms to interpret both the dereference and union operators. HRU modifies HR
to iteratively apply the HU algorithm to its own output untilit converges to a fixed
point. Since the HU algorithm isO(n3) and HR adds a factor ofO(n), HRU has
a complexity ofO(n4). As with HR this worst-case complexity is not observed
in practice; however it is advisable to first apply HVN to the original constraints,
then apply HRU to the resulting set of constraints. HVN significantly decreases
the size of the offline constraint graph, which decreases both the time and memory
consumption of HRU.

37

2.4.2 Location Equivalence

Let V be the set of all program variables andN be the set of natural num-
bers; forv ∈ V : pts(v) ⊆ V is v’s points-to set, andle(v) ∈ N is the location
equivalence labelof v. Variablesx andy are location equivalent iff∀z∈ V : x ∈
pts(z)⇔ y ∈ pts(z). Our goal is to assign location equivalence labels such that
le(x) = le(y) implies thatx andy are location equivalent. Location equivalent vari-
ables can safely be collapsed together in all points-to sets, providing two benefits:
(1) the points-to sets consume less memory; and (2) since thepoints-to sets are
smaller, points-to information is propagated more efficiently across the edges of the
constraint graph.

Without any pointer information it is impossible to computeall location
equivalences, as can be seen by the definition of location equivalence given above.
However, since points-to sets are never split during the pointer analysis, any vari-
ables that are location equivalent at the beginning of the analysis are guaranteed to
be location equivalent at the end. We can therefore safely compute a subset of the
equivalences prior to the pointer analysis. We use the same offline constraint graph
as we use to find pointer equivalence, but we will be labelingADR nodes instead of
direct nodes. The algorithm assigns eachADR node a label based on its outgoing
edges such that twoADR nodes have the same label iff they have the same set of
outgoing edges. In other words,ADR nodes &a and &b are assigned the same label
iff, in the constraints,∀z∈ V : z⊇ {a} ⇔ z⊇ {b}. In Figure 2.8, theADR nodes
&a and &d would be assigned the same location equivalence label.

While location and pointer equivalences can be computed independently, it
is more precise to compute location equivalenceafter we have computed pointer
equivalence. We modify the criterion to require thatADR nodes &a and &b are
assigned the same label iff∀y,z∈V,(y⊇ {a}∧z⊇ {b})⇒ pe(y) = pe(z). In other
words, we don’t require that the twoADR nodes have the same set of outgoing
edges, but rather that the nodes incident to theADR nodes have the same set of
pointer equivalence labels.

Once the algorithm assigns location equivalence labels, itmerges allADR

nodes that have identical labels. These mergedADR nodes are each given a fresh
name. Points-to set elements will come from this new set of fresh names rather
than from the original names of the mergedADR nodes, thereby saving space, since
a single fresh name corresponds to multipleADR nodes. However, we must make

38

a simple change to the subsequent pointer analysis to accommodate this new nam-
ing scheme. When adding new edges from indirect constraints, the pointer analysis
must translate from the fresh names in the points-to sets to the original names cor-
responding to theVAR nodes in the constraint graph. To facilitate this translation
the analysis creates a one-to-many mapping between the fresh names and the orig-
inal ADR nodes that it merged together. In Figure 2.8, sinceADR nodes &a and
&d are given the same location equivalence label, they will be merged together and
assigned a fresh name such as &l . Any points-to sets that formerly would have con-
taineda andd will instead containl ; when adding additional edges from an indirect
constraint that referencesl , the pointer analysis will translatel back toa andd to
correctly place the edges in the online constraint graph.

Complexity. LE is linear in the size of the constraint graph. The algorithm scans
through the constraints, and for each constrainta⊇ {b} it insertspe(a) into ADR

node &b’s set of pointer equivalence labels. This step is linear in the number of
constraints (i.e., graph edges). It then visits eachADR node, and it uses a hash
table to map from that node’s set of pointer equivalence labels to a single location
equivalence label. This step is also linear.

2.4.3 Evaluation

Using a suite of six open-source C programs, which range in size from
169K to 2.17M LOC, we compare the analysis times and memory consumption
of OVS, HVN, HRU, and HRU+LE (HRU coupled with LE). We then usethree dif-
ferent state-of-the-art inclusion-based pointer analyses—Pearce et al. [66] (PKH),
Heintze and Tardieu [41] (HT), and Hardekopf and Lin [37] (HL)—to compare the
optimizations’ effects on the pointer analyses’ analysis time and memory consump-
tion. These pointer analyses are all field-insensitive and implemented in a common
framework, re-using as much code as possible to provide a fair comparison.

The offline optimizations and the pointer analyses are written in C++ and
handle all aspects of the C language except for varargs. We use sparse bitmaps
taken from GCC 4.1.1 to represent the constraint graph and points-to sets. The
constraint generator is separate from the constraint solvers; we generate constraints
from the benchmarks using the CIL C front-end [60], ignoringany assignments

39

Name Description LOC Constraints
Emacs-21.4a text editor 169K 83,213

Ghostscript-8.15 postscript viewer 242K 169,312
Gimp-2.2.8 image manipulation 554K 411,783
Insight-6.5 graphical debugger 603K 243,404

Wine-0.9.21 windows emulator 1,338K 713,065
Linux-2.4.26 linux kernel 2,172K 574,788

Table 2.7: Benchmarks: For each benchmark we show the numberof lines of code
(computed as the number of non-blank, non-comment lines in the source files), a
description of the benchmark, and the number of constraintsgenerated by the CIL
front-end.

involving types too small to hold a pointer. External library calls are summarized
using hand-crafted function stubs.

The benchmarks for our experiments are described in Table 2.7. We run the
experiments on an Intel Core Duo 1.83 GHz processor with 2 GB of memory, using
the Ubuntu 6.10 Linux distribution. Though the processor isdual-core, the exe-
cutables themselves are single-threaded. All executablesare compiled with GCC
4.1.1 and the ’–O3’ optimization flag. We repeat each experiment three times and
report the smallest time; all the experiments have very low variance in performance.
Times include everything from reading the constraint file from disk to computing
the final solution.

2.4.3.1 Cost of Optimizations

Tables 2.8 and 2.9 show the analysis time and memory consumption, re-
spectively, of the offline optimizations on the six benchmarks. OVS and HVN have
roughly the same times, with HVN using 1.17×more memory than OVS. On aver-
age, HRU and HRU+LE are 3.1× slower and 3.4× slower than OVS, respectively.
Both HRU and HRU+LE have the same memory consumption as HVN. As stated
earlier, these algorithms are run on the output of HVN in order to improve analy-
sis time and conserve memory; their times are the sum of theirrunning time and
the HVN running time, while their memory consumption is the maximum of their
memory usage and the HVN memory usage. In all cases, the HVN memory usage

40

Emacs Ghostscript Gimp Insight Wine Linux
OVS 0.29 0.60 1.74 0.96 3.57 2.34
HVN 0.29 0.61 1.66 0.95 3.39 2.36
HRU 0.49 2.29 4.31 4.28 9.46 7.70

HRU+LE 0.53 2.54 4.75 4.64 10.41 8.47

Table 2.8: Offline analysis times (sec).

Emacs Ghostscript Gimp Insight Wine Linux
OVS 13.1 28.1 61.1 39.1 110.4 96.2
HVN 14.8 32.5 71.5 44.7 134.8 114.8
HRU 14.8 32.5 71.5 44.7 134.8 114.8

HRU+LE 14.8 32.5 71.5 44.7 134.8 114.8

Table 2.9: Offline analysis memory (MB).

is greater.

Figure 2.11 shows the effect of each optimization on the number of con-
straints for each benchmark. On average OVS reduces the number of constraints by
63.4%, HVN by 69.4%, HRU by 77.4%, and HRU+LE by 79.9%. HRU+LE, our
most aggressive optimization, takes 3.4× longer than OVS, while it only reduces
the number of constraints by an additional 16.5%. However, inclusion-based anal-
ysis isO(n3) time andO(n2) space, so even a relatively small reduction in the input
size can have a significant effect, as we’ll see in the next section.

2.4.3.2 Benefit of Optimizations

Tables 2.10–2.15 give the analysis times and memory consumption for three
pointer analyses—PKH, HT, and HL—as run on the results of each offline opti-
mization; OOM indicates the analysis ran out of memory. The data is summarized
in Figure 2.12, which gives the average performance and memory improvement
for the three pointer analyses for each offline algorithm as compared to OVS. The
offline analysis times are added to the pointer analysis times to make the overall
analysis time comparison.

41

Em
ac

s

Gho
sts

cr
ipt

Gim
p

In
sig

ht

W
ine

Lin
ux

Ave
ra

ge
0

10

20

30

40

50

%
 C

on
st

ra
in

ts

OVS

HVN

HRU

HRU+LE

Figure 2.11: Percent of the original number of constraints that is generated by each
optimization.

Emacs Ghostscript Gimp Insight Wine Linux
OVS 1.99 19.15 99.22 121.53 1,980.04 1,202.78
HVN 1.60 17.08 87.03 111.81 1,793.17 1,126.90
HRU 0.74 13.31 38.54 57.94 1,072.18 598.01

HRU+LE 0.74 9.50 21.03 33.72 731.49 410.23

Table 2.10: Online analysis times for the PKH algorithm (sec).

Emacs Ghostscript Gimp Insight Wine Linux
OVS 1.63 13.58 64.45 46.32 OOM 410.52
HVN 1.84 12.84 59.68 42.70 OOM 393.00
HRU 0.70 9.95 37.27 37.03 1,087.84 464.51

HRU+LE 0.54 8.82 18.71 23.35 656.65 332.36

Table 2.11: Online analysis times for the HT algorithm (sec).

42

Emacs Ghostscript Gimp Insight Wine Linux
OVS 1.07 9.15 17.55 20.45 534.81 103.37
HVN 0.68 8.14 13.69 17.23 525.31 91.76
HRU 0.32 7.25 10.04 12.70 457.49 75.21

HRU+LE 0.51 6.67 8.39 13.71 345.56 79.99

Table 2.12: Online analysis times for the HL algorithm (sec).

Emacs Ghostscript Gimp Insight Wine Linux
OVS 23.1 102.7 418.1 251.4 1,779.7 1,016.5
HVN 17.7 83.9 269.5 194.8 1,448.5 840.8
HRU 12.8 68.0 171.6 165.4 1,193.7 590.4

HRU+LE 6.9 23.8 56.1 58.6 295.9 212.4

Table 2.13: Online analysis memory for the PKH algorithm (MB).

Emacs Ghostscript Gimp Insight Wine Linux
OVS 22.5 97.2 359.7 266.9 OOM 1,006.8
HVN 17.7 85.0 279.0 231.5 OOM 901.3
HRU 10.8 70.3 205.3 156.7 1,533.0 700.7

HRU+LE 6.4 34.9 86.0 69.4 820.9 372.2

Table 2.14: Online analysis memory for the HT algorithm (MB).

Emacs Ghostscript Gimp Insight Wine Linux
OVS 21.0 93.9 415.4 239.7 1,746.3 987.8
HVN 13.9 73.5 263.9 183.7 1,463.5 807.9
HRU 9.2 63.3 170.7 121.9 1,185.3 566.6

HRU+LE 4.5 22.2 33.4 27.6 333.1 162.6

Table 2.15: Online analysis memory for the HL algorithm (MB).

43

HVN
HRU

HRU+L
E

0

1

2

3

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

PKH

HT

HL

(a)

HVN
HRU

HRU+L
E

0

2

4

6

M
em

or
y

Im
pr

ov
em

en
t

PKH
HT
HL

(b)

Figure 2.12:(a) Average performance improvement over OVS;(b) Average mem-
ory improvement over OVS. For each graph, and for each offlineoptimizationX ∈

{HVN, HRU, HRU+LE}, we compute
OVStime/memory

Xtime/memory
. Larger is better.

Analysis Time. For all three pointer analyses, HVN only moderately improves
analysis time over OVS, by 1.03–1.18×. HRU has a greater effect despite its much
higher offline analysis times; it improves analysis time by 1.28–1.88×. HRU+LE
has the greatest effect; it improves analysis time by 1.28–2.68×. An important
factor in the analysis time of these algorithms is the numberof times they prop-
agate points-to information across constraint edges. PKH is the least efficient of
the algorithms in this respect, propagating much more information than the other
two; hence it benefits more from the offline optimizations. HLpropagates the least
amount of information and therefore benefits the least.

Memory. For all three pointer analyses HVN only moderately improvesmem-
ory consumption over OVS, by 1.2–1.35×. All the algorithms benefit significantly
from HRU, using 1.65–1.90× less memory than for OVS. HRU’s greater reduc-
tion in constraints makes for a smaller constraint graph andfewer points-to sets.
HRU+LE has an even greater effect: HT uses 3.2× less memory, PKH uses 5× less
memory, and HL uses almost 7× less memory. HRU+LE doesn’t further reduce the
constraint graph or the number of points-to sets, but on average it cuts the average

44

points-to set size in half.

Room for Improvement. Despite aggressive offline optimization in the form of
HRU plus the efforts of online cycle detection, there are still a significant number of
pointer equivalences that we do not detect in the final constraint graph. The number
of actual pointer equivalence classes is much smaller than the number of detected
equivalence classes, by almost 4× on average. In other words, we could conceiv-
ably shrink the online constraint graph by almost 4× if we could do a better job
of finding pointer equivalences. This is an interesting areafor future work. On the
other hand, we do detect a significant fraction of the actual location equivalences—
we detect 90% of the actual location equivalences in the five largest benchmarks,
though for the smallest (Emacs) we only detect 41%. Thus there is not much room
to improve on the LE optimization.

2.4.3.3 Bitmaps vs. BDDs.

The data structure used to represent points-to sets for the pointer analysis
can have a great effect on the analysis time and memory consumption of the anal-
ysis. Section 2.3.3 compares the use of sparse bitmaps versus BDDs to represent
points-to sets and find that on average the BDD implementation is 2× slower but
uses 5.5× less memory than the bitmap implementation. To make a similar com-
parison testing the effects of our optimizations, we implement two versions of each
pointer analysis: one using sparse bitmaps to represent points-to sets, the other us-
ing BDDs for the same purpose. Unlike BDD-based pointer analyses [7, 81] which
store the entire points-to solution in a single BDD, we give each variable its own
BDD to store its individual points-to set. For example, ifv→{w,x} andy→{x,z},
the BDD-based analyses would have a single BDD that represents the set of tu-
ples{(v,w),(v,x),(y,x),(y,z)}. Instead, we givev a BDD that represents the set
{w,x} and we givey a BDD that represents the set{w,z}. The two BDD represen-
tations take equivalent memory, but our representation is asimple modification that
requires minimal changes to the existing code.

The results of our comparison are shown in Figure 2.13. We findthat for
HVN and HRU, the bitmap implementations on average are 1.4–1.5× faster than
the BDD implementations but use 3.5–4.4×more memory. However, for HRU+LE

45

HVN
HRU

HRU+L
E

0

1

2

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

PKH

HT

HL

(a)

HVN
HRU

HRU+L
E

0.0

0.5

1.0

1.5

2.0

M
em

or
y

Im
pr

ov
em

en
t

PKH

HT

HL

(b)

Figure 2.13:(a) Average performance improvement over BDDs;(b) Average mem-
ory improvement over BDDs. LetBDD be the BDD implementation andBIT be the

bitmap implementation; for each graph we compute
BDDtime/memory

BITtime/memory
. Larger is better.

the bitmap implementations are on average 1.3× faster and use 1.7× lessmemory
than the BDD implementations, because the LE optimization significantly shrinks
the points-to sets of the variables.

2.5 Chapter Summary

In this chapter, we demonstrate how to greatly increase the scalability of
inclusion-based pointer analysis, the most precise type offlow- and context-insensitive
pointer analysis. Our strategy is to exploit bothpointer equivalence(pointers with
identical points-to sets) andlocation equivalence(variables pointed-to by identical
sets of pointers).

A major technique for exploiting pointer equivalence iscycle detection, i.e.,
detecting and collapsing cycles in the constraint graph. This chapter describes two
new techniques for cycle detection that outperform the previous state-of-the-art:
Lazy Cycle DetectionandHybrid Cycle Detection. A second technique to exploit
pointer equivalence isoffline variable substitution. This chapter describes three new
offline techniques for detecting pointer equivalent variables that detect more equiva-

46

lences than the previous state-of-the-art:HVN, HR, andHU (and their combination,
HRU).

While pointer equivalence has been previously exploited for optimizing
inclusion-based analysis, location equivalence is a brand-new technique introduced
here for the first time. This chapter describes an offline technique for conservatively
detecting location equivalent variables prior to the inclusion-based analysis. This
technique detects a majority of the equivalent variables inmost benchmarks and
greatly reduces the memory consumption of the analysis.

47

Chapter 3

Flow-Sensitive Analysis

Flow-sensitive pointer analysis has proven particularly difficult in terms
of scalability; previous state-of-the-art flow-sensitivealgorithms can analyze pro-
grams with only a few tens of thousands of lines of code. This chapter describes
two new algorithms for flow-sensitive pointer analysis thatincrease scalability by
two orders of magnitude, enabling the analysis of millions of lines of code in less
than 15 minutes. Section 3.1 provides background on flow-sensitive pointer anal-
ysis, including why flow-sensitivity is important and some insight into why flow-
sensitive analysis is so expensive. Section 3.2 discusses related work for scalable
flow-sensitive analysis, then Sections 3.3 and 3.4 describeour new algorithms and
evaluate their performance with respect to the current state-of-the-art. Portions of
the work described in this chapter has been previously published by Hardekopf and
Lin [39].

3.1 Background

This section briefly describes flow-sensitive pointer analysis and enumerates
the major challenges in making the analysis practical for large programs. Further
details on the basic flow-sensitive pointer analysis algorithm are described by Hind
et al. [44].

3.1.1 Flow-Sensitive Pointer Analysis

Flow-sensitive pointer analysis respects a program’s control flow and com-
putes a separate solution for each program point, in contrast to a flow-insensitive
analysis, which ignores statement ordering and computes a single solution that is
conservatively correct for all program points.

48

Traditional flow-sensitive pointer analysis uses an iterative dataflow anal-
ysis framework, which employs a lattice of dataflow factsL , a meet operator on
the lattice, and a family of monotone transfer functionsfi : L → L that map lat-
tice elements to other lattice elements. For pointer analysis the lattice elements are
points-to graphs, the meet operator is set union, and each transfer function com-
putes the effects of a program statement to transform an input points-to graph into
an output points-to graph. Analysis is carried out on thecontrol-flow graph(CFG),
a directed graphG = 〈N,E〉 with a finite set of nodes (orprogram points), N, cor-
responding to program statements and a set of edgesE ⊆ N×N corresponding to
the control flow between statements. To ensure decidabilityof the analysis branch
conditions are uninterpreted and branches are treated as non-deterministic.

Each nodek of the CFG maintains two points-to graphs:INk, representing
the incoming pointer information, andOUTk, representing the outgoing pointer in-
formation. Each node is associated with a transfer functionthat transformsINk to
OUTk, characterized by the setsGENk andKILL k, which represent the pointer infor-
mation generated by the node and killed by the node, respectively. The contents of
these two sets depend on the particular program statement associated with nodek,
and the contents can vary over the course of the analysis as new pointer information
is accumulated (though the transfer function is still guaranteed to be monotonic).
The analysis iteratively computes the following two functions for all nodesk until
convergence:

INk =
[

x∈pred(k)

OUTx (3.1)

OUTk = GENk∪ (INk−KILL k) (3.2)

The KILL set determines whether the analysis performs astrongor weak
update to the left-hand side of an assignment. When the left-hand side definitely
refers to a single memory locationv, a strong update occurs in which theKILL set
is used to remove all points-to relationsv→ x prior to updatingv with a new set of
points-to relations. If the left-hand side cannot be determined to point to a single
memory location, then a weak update occurs: The analysis cannot be surewhich
of the possible memory locations should actually be updatedby the assignment, so

49

to be conservative it must setKILL to the empty set to preserve all of the existing
points-to relations.

3.1.2 The Importance of Flow-Sensitive Pointer Analysis

Some previous work has created a perception that the extra precision of
flow-sensitive pointer analysis is not beneficial [45, 58], but as researchers attack
new program analysis problems, we believe that this perception should be ques-
tioned for the following reasons:

• Different client program analyses require different amounts of precision from
the pointer analysis [43]. The list of client analyses that have been shown to
benefit from flow-sensitive pointer analysis includes several software engi-
neering applications of growing importance, including security analysis [13,
30], deep error checking [34], hardware synthesis [86], andthe analysis of
multi-threaded programs [72], among others [5, 16, 31].

• The precision of pointer analysis is typically measured in terms of metrics that
are averaged over the entire program. In cases such as security analysis and
parallelization, these metrics can be misleading—a small amount of impreci-
sion in isolated parts of the program can significantly impact the effectiveness
of the client analysis, as demonstrated by Guyer et al. [34].Thus, two differ-
ent pointer analyses can have very similar average points-to set sizes but very
different impact on the client analysis.

• In a vicious cycle, the lack of an efficient flow-sensitive pointer analysis has
inhibited the use of flow-sensitive pointer analyses. The development and
widespread use of a scalable flow-sensitive pointer analysis would likely un-
cover additional client analyses that benefit from the addedprecision.

• Several techniques [14, 30, 34, 35, 82] can improve the precision of flow-sensitive
pointer analysis, but most of these techniques greatly increase the cost of the
pointer analysis, making an already non-scalable analysiseven more imprac-
tical. A significantly more efficient flow-sensitive pointeranalysis algorithm
would improve the practicality of such techniques, making flow-sensitive
pointer analysis even more useful.

50

Thus, we conclude that there are many reasons to seek a more scalable in-
terprocedural flow-sensitive pointer analysis.

3.1.3 Challenges Facing Flow-Sensitive Pointer Analysis

There are three major performance challenges facing flow-sensitive pointer
analysis:

1. Conservative propagation.Without pointer information it is in general not
possible to determine where variables are defined or used. Therefore, the
analysis must propagate the pointer information generatedat each nodek to
all nodes in the CFG reachable fromk in case those nodes use the infor-
mation. Typically, however, only a small percentage of the reachable nodes
actually require the information, so most of the nodes receive the information
needlessly. The effect is to greatly delay the convergence of equations (3.1)
and (3.2).

2. Expensive transfer functions.Equations (3.1) and (3.2) require a number of
set operations with complexity linear in the sizes of the sets involved. These
sets tend to be large, with potentially hundreds to thousands of elements.
This problem is exacerbated by the analysis’ conservative propagation which
requires the nodes to needlessly re-evaluate their transfer functions when they
receive new pointer information even when that informationis irrelevant to
the node.

3. High memory requirements. Each node in the CFG must maintain two
separate points-to graphs,IN for the incoming information andOUT for the
outgoing information. For large programs that have hundreds of thousands of
nodes, these points-to graphs consume a significant amount of memory. This
problem is also exacerbated by the analysis’ conservative propagation which
requires theIN andOUT graphs to hold pointer information irrelevant to the
node in question.

All of the work in improving the scalability of flow-sensitive pointer anal-
ysis can be seen as addressing one or more of these challenges. The next section
reviews past efforts at meeting these challenges before describing our own solution.

51

3.2 Related Work

The current state-of-the-art for traditional flow-sensitive pointer analysis us-
ing iterative dataflow analysis is described by Hind and Pioli [44, 45], and their anal-
ysis is the baseline that we use for evaluating our new techniques. Their analysis
employs three major optimizations:

1. Sparse evaluation graph (SEG) [18, 27, 68].These graphs are derived from
the CFG by eliding nodes that do not manipulate pointer information—and
hence are irrelevant to pointer analysis—while maintaining the control-flow
relations among the remaining nodes. There are a number of techniques for
constructing SEGs, which vary in the complexity of the algorithm and the
size of the resulting graph. The use of SEGs addresses challenges (1) and (3)
by significantly reducing the input to the analysis.

2. Priority-based worklist. Nodes awaiting processing are placed on a worklist
prioritized by the topological order of the CFG, such that nodes higher in the
CFG are processed before nodes lower in the CFG. This optimization aims
to amass at each node as much new incoming pointer information as possible
before processing the node, thereby addressing challenge (2) by reducing the
number of times the node must be processed.

3. Filtered forward-binding. When passing pointer information to the target
of a function call, it is unnecessary to pass everything. Theonly pointer
information that the callee can access is that which is accessible from a global
or from one of the function parameters. Challenges (1) and (3) can thus be
addressed by filtering out the remaining information to add.Less information
is propagated unnecessarily, which leads to smaller points-to graphs.

Their evaluation shows that these optimizations speed up the analysis by an
average of over 25×. The largest benchmarks analyzed are up to 30,000 lines of
code (LOC).

To improve scalability, several non-traditional approaches to flow-sensitive
pointer analysis have been proposed. These approaches takeinspiration from a
number of non-pointer-related program analyses which haveaddressed similar chal-
lenges using asparse analysis, including the use of static single assignment (SSA)

52

form. Pointer analysis cannot directly make use of SSA because pointer informa-
tion is required to compute SSA form. Cytron et al. [22] propose a scheme for
incrementally computing pointer information while converting to SSA form; by in-
corporating the minimum amount of pointer information necessary, this scheme re-
duces the size of the resulting SSA form. However, this technique does not speed up
the computation of the pointer information itself. We now describe two approaches
that use SSA for the actual computation of pointer information.

Hasti and Horwitz [40] propose a scheme composed of two passes: a flow-
insensitive pointer analysis that gathers pointer information and a conversion pass
that uses the pointer information to transform the program into SSA form. The
result of the second pass is iteratively fed back into the first pass until convergence
is reached. Hasti and Horwitz leave open the question of whether the resulting
pointer information is equivalent to a flow-sensitive analysis; we believe that the
resulting information is less precise than a full flow-sensitive pointer analysis. No
experimental evaluation of this technique has been published.

Chase et al. [14] propose a technique that dynamically transforms the pro-
gram to SSA form during the course of the flow-sensitive pointer analysis. There
is no experimental evaluation of this proposed technique; however, a similar idea is
described and experimentally evaluated by Tok et al. [80]. The technique can ana-
lyze programs that are twice as large as those that use iterative dataflow, enabling
the analysis of 70,000 LOC in approximately half-an-hour. Unfortunately, the cost
of dynamically computing SSA form limits the scalability ofthe analysis.

We cannot use a common infrastructure to compare Tok et al.’stechnique
with ours, because their technique targets programs that begin in non-SSA form,
whereas we use the LLVM infrastructure [52], which automatically transforms a
program into partial SSA form as described in Section 3.2.1.While the comparison
is imperfect due to infrastructure differences, our fastest analysis is 1,286× faster
and uses 11.5× less memory onsendmail, the only benchmark common to both
studies.

A different approach that primarily targets challenges (2)and (3) is sym-
bolic analysis using Binary Decision Diagrams (BDDs), which has been used with
great success in model checking [4]. A number of papers have shown that symbolic
analysis can greatly improve the performance of flow-insensitive pointer analy-
sis [7, 81, 85, 87]. In addition, Zhu [86] uses BDDs to computea flow- and context-

53

sensitive pointer analysis for C programs. The analysis is fully symbolic (every-
thing from the CFG to the pointer information is representedusing BDDs) but not
fully flow-sensitive—the analysis cannot perform indirectstrong updates, so the
KILL sets are more conservative (i.e., smaller) than a fully flow-sensitive analy-
sis. Symbolic analysis is discussed in more detail in Section 3.3.3. Zhu does not
show results for a flow-sensitive, context-insensitive analysis, so we cannot directly
compare his techniques with ours.

There have been several other approaches to optimizing flow-sensitive pointer
analysis that improve scalability by pruning the input given to the analysis. Rather
than improve the scalability of the pointer analysis itself, these techniques reduce
the size of its input. Client-driven pointer analysis analyzes the needs of a particu-
lar client and applies flow-sensitive pointer analysis onlyto portions of the program
that require that level of precision [34]. Fink et al. use a similar technique specifi-
cally for typestate analysis by successively applying moreprecise pointer analyses
to a program, pruning away portions of the program as each stage of precision has
been successfully verified [30]. Kahlon bootstraps the flow-sensitive pointer analy-
sis by using a flow-insensitive pointer analysis to partition the program into sections
that can be analyzed independently [47]. These approaches can be combined with
our new flow-sensitive pointer analysis to achieve even greater scalability.

3.2.1 SSA

Static single assignment(SSA) form is a common intermediate representa-
tion that requires all variables to be defined exactly once inthe text of the program.
Variables defined multiple times in the original representation are split into separate
instances, one for each definition. When separate instancesof the same variable are
live at a join point in the control-flow graph, they are combined using aφ function,
which takes the old instances as arguments and assigns the result to a new instance.
SSA form is ideal for performing sparse analyses because it makes def-use infor-
mation explicit in the program representation and allows data-flow information to
flow directly from variable definitions to their corresponding uses [69].

There are many known algorithms for converting a program into SSA form [3,
8, 23, 24]. However, the problem becomes more difficult when we consider indirect
definitions and uses through pointers. These definitions anduses can only be dis-
covered using pointer analysis. Because of the conservative nature of the pointer

54

analysis results, each indirect definition and use is actually a possibledefinition or
use. Following Chow et al. [19], we useχ andµ functions to represent these pos-
sible definitions and uses. Assume, without loss of generality, that each indirect
definition corresponds to aSTORE instruction and each indirect use corresponds to
a LOAD instruction. EachSTORE in the original program representation (i.e., prior
to the transformation into SSA form) is annotated with a function v= χ(v) for each
variablev that may be defined by theSTORE; similarly, eachLOAD in the original
representation is annotated with a functionµ(v) for each variablev that may be ac-
cessed by theLOAD . When converting to SSA form, eachχ function is treated as
both a definition and use of the given variable, and eachµ function is treated as a
use of the given variable. Theχ function represents the fact that a variable may
not be defined at the associatedSTORE and therefore copies the old value of the
variable into the new instance. The way to interpret aSTOREwith an associatedχ
function for variablev is that theSTOREmay definev (in which case its value is the
right-hand side of theSTORE) or it may not (in which case its value is unchanged).

To avoid these problems, modern compilers such as GCC [62] and LLVM [52]
use a variant of SSA, which we callpartial SSA form. The key idea is to divide
variables into two classes. One class contains variables that are never referenced
by pointers (top-level variables), so their definitions and uses can be trivially deter-
mined by inspection without pointer information, and thesevariables can be con-
verted to SSA using any algorithm for constructing SSA form.The other class con-
tains those variables thatcanbe referenced by pointers (address-taken variables),
and these variables are not placed in SSA form because of the above-mentioned
complications.

3.2.1.1 LLVM

Our semi-sparse analysis is implemented in the LLVM infrastructure, so the
rest of this section describes LLVM’s internal representation (IR) and its particular
instantiation of partial SSA form. While the details and terminology are specific to
LLVM, the ideas can be translated to other forms of partial SSA.

LLVM’s IR recognizes two classes of variables: (1)top-levelvariables are
those that cannot be referenced indirectly via a pointer, i.e., those whose address
is never exposed via the address-of operator or returned viaa dynamic memory

55

int a, b, *c, *d;

int* w = &a;
int* x = &b;
int** y = &c;
int** z = y;

c = 0;
*y = w;
*z = x;
y = &d;
z = y;

*y = w;
*z = x;

w1 = ALLOCa

x1 = ALLOCb

y1 = ALLOCc

z1 = y1

STORE0 y1

STOREw1 y1

STOREx1 z1

y2 = ALLOCd

z2 = y2

STOREw1 y2

STOREx1 z2

Figure 3.1: Example partial SSA code. On the left is the original C code, on the
right is the transformed code in partial SSA form.

allocation; (2)address-takenvariables are those that have had their address exposed
and therefore can be indirectly referenced via a pointer. Top-level variables are
kept in a (conceptually) infinite set of virtual registers which are maintained in SSA
form. Address-taken variables are kept in memory, and they are not in SSA form.
Address-taken variables are accessed viaLOAD andSTOREinstructions, which take
top-level pointer variables as arguments. These address-taken variables are never
referenced syntactically in the IR; they instead are only referenced indirectly using
theseLOAD andSTORE instructions. LLVM instructions use a 3-address format, so
there is at most one level of pointer dereference for each instruction.

Figure 3.1 provides an example of a C code fragment and its corresponding
partial SSA form. Variablesw, x, y, andz are top-level variables and have been
converted to SSA form; variablesa, b, c, andd are address-taken variables, so
they are stored in memory and accessed solely viaLOAD andSTORE instructions.
Because the address-taken variables are not in SSA form, they can each be defined
multiple times, as with variablesc andd in the example.

Because address-taken variables cannot be directly named,LLVM main-
tains the invariant that each address-taken variable has atleast one virtual register
that refers only to that variable. To illustrate this point,Figure 3.2 shows how a tem-
porary variable,t, is introduced in the LLVM IR to take the place of the variableb,

56

int **a, *b, c;
a = &b;
b = &c;
c = 0;

a = ALLOCb

t = ALLOCc

STORE t a
STORE0 t

Figure 3.2: Example partial SSA code. On the left is the original C code, on the
right is the transformed code in partial SSA form.

which in the original C code is referenced by a pointer.

LLVM also treats global variables specially. Def-use chains for global vari-
ables can span multiple functions; however, in the presenceof indirect function
calls it is not possible to construct precise def-use chainsacross function bound-
aries without pointer information. To address this issue, LLVM adds an extra level
of indirection to each global variable:T glob becomesconst T* glob, whereT
is the type of the global declared in the original program. The const pointers are
initialized to point to an address-taken variable that represents the original global
variable. This modification means that pointer informationfor global variables is
propagated along the SEG rather than relying on cross-function def-use chains.

Note: The rest of this chapter will assume the use of the LLVM IR, which means
that any named variable is a top-level variable and not an address-taken variable.

3.3 Semi-Sparse Analysis

For flow-sensitive pointer analysis, partial SSA form has the following im-
portant implications that have not been previously identified or explored.

1. The analysis can use a single global points-to graph to hold the pointer in-
formation for all top-level variables. Since the variablesare in SSA form,
they will necessarily have the same pointer information over the entire pro-
gram. The presence of this global points-to graph means the analysis can
avoid storing and propagating the pointer information for top-level variables
among CFG nodes.

57

2. Def-use information for top-level variables is immediately available, as in a
sparse analysis. When pointer information for a top-level variable changes,
the affected program statements can be directly determined, which can dra-
matically speed up the convergence of the analysis and reduce the number of
transfer functions that must be evaluated.

3. Local points-to graphs, i.e., separateIN andOUT graphs for each CFG node,
are still needed forLOAD andSTOREstatements, but these graphs only hold
pointer information for address-taken variables. The exclusion of top-level
variables can significantly reduce the sizes of these local points-to graphs.

Semi-sparse analysis takes advantage of partial SSA form togreatly increase
the efficiency of the flow-sensitive pointer analysis. In order to do so, we introduce
a construct called theDataflow Graph. We first describe the characteristics of the
dataflow graph and how it is constructed, and we then describethe semi-sparse
analysis itself, followed by the new optimizations enabledby partial SSA.

3.3.1 The Dataflow Graph

The dataflow graph (DFG) is a combination of a sparse evaluation graph
(SEG) and def-use chains. This combination is required by the nature of partial
SSA form, which provides def-use information for the top-level variables but not
for the address-taken variables.

Without access to def-use information, an iterative dataflow analysis prop-
agates information along the control-flow graph. As described in Section 3.2, the
SEG is simply an optimized version of the control-flow graph that elides nodes that
neither define nor use pointer information. Since address-taken variables do not
have def-use information available, program statements that define or use address-
taken variables must be connected via a path in the SEG so thatvariable definitions
will correctly reach their corresponding uses. Since top-level variables have def-use
information immediately available, program statements that define or use top-level
variables can be connected via these def-use chains.

To construct the DFG there are 6 types of relevant program statements,
shown in Table 3.1. For each statement, the table lists whether it defines and/or uses

58

Inst Type Example Def-Use Info
ALLOC x = ALLOC i DEFtop

COPY x = y z DEFtop, USEtop

LOAD x = *y DEFtop, USEtop, USEadr

STORE *x = y USEtop, DEFadr, USEadr

CALL x = foo(y) DEFtop, USEtop, DEFadr, USEadr

RET return x USEtop, USEadr

Table 3.1: Types of instructions relevant to pointer analysis. Instructions such
asx = &y are converted intoALLOC instructions, much like C’s alloca.Def-Use
Info describes whether the instruction can define or use top-level variables (DEFtop

andUSEtop, respectively) and whether it can define or use address-taken variables
(DEFadr andUSEadr, respectively). Recall that all named variables are, by construc-
tion, top-level.

top-level variables (DEFtop andUSEtop, respectively) and whether the statement de-
fines and/or uses address-taken variables (DEFadr andUSEadr, respectively).STORE

instructions are labeledUSEadr because weak updates require the updated variable’s
previous points-to set.CALL instructions are labeledDEFadr because they can mod-
ify address-taken variables via the callee function.CALL andRET instructions are
labeledUSEadr because they need to pass the address-taken pointer information
to/from the callee function.COPY instructions can have multiple variables on the
right-hand side, which allows them to accommodate SSAφ functions.

The DFG is constructed in two stages. In the first stage, a standard algo-
rithm for creating an SEG (such as Ramalingam’s linear-timealgorithm [68]) is
used. Only program statements labeledDEFadr or USEadr are considered relevant;
all others are elided. Then a linear pass through the partialSSA representation is
used to connect program statements that define top-level variables with those that
use those variables. Figure 3.3 shows the DFG correspondingto the partial SSA
code in Figure 3.1.

Theorem1 (Correctness of the DFG). There exists a path in the DFG from all vari-
able definitions to their corresponding uses.

Proof. We proceed by cases based on the type of variable:

59

w1 = ALLOCa

x1 = ALLOCb

y1 = ALLOCc

y2 = ALLOCd

z1 = y1

z2 = y2

STORE0 y1

STOREw1y1

STOREx1z1

STOREw1y2

STOREx1z2

Figure 3.3: Example DFG corresponding to the code in Figure 3.1. Dashed edges
are def-use chains; solid edges are for the SEG.

60

Top-level: Def-use information for top-level variables is exposed by the partial
SSA form; the DFG directly connects top-level variable definitions to their
uses, so the theorem is trivially true.

Address-taken: All uses of a variable’s definition must be reachable from the
statement that created the definition in the original control-flow graph. The
SEG preserves control-flow information for all statements that either define or
use address-taken variables. Therefore any use of an address-taken variable’s
definition must be reachable from the statement that createdthe definition in
the SEG.

3.3.2 The Analysis

The pointer analysis itself is similar to that described by Hind and Pioli [44,
45]. The analysis uses the following data structures:

• Each functionF has its own program statement worklistStmtWorklistF . The
worklist is initialized to contain all statements in the function that define a
variable (i.e., are labeledDEFadr or DEFtop).

• Each program statementk that uses or defines address-taken variables (i.e., is
labeledUSEadr or DEFadr) has two points-to graphs,INk andOUTk, which hold
the incoming and outgoing pointer information for address-taken variables.
Let Pk(v) be the points-to set of address-taken variablev in INk.

• A global points-to graphPGtop holds the pointer information for all top-level
variables. LetPtop(v) be the points-to set of top-level variablev in PGtop.

• A worklist FunctionWorklistholds functions waiting to be processed. The
worklist is initialized to contain all functions in the program.

The main body of the analysis is listed in Algorithm 4. The outer loop se-
lects a function from the function worklist, and the inner loop iteratively selects a

61

program statement from that function’s statement worklistand processes it, contin-
uing until the statement worklist is empty. Then the analysis selects a new function
from the function worklist, continuing until the function worklist is also empty.
Each type of program statement is processed as shown in Algorithms 8–13. These
algorithms use the helper functions listed in Algorithms 5–7. The←֓ operator rep-

resents set update;
du
−→ and

SEG
−−→ represent a def-use edge or SEG edge in the DFG,

respectively.

Algorithm 4 Main body of the semi-sparse analysis algorithm.
Require: DFG = 〈N,E〉

while FunctionWorklistis not emptydo
F =SELECT(FunctionWorklist)
while StmtWorklistF is not emptydo

k =SELECT(StmtWorklistF)
switch typeof(k):

caseALLOC : processAlloc(F,k)
caseCOPY: processCopy(F,k)
caseLOAD : processLoad(F,k)
caseSTORE: processStore(F,k)
caseCALL : processCall(F,k)
caseRET: processRet(F,k)

Algorithm 5 propagateTopLevel(F,k)
if PGtop changedthen

StmtWorklistF ←֓ { n | k
du
−→ n∈ E}

Algorithm 6 propagateAddrTaken(F,k)

for all {n∈ N | k
SEG
−−→ n∈ E} do

INn ←֓ OUTk

if INn changedthen
StmtWorklistF ←֓ {n}

62

Algorithm 7 filter(k)
return the subset ofINk reachable from either a call argument or global variable

Algorithm 8 processAlloc(F,k) : [x = ALLOC i]

PGtop ←֓ {x→ ALLOC i}
propagateTopLevel(F,k)

Algorithm 9 processCopy(F,k) : [x = y z ...]
for all v∈ right-hand sidedo

PGtop ←֓ {x→ Ptop(v)}
propagateTopLevel(F,k)

Algorithm 10 processLoad(F,k) : [x = *y]

PGtop ←֓ {x→ Pk(Ptop(y))}
OUTk ←֓ INk

propagateTopLevel(F,k)
propagateAddrTaken(F,k)

Algorithm 11 processStore(F,k) : [*x = y]

if Ptop(x) represents a single memory locationthen
// strong update
OUTk ←֓ (INk\Ptop(x))∪{Ptop(x)→ Ptop(y)}

else// weak update
OUTk ←֓ INk∪{Ptop(x)→ Ptop(y)}

propagateAddrTaken(F,k)

63

Algorithm 12 processCall(F,k) : [x = foo(y)]
if foo is a function pointerthen

targets:= Ptop(foo)
else

targets:= {foo}
filt := filter(k)
for all C∈ targetsdo

for all call argumentsa and corresponding parametersp do
PGtop ←֓ {p→ Ptop(a)}
propagateTopLevel(C,p)

Let n be the SEG start node for functionC
INn ←֓ filt
if INn changedthen

StmtWorklistC ←֓ {n}
if StmtWorklistC changedthen

FunctionWorklist←֓ {C}
OUTk ←֓ INk\filt
propagateAddrTaken(F,k)

Algorithm 13 processRet(F,k) : [return x]
callsites:= the set ofCALL statements targetingF
for all n∈ callsitesdo

Let Fn be the function containingn
OUTn ←֓ OUTk

propagateAddrTaken(Fn,n)
if n is of the formr = F(...) then

PGtop ←֓ {r→ Ptop(x)}
propagateTopLevel(Fn,n)

if StmtWorklistFn changedthen
FunctionWorklist←֓ {Fn}

64

3.3.2.1 Optimizations

Partial SSA form allows us to introduce two additional optimization oppor-
tunities:top-level pointer equivalenceandlocal points-to graph equivalence.

Top-level Pointer Equivalence Top-level pointer equivalence reduces the num-
ber of top-level variables in the DFG, which reduces the amount of pointer infor-
mation that must be maintained by the global top-level points-to graph. In addition,
it eliminates nodes from the DFG, which reduces the number oftransfer functions
that must be processed, speeding up convergence. The basic idea is to identify sets
of variables that have identical points-to sets and to replace each set by a single set
representative.

Pointer equivalentvariables are those that have identical points-to sets. More
formally, let→ be the points-to relation and⊲⊳ be the pointer equivalence relation;
then∀x,y,z ∈ Variables: x ⊲⊳ y iff x → z⇔ y→ z. Program variables can be
partitioned into disjoint sets based on the pointer equivalence relation; an arbitrary
member of each set is then selected as the set representative. By replacing all vari-
ables in a program with their respective set representatives and then eliding trivial
assignments (e.g.,x = x), we can reduce the number of variables and the size of
the program that are given as input to the pointer analysis. This idea has been
previously explored for flow-insensitive pointer analysis[38, 70].

Partial SSA form provides an opportunity to apply this optimization to flow-
sensitive pointer analysis as well. To do so, we must be able to identify pointer-
equivalent variables prior to the pointer analysis itself.Theorem 2 shows how we
can identify top-level pointer-equivalent variables under certain circumstances.

Theorem2 (Top-level pointer equivalence). A COPYstatement of the form[x = y]⇒
x ⊲⊳ y.

Proof. Top-level variables are in SSA form, which means that they are each defined
exactly once. Therefore, the value of each top-level variable does not change once
it is defined.

Sincex andy are top-level variables, their values never change. TheCOPY

statement assignsx the value ofy, sox ⊲⊳ y.

65

Theorem 2 says that variables involved in aCOPY statement with a single
variable on the right-hand side are pointer equivalent, so they can be replaced with
a single representative variable. TheCOPY statement (called asingle-useCOPY) is
then redundant and can be discarded from the DFG. When statements are discarded,
any edges to those statements must be updated to point to the successors of the
discarded statement. If noden is discarded fromDFG = 〈N,E〉 then the result is a
newDFG = 〈N′,E′〉 where:

• N′ = N\{n}

• E′ = E \{k→ n}∪{k→ p | {k→ n,n→ p} ⊆ E}

In Figure 3.3,y1 ⊲⊳ z1 andy2 ⊲⊳ z2. We can replace all occurrences ofz1

with y1, replace all occurrences ofz2 with y2, and eliminate the nodes for[z1 = y1]

and[z2 = y2]. The def-use edge from[y1 = ALLOCc] to [z1 = y1] is removed, and
a new def-use edge is added from[y1 = ALLOCc] to [STOREx1 y1]. Similarly, the
def-use edge from[y2 = ALLOCd] to [z2 = y2] is removed, and a new def-use edge
is added from[y2 = ALLOCd] to [STORE x1 y2]. Figure 3.4 shows the optimized
version of Figure 3.3.

Theorem3 (Correctness of the Transformation). The top-level pointer equivalence
transformation preserves SSA form for top-level variables.

Proof. There are two characteristics of SSA form that the transformation must pre-
serve:

Every variable is defined exactly once.LetV be a set of pointer-equivalent
variables found by the transformation and letSbe the set of statements that define
these variables.S contains exactly one statement that is not a single-useCOPY. S
must contain at least one such statement because otherwiseS forms a cycle in the
def-use graph such that a variable is used before it is defined, which would violate
SSA form. S cannot contain more than one such statement because only single-
useCOPYs are considered when finding equivalent variables. After the equivalent
variables are replaced by their set representative, all of the single-useCOPYs in S
are deleted, leaving exactly one statement that defines the representative variable.

66

w1 = ALLOCa

x1 = ALLOCb

y1 = ALLOCc

y2 = ALLOCd

STORE0 y1

STOREw1y1

STOREx1y1

STOREw1y2

STOREx1y2

Figure 3.4: Figure 3.3 optimized using top-level pointer equivalence.

67

Every definition dominates all of its uses.Every single-useCOPY in S is
dominated by a statement inS—if a statementx = y ∈ S, thenx,y ∈V and by defi-
nition Smust also contain the statement definingy. There is exactly one statement
in S that is not a single-useCOPY; therefore that statement must dominate all other
statements inS. When the single-useCOPYs are deleted, all of the edges point-
ing to those statements are updated as described above—therefore the remaining
statement inSmust dominate all statements in the program that used a variable in
V.

Local Points-to Graph Equivalence Local points-to graph equivalence allows
nodes in the DFG that are guaranteed to have identical points-to graphs to share a
single graph rather than maintain separate copies. This sharing can significantly re-
duce the memory consumption of the pointer analysis, as wellas reduce the number
of times pointer information must be propagated among nodes.

To identify nodes with identical points-to graphs, we definethe notion of
non-preservingnodes. The points-to graphs that are local to nodes in the DFG(i.e.,
INk andOUTk) only contain pointer information for address-taken variables. By the
nature of partial SSA form, onlySTORE instructions andCALL instructions (which
reflect the changes caused bySTOREinstructions in the callee function) can modify
the address-taken pointer information; we call these nodesnon-preserving. Other
instructions may use this information (e.g.,LOAD andRET instructions), but they
propagate the pointer information through the DFG unchanged; we call these nodes
preserving. We say that non-preserving nodep reachesnodeq (p q) if there is
a path in the DFG fromp to q, using only SEG edges, that does not contain a non-
preserving node. There may be a number of nodes in the DFG thatare all reachable
from the same set of non-preserving nodes; Theorem 4 says that these nodes are
guaranteed to have identical points-to graphs.

Theorem4 (Local points-to graph equivalence). Let Nnp ⊆ N be the set of non-
preserving DFG nodes.∀p∈ Nnp andq, r ∈ N : (p r ⇔ p q)⇒ q andr have
identical points-to graphs.

Proof. Assume∃q, r ∈ N.(∀p ∈ Nnp : p q⇔ p r), and thatq and r do not
have identical points-to graphs. Then one of the nodes (assume it isq) must have
received pointer information that the other did not. However, by construction of the

68

partial SSA form, non-preserving nodes are the only places that can generate new
pointer information for address-taken variables (the onlykind of variable present
in the local points-to graphs). Therefore∃p ∈ Nnp.(p q∧¬(p r)). But this
violates our initial assumption that bothp andq are reachable from the same set of
non-preserving nodes. Therefore,p andq must have identical points-to graphs.

A simple algorithm (see Algorithm 14) can detect nodes that can share their
points-to graphs. For eachSTOREandCALL node in the DFG, the algorithm labels
all nodes that are reachable via a sequence of SEG edges without going through
anotherSTORE or CALL node with a label unique to the originating node. Since
nodes may be reached by more than oneSTOREor CALL node, each node will end
up with a set of labels. This process takesO(n3) time, wheren is the number of
nodes in the SEG portion of the DFG. These labels represent the propagation of the
unknown pointer information computed by the originating node. All nodes with an
identical set of labels are guaranteed to have identical local points-to graphs and
can therefore share a single graph among them.

Algorithm 14 Detecting nodes with equivalent points-to graphs.
Require: DFG = 〈N,E〉
Require: ∀n∈N : idn is a unique identifier
Require: Worklist= N

while Worklist is not emptydo
n =SELECT(Worklist)

for all {k∈N | k
SEG
−−→ n∈ E} do

if typeof(k) ∈ {STORE,CALL} then
labeln ←֓ {idk}

else
labeln ←֓ labelk

if labeln changedthen

for all {p∈ N | n
SEG
−−→ p∈ E} do

Worklist←֓ {p}

By potentially sacrificing a small amount of precision, we can greatly in-
crease the effectiveness of this optimization.CALL nodes turn out to be a large
percentage of the total number of nodes in the DFG. By assuming that callees do

69

not modify address-taken pointer information accessible by their callers, thereby al-
lowing Algorithm 14 to treatCALL nodes exactly the same as all other non-STORE

nodes, we can significantly increase the amount of sharing between nodes. This as-
sumption is sound—the optimization only causes nodes to share points-to graphs,
so if a callee does modify address-taken pointer information, the pointer informa-
tion is propagated to additional nodes that it otherwise wouldn’t have reached. The
effect of this assumption on precision and performance is explored in Section 3.3.4.

3.3.3 Symbolic Analysis

This section briefly discusses the pros and cons of using Binary Decision
Diagrams (BDDs) for flow-sensitive pointer analysis. BDDs are data structures
for compactly representing sets and relations [10]. BDDs have several advantages
over other data structures for this purpose: (1) the size of aBDD is only loosely
correlated with the number of elements in the set that the BDDrepresents, mean-
ing that large sets can be stored in very little space, and (2)the complexity of set
operations involving BDDs depends only on the sizes of the BDDs involved, not
on the number of elements in the sets.Symbolic analysistakes advantage of these
characteristics to perform analyses that would be prohibitively expensive—both in
time and memory—using more conventional data structures. There are a number of
examples of symbolic pointer analyses in the literature [7,81, 85–87]. These anal-
yses are fully symbolic: all relevant information is storedas either a set or relation
using BDDs, and the analysis is completely expressed in terms of operations on
those BDDs. When applied specifically to flow-sensitive pointer analysis [86], the
relevant information is the control-flow graph and the points-to relations; these are
stored in BDDs and the transfer functions for the CFG nodes are expressed as BDD
operations. Thus, the analysis essentially computes the transfer functions for all
nodes in the CFG simultaneously, making the analysis very efficient.

The strength of symbolic analysis lies in its ability to quickly perform op-
erations on entire sets. Its weakness is that it is not well-suited for operating on
individual members of a set independently from each other. This weakness directly
impacts flow-sensitive pointer analysis. TheKILL sets for indirect assignments,
such as*x = y, cannot be efficiently computed on-the-fly because their contents
depend not only on the pointer information computed during the analysis itself but
also on the individual characteristics of the points-to setelements at the node in

70

question, e.g., whether a particular element represents a single memory location or
multiple memory locations (as would be true for a variable summarizing the heap).
Therefore a fully symbolic flow-sensitive pointer analysismust either process each
indirect assignment separately, at prohibitive cost, or conservatively set allKILL

sets for indirect assignments to the empty set, sacrificing precision.

We propose an alternative to a fully symbolic analysis, which is to encode
only a subset of the problem using BDDs. For pointer analysisthe most useful
subset to encode is the set of points-to relations, which is responsible for the vast
majority of both memory consumption and set operations in the analysis. By isolat-
ing the pointer information representation into its own source code module, we can
easily substitute a BDD-based implementation while leaving the rest of the analysis
completely unchanged, including the on-the-fly computation of KILL sets. In our
experimental evaluation we study the effects of using BDDs to represent pointer
information for both the baseline analysis (based on Hind and Pioli [45]) and our
new semi-sparse analysis.

3.3.4 Evaluation

To evaluate our new techniques, we implement three flow-sensitive pointer
analysis algorithms: a baseline analysis based on Hind and Pioli [45] (IFS); semi-
sparse flow-sensitive analysis (SS); and the semi-sparse analysis augmented with
our two new optimizations, top-level pointer equivalence and local points-to graph
equivalence (SSO). All the algorithms are field-sensitive (i.e., they treat each field of
a struct as a separate variable). For each algorithm, we evaluate two versions, one
that implements pointer information using sparse bitmaps and a second that uses
BDDs. We imlement the algorithms in the LLVM compiler infrastructure [52]. The
BDDs use the BuDDy BDD library [54]. The algorithms are written in C++ and
handle all aspects of the C language except for varargs.

The bitmap versions ofIFS, SS, andSSO filter pointer information at call-
sites as described by Hind and Pioli (see Section 3.2 and Section 3.3.2). The BDD
versions of these algorithms do not use filtering. The goal offiltering is to reduce
the amount of pointer information propagated between callers and callees in order
to speed up convergence and reduce the sizes of the points-tographs. As mentioned
earlier, with BDDs we don’t need to worry about the sizes of the points-to graphs,

71

Name LOC Statements Functions Call Sites
parser 11.4K 33.6K 99 774

ex-050325 34.4K 37.0K 325 2,519
twolf 20.5K 45.0K 107 331

vortex 67.2K 69.2K 271 4,420
sendmail-8.11.6 88.0K 69.3K 273 3,203

gap 71.4K 132.2K 725 6,002
perlbmk 85.5K 184.6K 726 8,597
vim-7.1 323.5K 316.4K 1,935 15,962

nethack-3.4.3 252.6K 356.3K 1,385 23,001
gcc 226.5K 376.2K 1,159 19,964

gdb-6.7.1 474.1K 484.3K 3,801 37,119
ghostscript-8.15 429.0K 494.0K 4,815 18,050

Table 3.2: Benchmarks: lines of code (LOC) is obtained by runningwc on the
source.Statementsreports the number of statements in the LLVM IR. The bench-
marks are ordered by number of statements.

and in fact for the BDD versions, the overhead involved in filtering the pointer
information overwhelms any potential benefit.

The benchmarks for our experiments are described in Table 3.2. Six of the
benchmarks are taken from SPECINT 20001 (the largest six applications from that
suite: parser, twolf, vortex, gap, perlbmk, and gcc) and sixfrom various open-
source applications. For the non-SPEC benchmarks: ex is a text processor; send-
mail is an email server; vim is a text processor; nethack is a text-based game; gdn is
a C language debugger; and ghostscript is a postscript viewer. Function calls to ex-
ternal code are summarized using hand-crafted function stubs. The experiments are
run on a 1.83 GHz processor with 2 GB of memory, using the Ubuntu 7.04 Linux
distribution.

1www.spec.org/cpu2000/ as of 5/2009/

72

3.3.4.1 Performance Results

Tables 3.3 and 3.4 give the analysis time and memory consumption of the
various algorithms. These numbers include the time to buildthe data structures,
apply the optimizations, and compute the pointer analysis.

For the bitmap versions of these algorithms, memory is the limiting factor.
IFS only scales to 20.5K LOC before running out of memory,SS scales to 67.2K
LOC, andSSOscales to 252.6K LOC. For the two benchmarks thatIFS manages to
complete,SS is 75× faster and uses 26× less memory, whileSSOis 183× faster and
uses 47× less memory. For the four benchmarks thatSS completes,SSO is 2.5×
faster and uses 6.8× less memory.

For the BDD versions of these algorithms, memory is not an issue and all
three algorithms scale to 323.5K LOC. However, the two largest benchmarks (gdb
andghostscript) do not complete within our arbitrary time limit of eight hours.
For the ten benchmarks that they do complete,SS is 44.8× faster thanIFS and uses
1.4× less memory, whileSSO is 114× faster and uses 1.4× less memory. Compar-
ing the fastest algorithm in our study (SSOusing BDDs) with our baseline algorithm
(IFS using bitmaps) using the two benchmarks thatIFS manages to complete, we
have sped up flow-sensitive analysis 197× while using 4.6× less memory.

Figures 3.5 and 3.6 describe various analysis statistics toexplain the rela-
tive performance of these algorithms. Figure 3.5 gives the percentage of points-to
graphs thatSS andSSOhave compared toIFS (i.e., the number of points-to graphs
maintained at each node summed over all the nodes). Figure 3.6 gives the percent-
age of instructions that are processed bySSandSSOcompared toIFS (i.e., the total
number of nodes popped off of the statement worklists in Algorithm 4).

For IFS the pointer-related instructions have been grouped into basic blocks
to reduce the number of points-to graphs that need to be maintained. This grouping
is not possible forSSandSSObecause they have def-use chains between individual
instructions. However, averaged over all the benchmarks,SS still has 24.6% fewer
points-to graphs thanIFS because only nodes in the SEG portion of the dataflow
graph require points-to graphs. Also recall that the points-to graphs forSSandSSO

only have to hold pointer information for address-taken variables, so they are much
smaller than the points-to graphs forIFS. SSO reduces the number of points-to
graphs by another 66.6% overSSusing local points-to graph equivalence.

73

Name
IFS SS SSO

time mem time mem time mem

197.parser 80.25 888 1.28 53 0.52 15
ex-050325 — OOM 15.74 198 7.33 39
300.twolf 72.28 415 0.82 32 0.34 12

255.vortex — OOM 33.37 1,275 11.70 81
sendmail-8.11.6 — OOM — OOM 86.38 258

254.gap — OOM — OOM 191.72 518
253.perlbmk — OOM — OOM — OOM

vim-7.1 — OOM — OOM — OOM
nethack-3.4.3 — OOM — OOM 4,762.07 1,648

176.gcc — OOM — OOM — OOM
gdb-6.7.1 — OOM — OOM — OOM

ghostscript-8.15 — OOM — OOM — OOM

Table 3.3: Performance: time (in seconds) and memory consumption (in
megabytes) of the various analyses using bitmaps. OOM meansthe benchmark
ran out of memory.

74

Name
IFS SS SSO

time mem time mem time mem

197.parser 7.24 142 0.64 142 0.48 142
ex-050325 7.95 142 0.66 143 0.46 142
300.twolf 6.41 143 0.46 144 0.32 143

255.vortex 14.39 150 0.97 151 0.78 150
sendmail-8.11.6 38.51 150 2.16 154 1.40 152

254.gap 68.66 167 2.50 168 2.34 166
253.perlbmk 1,477.05 280 50.22 182 21.25 177

vim-7.1 4,759.37 535 573.28 300 112.16 263
nethack-3.4.3 3,435.48 423 13.68 225 5.37 220

176.gcc 2,445.27 595 39.71 234 9.37 226
gdb-6.7.1 OOT — OOT — OOT —

ghostscript-8.15 OOT — OOT — OOT —

Table 3.4: Performance: time (in seconds) and memory consumption (in
megabytes) of the various analyses using BDDs. OOT means theanalysis ran out
of time (exceeded an eight hour time limit).

75

pa
rs

er

ex
-0

50
32

5

tw
olf

vo
rte

x

se
nd

m
ail

-8
.1

1.
6

ga
p

pe
rlb

m
k

vim
-7

.1

ne
th

ac
k-

3.
4.

3
gc

c

gd
b-

6.
7.

1

gh
os

tsc
rip

t-8
.1

5
0

20

40

60

80

100

%
 o

f P
oi

nt
s-

to
 G

ra
ph

s
R

el
at

iv
e

to
 B

as
el

in
e

SS
SSO

Figure 3.5: Number of points-to graphs maintained bySSandSSOcompared toIFS.
Lower is better (fewer points-to graphs).

The use of top-level def-use chains for semi-sparse analysis pays off: aver-
aged over all the benchmarks,SSprocesses 62.9% fewer instructions thanIFS. SSO

further reduces the number of instructions processed by 13.7% overSS.

3.3.4.2 Performance Discussion

Semi-sparse analysis delivers on its promise. Based on the number of in-
structions processed and the reported efficiency, semi-sparse analysis significantly
speeds up convergence. When using bitmaps, the global top-level points-to graph
significantly reduces memory consumption as well, especially when coupled with
the top-level pointer equivalence and local points-to graph equivalence optimiza-
tions. However, there are some results which may be a bit surprising; we highlight

76

pa
rs

er

ex
-0

50
32

5

tw
olf

vo
rte

x

se
nd

m
ail

-8
.1

1.
6

ga
p

pe
rlb

m
k

vim
-7

.1

ne
th

ac
k-

3.
4.

3
gc

c

gd
b-

6.
7.

1

gh
os

tsc
rip

t-8
.1

5
0

10

20

30

40

50

%
 o

f B
as

el
in

e
In

st
ru

ct
io

ns
 P

ro
ce

ss
ed SS

SSO

Figure 3.6: Number of instructions processed bySS and SSO compared toIFS.
Lower is better (fewer instructions processed).

77

these results and explain them in this section.

First, note the memory requirements for the BDD analyses as compared
to the sparse bitmap analyses. We see for the smaller benchmarks that the BDDs
actually require more memory than the bitmaps, even though the premise behind
BDDs is that they are more memory efficient. This discrepancyarises because of
the implementation of the BuDDy library—an initial pool of memory is allocated
before the analysis begins, then expanded as necessary. On the larger benchmarks,
we see that the memory requirements for the BDD analyses risemuch more slowly
than that for the bitmaps, bearing out our initial premise.

Second, the bitmap version ofSSOcompletes for nethack-3.4.3, but runs out
of memory for two benchmarks with fewer statements (253.perlbmk and vim-7.1).
This showcases the difficulty of predicting analysis performance based solely on the
input size—the actual performance of the analysis also depends on factors that are
impossible to predict before the analysis is complete, suchas the points-to set sizes
of the variables and how widely the pointer information is dispersed via indirect
calls.

Third, the time required for theSSandSSOBDD analyses to analyze 253.perlbmk,
vim-7.1, gdb-6.7.1, and ghostscript-8.15 seem disproportionately long consider-
ing the analysis times for the other benchmarks. There is oneminor and one
major reason for this anomaly. The minor reason is specific to253.perlbmk—
the field-sensitive solution has an average points-to set size over twice that of the
field-insensitive solution. This result seems counter-intuitive, since field-sensitivity
should add precision and hence reduce points-to set size. However, to account for
the individual fields of the structs, field-sensitive analysis increases the number of
address-taken variables, in some cases (such as 253.perlbmk) making the points-to
set sizes larger than for a field-insensitive analysis, eventhough the analysis re-
sults are, in fact, more precise. With the exception of 253.perlbmk, all the other
benchmarks do have smaller points-to set sizes for the field-sensitive analysis.

For the remaining three benchmarks with disproportionately large analysis
times (vim-7.1, gdb-6.7.1, and ghostscript-8.15), the major reason for the anomaly
is the BDDs themselves. To confirm this finding, we measure theaverage process-
ing time per node for each of the benchmarks and find that thesethree benchmarks
have a much higher time per node than the others. The main costof processing a
node is the manipulation of pointer information, which points out a weakness of

78

BDDs—their performance is directly related to how well theycompact the infor-
mation that they are storing, and it is impossible to determinea priori how well the
BDDs will do so. The performance of the pointer analysis can vary dramatically
depending on this one factor. There are BDD optimizations that we have not yet
explored, and these may improve performance; these includethe re-arrangement
of the BDD variable ordering, the use ofdon’t carevalues in the BDD, and other
formulations of BDDs such as Zero-Suppressed BDDs (ZBDDs).Various other
BDD-based pointer analyses have benefitted from one or more of these optimiza-
tions [53, 81]

While for now the BDD versions have superior performance, there is still
much that can be done to improve the bitmap versions. Memory is the critical factor,
and most of the memory consumption comes from the local points-to graphs. Even
after applying the local points-to graph equivalence optimization, a significant num-
ber of the remaining local points-to graphs contain identical information—further
efforts to identify and collapse these local graphs ahead oftime could have a dra-
matic impact on memory consumption. For example, there are several possible
schemes for dynamically identifying and sharing identicalbitmaps across multiple
points-to graphs. In addition, by combining semi-sparse analysis with dynamically
computed static single assignment form [14, 80] we could greatly reduce the sizes of
the local points-to graphs. We can decrease the cost of evaluating the transfer func-
tions using techniques such as the incremental evaluation of transfer functions [32].
We believe that there is still significant room for improvement in the bitmap version
of theSSOalgorithm, which we plan to explore in future work.

3.3.4.3 SSOPrecision

The version ofSSOused in these experiments makes use of the assumption
discussed at the end of Section 3.3.2.1, i.e., that callee functions do not modify
address-taken pointer information accessible by their callers. This assumption in-
creases the effectiveness of the optimizations (see Figures 3.7 and 3.8 for a compar-
ison), but potentially sacrifices some precision. To test how much precision is lost
we compute the thru-deref metric forSSO both with and without this assumption.
The thru-deref metric examines eachLOAD and STORE in the program and aver-
ages the points-to set sizes of the dereferenced variables,weighted by the number

79

pa
rs

er

ex
-0

50
32

5

tw
olf

vo
rte

x

se
nd

m
ail

-8
.1

1.
6

ga
p

pe
rlb

m
k

vim
-7

.1

ne
th

ac
k-

3.
4.

3
gc

c

gd
b-

6.
7.

1

gh
os

tsc
rip

t-8
.1

5
0

2

4

6

N
or

m
al

iz
ed

 T
im

e/
M

em
or

y

Time

Memory

Figure 3.7: Analysis time and memory usage (normalized to our baseline) for
the bitmap version ofSSO without the assumption onCALL s versusSSO with the
assumption—i.e.,SSOwithout/SSOwith.

of times each variable is dereferenced—the larger the value, the less precise the
pointer analysis.

We find that our benchmarks do not suffer a significant precision loss by
making this assumption; on average the thru-deref metric increased by 0.1%, with
a maximum increase of 0.2%.

3.4 Staged Analysis

While semi-sparse analysis represents an order of magnitude improvement
over the previous state-of-the-art, we can do even better. Semi-sparse analysis still

80

pa
rs

er

ex
-0

50
32

5

tw
olf

vo
rte

x

se
nd

m
ail

-8
.1

1.
6

ga
p

pe
rlb

m
k

vim
-7

.1

ne
th

ac
k-

3.
4.

3
gc

c

gd
b-

6.
7.

1

gh
os

tsc
rip

t-8
.1

5
0

1

2

3

4

5

N
or

m
al

iz
ed

 T
im

e/
M

em
or

y

Time

Memory

Figure 3.8: Analysis time and memory usage (normalized to our baseline) for
the BDD version ofSSO without the assumption onCALL s versusSSO with the
assumption—i.e.,SSOwithout/SSOwith.

81

analyzes address-taken variables in a non-sparse manner; by using sparse analysis
for all the variables, both top-level and address-taken, wecan significantly increase
the scalability of the flow-sensitive analysis. This section describes a technique that
meets this goal calledstaged flow-sensitive pointer analysis.

3.4.1 Staging the Analysis

The reason semi-sparse analysis treats address-taken variables in a non-
sparse manner is that, without pointer information, the analysis cannot determine
where address-taken variables are defined or used. The essential idea of our new
algorithm is to enable sparse flow-sensitive pointer analysis for all variables in
the program by staging the pointer analysis. We first employ an auxiliary, flow-
insensitive pointer analysis to compute conservative def-use information for the
address-taken variables of a program; we then use that information to increase the
sparseness of the primary, flow-sensitive pointer analysis, thereby greatly increas-
ing its efficiency.

3.4.1.1 Auxiliary Pointer Analysis

Any flow-insensitive pointer analysis can be used for the auxiliary analysis.
There are many to choose from, ranging from the simplest address-taken analysis
(which reports that any pointer can point to any variable whose address has been
taken), to Steensgaard’s analysis [78], to Das’ One-Level Flow [25], to inclusion-
based (i.e., Andersen-style) analysis, which is the most precise of all these analyses.
In choosing an auxiliary pointer analysis, there are two important considerations:
(1) how scalable the auxiliary analysis is, and (2) how effective its results are for
optimizing the primary, flow-sensitive analysis. The more precise the auxiliary
analysis, the more sparse the primary analysis will be; for this reason, together
with our results on making inclusion-based (flow- and context-insensitve) analysis
extremely scalable (see Chapter 2), we believe that inclusion-based analysis is the
best choice. Henceforth, we will designate the chosen auxiliary pointer analysis as
AUX .

82

*p = w

*q = x *r = y

u = *v s = *z

t = *z

AUX points-to sets
p→ {a}
q→ {b,c,d,e,f}
v→ {e,f}
r→ {a,b,d}
z→ {a,b,c,d}

Figure 3.9: Example CFG, along with a subset of the points-tosets computed by
AUX .

3.4.1.2 Sparse Flow-Sensitive Pointer Analysis

The primary data structure that we use for the sparse flow-sensitive pointer
analysis is a def-use graph (DUG). TheDUG contains a node for each statement in
the program, and its edges represent def-use chains—if a variable is defined in node
x and used in nodey, there is a directed edge fromx to y. The def-use edges for top-
level variables are trivial to determine from inspection ofthe program; the def-use
edges for address-taken variables requireAUX to compute. This section describes
how we compute these def-use edges, as well as how we maintainthe precision of
the flow-sensitive analysis while using flow-insensitive def-use information.

The first step is to use the results ofAUX to convert the address-taken vari-
ables into SSA form. We annotate theLOADs andSTOREs usingχ andµ functions
as described in Section 3.2.1, then convert the program to SSA form using any stan-
dard SSA algorithm [3, 8, 23, 24]. Figure 3.9 shows a small example program along
with a subset of the pointer information discovered byAUX . Figure 3.10 shows the
same example program, annotated withχ andµ functions and translated into SSA.

Note that the def-use information revealed by theχ andµ functions and SSA
form is conservative with respect to the more precise flow-sensitive information that
will be computed by the primary analysis. In particular, there are three possibilities
that must be addressed for aSTORE*x = y that is annotated withvm = χ(vn):

83

*p = w
a1 = χ(a0)

*q = x
b1 = χ(b0); c1 = χ(c0)
d1 = χ(d0); e1 = χ(e0)

f1 = χ(f0)

*r = y
a2 = χ(a1); b2 = χ(b0)

d2 = χ(d0)

u = *v
µ(e1); µ(f1)

s = *z
µ(a2); µ(b2); µ(c0); µ(d2)

t = *z
µ(a3); µ(b3); µ(c2); µ(d3)

a3 = φ(a1,a2)
b3 = φ(b1,b2)
c2 = φ(c0,c1)
d3 = φ(d1,d2)

Figure 3.10: The SSA information for Figure 3.9.

1. x may not point tov in the flow-sensitive results. In this case, the analysis
should interpret theSTOREbased solely on theχ function; in other words,vm

should be a copy ofvn and not incorporatey at all.

2. x may point only tov in the flow-sensitive results. In this case, the analysis
can strongly update the points-to information forv; in other words,vm should
be a copy ofy and not incorporatevn at all.

3. x may point tov as well as other variables in the flow-sensitive results. In this
case, the analysis must weakly update the points-to information for v; in other
words,vm should incorporate the points-to information from bothvn andy.

By using the SSA form to fill in the def-use graphDUG, we can accommo-
date all of these possibilities. For eachSTOREannotated with a functionvm = χ(vn),
we create a def-use edge to every statement that usesvm as the argument of aχ, µ, or
φ function. We label each def-use edge for an address-taken variable with that vari-
able, so the analysis can determine along which edge to propagate a given variable’s

84

[e] [f][b] [c] [d]

[a]

[a] [b] [d] [a][b] [d]

*p = w

*q = x*r = y

u = *vs = *z t = *z

Figure 3.11: The def-use graph for Figures 3.9 and 3.10; eachedge is labeled with
the variables used by the destination.

points-to information. Figure 3.11 shows the example program from Figure 3.9
converted into a def-use graph based on the SSA information from Figure 3.10.

The flow-sensitive analysis propagates to aSTOREpoints-to information for
all variables that may be defined by thatSTORE. When theSTORE is evaluated,
each variable defined by theSTORE has its points-to information modified in the
STORE’s local points-to graph, using a strong or weak update as appropriate. The
points-to information for all potentially-defined variables is then propagated along
the appropriate def-use edges from theSTORE, regardless of whether theSTORE

actually defined the variable or not.

Theorem5 (The Analysis is Correct). Every definition of a variable reaches its
corresponding uses, and the analysis computes precise flow-sensitive pointer infor-
mation.

Proof. We prove the theorem in two parts:

Every def reaches its corresponding uses.Points-to information flows
along the def-use chains inDUG computed byAUX . SinceAUX computes an over-
approximation of the information computed by the flow-sensitive analysis, the def-
use chains inDUG are a superset of the def-use chains that would be computed by
the flow-sensitive analysis. Therefore all defs must reach their corresponding uses.

The sparse analysis is precise.The threeSTOREpossibilities listed above
must be correctly handled by the sparse analysis. The key insight required to prove

85

that the analysis correctly handles each possibility is that the points-to information
at eachDUG node increases monotonically—once a pointer contains a variablev in
its points-to set at noden, that pointer will always containv at noden. This fact
constrains the transitions that eachSTOREcan make among the three possibilities.

Suppose we have aSTORE *x = y. First, we note that theSTORE is not
processed ifx is NULL—either we will revisit this node whenx is updated, or the
program will never execute past this point (because it will be dereferencing a null
pointer). Therefore if we’re visiting theSTORE, thenxmust point to something. The
monotonicity property constrains the transitions that theanalysis may take among
the three possibilities for thisSTORE: the analysis may transition from (1) or (2) to
(3), and from (1) to (2), but it can never transition from (2) to (1) and never from
(3) to either (1) or (2).

More concretely, suppose thatx does not point tov when theSTORE is
visited. Then the analysis will propagate the old value ofv past this node. Later
in the analysis,x may be updated to point tov; if so, theSTORE mustbe a weak
update (possibility 3) becausex already points to some variable other thanv at this
point in the program and it cannot change that fact. So the analysis will updatev
with both the old value ofv and the value ofy, which is a superset of the value
it propagated at the last visit (the old value ofv). Similar reasoning shows that if
the STORE is originally a strong update (possibility 2) and later becomes a weak
update, the analysis still operates correctly.

3.4.1.3 Access Equivalence

A difficulty that immediately arises when using the technique described
above is the sheer number of def-use edges that may be required. EachSTORE

can define thousands of variables, based on the dereferencedvariable’s points-to
set size, and each variable can be defined dozens or hundreds of times—in large
benchmarks, hundreds of millions of def-use edges may be created, far too many
to enable a scalable analysis. To combat this problem, we introduce the notion of
access equivalence, which will enable us to represent the same information in a
much more compact fashion.

Two address-taken variablesx andy are access equivalent if whenever one
is accessed by aLOAD or STORE instruction, so is the other; in other words, for all

86

variablesv such thatv is dereferenced in aLOAD or STORE, x∈ points-to(v)⇔ y∈
points-to(v). This notion of equivalence is similar, but not identical tothe notion
of location equivalencedescribed in Section 2.4.2. The difference is that location
equivalence examinesall pointers in a program to determine whether two variables
are equivalent, whereas access equivalence only looks at pointers dereferenced in
a LOAD or STORE; two variables may be access equivalent without being location
equivalent (but not vice-versa).

The advantage of access equivalence is that all access-equivalent variables
will have identical def-use chains computed by the SSA algorithm. By definition,
anySTOREthat defines one variable must also define all access-equivalent variables,
and similarly anyLOAD that uses one variable must also use all access-equivalent
variables.

To determine access equivalence usingAUX , we must determine which vari-
ables are accessed by the same set ofLOADs andSTOREs. LetAE be a map from
address-taken variables to sets of instructions. For eachLOAD or STOREinstruction
I and for each variablev accessed byI , AE(v) includesI . Once all instructions have
been processed, any two variablesx andy are access-equivalent ifAE(x) = AE(y).
This process takesO(I ·V) time, whereI is the number ofLOAD /STOREinstructions
andV is the number of address-taken variables.

For Figure 3.9, the access equivalences are:{a},{b,d},{c},{e, f}. Fig-
ure 3.12 shows the same def-use graph as Figure 3.11 except with edges for access-
equivalent variables collapsed into a single edge.

It is important to note that the access equivalences are computed usingAUX ,
and therefore are conservative with respect to the actual access equivalences using
the flow-sensitive pointer analysis. For this reason, whileedges are labeled us-
ing access equivalences, the points-to graphs at each node use the actual variables.
The def-use edges are now labeled with the access equivalence partition each edge
represents, instead of being labeled with individual variables; when propagating a
variable’s points-to information across the def-use edges, the information is only
propagated across edges labeled with the specific partitionthat variable belongs to.

87

[ef][bd] [c]

[a]

[a] [bd] [a] [bd]

*p = w

*q = x*r = y

u = *vs = *z t = *z

Figure 3.12: The def-use graph of Figure 3.11 after applyingaccess equivalence.

3.4.1.4 Interprocedural Analysis

There are two possible approaches for extending the analysis described
above to an interprocedural analysis. The first option is to compute sparseness
separately for each function, treating a function call as a definition of all variables
defined by the callee and as a use of all variables used by the callee. The downside
of this approach is variable def-use chains can span a numberof functions; treat-
ing each function call between the definition and the use as a collection point can
adversely affect the sparseness of the analysis.

The second option, which we use, is to compute the sparsenessfor the en-
tire program at once, directly connecting variable definitions and uses even across
function boundaries. An important consideration for this approach is how to handle
indirect calls via function pointers. Some of the def-use chains that span multi-
ple functions may be dependent on the resolution of indirectcalls. The technique
outlined earlier does not compensate for this problem—it assumes that the def-use
chains are only dependent on the points-to sets of the pointers used by an instruc-
tion, without taking into account any additional dependencies on the points-to sets
of unrelated function pointers. In other words, this technique may lose precision if
the call-graph computed byAUX over-approximates the call-graph computed by a
flow-sensitive pointer analysis.

88

There are two possible solutions to this problem. The easiest is simply
to assume theAUX computes a precise call-graph, i.e., the same call-graph the
flow-sensitive pointer analysis would compute. IfAUX is fairly precise (e.g., an
inclusion-based analysis), this is a good assumption to make—Milanova et al. [56]
show that precise call-graphs can be constructed using onlyflow-insensitive pointer
analysis. We use an inclusion-based analysis forAUX , and hence this is the solution
we use for our work.

If this assumption is not desirable, then the technique mustbe adjusted to
account for the extra dependencies. Each def-use chain thatcrosses a function
boundary and depends on the resolution of an indirect call isannotated with the
〈 f unction pointer, target f unction〉 pair that it depends on. Pointer information
is not propagated across this def-use edge unless the appropriate target has been
computed to be part of the function pointer’s points-to set.

3.4.2 The Final Algorithm

Putting everything together, we arrive at the final algorithm for sparse flow-
sensitive pointer analysis. We begin with a series of preprocessing steps prior to the
analysis itself:

1. RunAUX to compute conservative def-use information for the program being
analyzed.

2. Use the results ofAUX to compute the interprocedural control-flow graph of
the program, including resolving indirect calls to their potential targets. All
function calls are then translated into a set ofCOPY instructions to represent
parameter assignments, and similarly function returns arealso translated into
COPY instructions.

3. Compute exact SSA information for all top-level variables.

4. Partition the address-taken variables into access equivalence classes as de-
scribed in Section 3.4.1.3.

5. For each partitionP, use the results ofAUX to:

89

• Label eachSTORE that may modify a variable inP with a functionP =

χ(P).

• Label eachLOAD that may access a variable inP with a functionµ(P).

6. Compute SSA form for the partitions, using any of many available methods
(e.g., [3, 8, 23, 24]).

7. Construct the def-use graph by creating a node for each pointer-related in-
struction and eachφ function created by step 6, then:

• For eachALLOC , COPY, andLOAD nodeN, add an unlabeled edge from
N to every other node that uses the variable defined byN. (Note that
because of step 3, nodes of these types each define a unique variable;
theCOPY nodes include theφ functions computed by step 3.)

• For eachSTORE nodeN that has aχ function defining a partition vari-
ablePn, add an edge fromN to every node that usesPn (either in aφ, χ
or µ function), labeled by the partitionP.

• For eachφ nodeN that defines a partition variablePn, create an unla-
beled edge to every node that usesPn.

Once the preprocessing is complete, the sparse analysis itself can begin. The
analysis uses the following data structures:

• a node worklistWorklist that is initialized to contain allALLOC nodes.

• a global points-to graphPG that holds the points-to sets for all top-level vari-
ables. LetPtop(v) be the points-to set for top-level variablev.

• a points-to graphINk for everyLOAD andφ nodek to hold the pointer infor-
mation for all address-taken variables that may be accessedby that node. Let
Pk(v) be the points-to set for address-taken variablev contained inINk.

• two points-to graphs for everySTOREnodek to hold the pointer information
for all address-taken variables that may be defined by that node: INk for the
incoming pointer information andOUTk for the outgoing pointer information.
Let Pk(v) be the points-to set of address-taken variablev in INk.

90

• a mappart(v) that for each address-taken variablev returns the variable par-
tition to which thatv belongs.

The main body of the algorithm is listed in Algorithm 15. The loop itera-
tively selects a node from the worklist and processes it, which may add new nodes
to the worklist. It continues until the worklist is empty, atwhich point the analysis
is complete. Each different type of node is processed as listed in Algorithms 16–
20. The←֓ operator represents set update,→ represents an unlabeled edge in the
def-use graph, and

x
−→ represents an edge labeled withx.

Algorithm 15 Main body of the semi flow-sensitive pointer analysis algorithm.
Require: DEF/USE= 〈N,E〉

while Worklist is not emptydo
k =SELECT(Worklist)
switch typeof(k):

caseALLOC : processAlloc(k)
caseCOPY: processCopy(k)
caseLOAD : processLoad(k)
caseSTORE: processStore(k)
caseφ: processPhi(k)

Algorithm 16 processAlloc(k) : [x = ALLOC i]

PG←֓ {x→ ALLOC i}
if PG changedthen

Worklist←֓ { n | k→ n∈ E}

Algorithm 17 processCopy(k) : [x = y z ...]
for all v∈ right-hand sidedo

PG←֓ {x→ Ptop(v)}
if PG changedthen

Worklist←֓ { n | k→ n∈ E}

91

Algorithm 18 processLoad(k) : [x = *y]

PG←֓ {x→ Pk(Ptop(y))}
if PG changedthen

Worklist←֓ { n | k→ n∈ E}

Algorithm 19 processStore(k) : [*x = y]

if Ptop(x) represents a single memory locationthen
// strong update
OUTk ←֓ (INk\Ptop(x))∪{Ptop(x)→ Ptop(y)}

else// weak update
OUTk ←֓ INk∪{Ptop(x)→ Ptop(y)}

for all {n∈ N, p∈ P | k
p
−→ n∈ E} do

for all {v∈ OUTk | part(v) = p} do
INn(v) ←֓ OUTk(v)
if INn changedthen

Worklist←֓ {n}

Algorithm 20 processPhi(k)
for all {n∈ N | k→ n∈ E} do

INn ←֓ INk

if INn changedthen
Worklist←֓ {n}

92

3.4.2.1 Further Optimization

In addition to the techniques described in this section, we can also use the
same two optimizations described in the previous section onsemi-sparse analysis,
namelyTop-Level Pointer EquivalenceandLocal Points-to Graph Equivalence. We
employ both optimizations in the following experimental evaluation.

3.4.3 Evaluation

To evaluate our new technique, we compare it against our earlier work on
flow-sensitive pointer analysis, calledSSO(see Section 3.3), which is the most scal-
able algorithm available.SSOanalyzes benchmarks with up to approximately 344K
lines of code (LOC), an order of magnitude greater than allowed by the previous
state-of-the-art, and it is almost 200× faster than the previous state-of-the-art. We
useSSO as the baseline for comparison with our new technique, whichwe refer
to asSFS. SFS uses inclusion-based (i.e., Andersen-style) analysis forAUX . SSO,
SFS, andAUX are all field-sensitive—each field of a struct is treated as a separate
variable.

We implement bothSSOandSFS in the LLVM compiler infrastructure [52]
and use BDDs to store points-to relations. We emphasize thatneither technique is a
symbolic analysis (such as the various symbolic pointer analyses [7, 81, 85–87])—
instead, we only use BDDs to compactly represent points-to sets; we could swap in
other data structures for this purpose without changing therest of the analysis. We
make use of the BuDDy BDD library [54]. The analyses are written in C++ and
handle all aspects of the C language except for varargs.

Table 3.5 describes the benchmarks for our experiments. Sixof the bench-
marks are taken from SPECINT 2000 (the largest six applications from that suite)
and the rest from various open-source applications. These benchmarks include all
the benchmarks from the evaluation of semi-sparse analysis(Section 3.3.4), plus
the benchmarks svn (a source control system), gimp (an imagemanipulation pro-
gram), and tshark (a wireless network analyzer). We do not include the Linux
or Wine benchmarks used for the evaluation of inclusion-based analysis because
of difficulties compiling those programs with the LLVM infrastructure (note that
the inclusion-based analysis evaluation in Sections 2.3.3and 2.4.3 used a different
infrastructure than LLVM). Function calls to external codeare summarized using

93

Name LOC Statements TL Vars AT Vars
197.parser 11K 18K 7.6K 1.9K
300.twolf 20K 37K 12.4K 4.8K

ex 34K 37K 8.8K 2.3K
255.vortex 67K 47K 15.3K 5.9K

254.gap 71K 99K 39.8K 8.2K
sendmail 74K 54K 20.2K 28.5K

253.perlbmk 82K 118K 48.8K 4.1K
nethack 167K 298K 79.0K 15.1K
python 185K 162K 70.7K 21.9K

176.gcc 222K 258K 108.0K 12.9K
vim 268K 249K 74.8K 168.0K
pine 342K 426K 206.0K 404.0K
svn 344K 158K 83.5K 23.8K

ghostscript 354K 388K 164.0K 350.0K
gimp 877K 929K 408.0K 146.0K

tshark 1,946K 1,045K 914.0K 641.0K

Table 3.5: Benchmarks:LOC reports the number of lines of code,Statements
reports the number of statements in the LLVM IR,TL Vars reports the number
of top-level variables, andAT Vars reports the number of address-taken variables.
The benchmarks are divided into small (less than 100K LOC), mid-sized (between
100K–400K LOC), and large (800K LOC and greater).

hand-crafted function stubs. The experiments are run on a 2.66 GHz 32-bit pro-
cessor with 4GB of addressable memory, except for our largest benchmark, tshark,
which uses more than 4GB of memory—that benchmark is run on a 1.60 GHz 64-
bit processor with 100GB of memory. Note that the experimental machines are
different from that used for Section 3.3.4 and therefore we get different results than
that section forSSO.

3.4.3.1 Performance Results

Table 3.6 gives the analysis time and memory consumption of the various
algorithms. These numbers include the time to build the datastructures, apply the

94

Name
SSO SFS

Time Mem Prelim Prep Solve Time Mem

parser 0.41 138 0.29 0.07 0.008 0.37 275
twolf 0.23 140 0.34 0.07 0.004 0.41 281

ex 0.35 141 0.29 0.10 0.008 0.40 277
vortex 0.60 144 0.45 0.14 0.028 0.62 285

gap 1.28 155 0.94 0.33 0.016 1.29 307
sendmail 1.21 147 0.70 0.27 0.032 1.00 301
perlbmk 2.30 158 1.05 0.50 0.020 1.57 312
nethack 3.16 197 1.72 0.82 0.096 2.64 349
python 120.16 346 4.04 2.02 0.564 6.62 404

gcc 3.74 189 2.00 1.42 0.040 3.46 370
vim 61.85 238 2.93 2.44 0.160 5.53 436
pine 347.53 640 13.42 21.25 47.330 82.00 876
svn 185.10 233 5.40 5.07 0.216 10.69 418

ghostscript OOT — 42.98 86.13 1787.184 1916.29 2359
gimp OOT — 90.59 105.87 1025.824 1222.28 3273

tshark OOT — 232.54 219.83 376.096 828.47 6378

Table 3.6: Performance: time (in seconds) and memory (in megabytes) of the anal-
yses. OOT means the analysis ran out of time (exceeded a 1 hourtime limit). SFS

is broken down into the main stages of the analysis: the auxiliary pointer analysis,
the preparation stage that computes sparseness, and the actual time to solve.

optimizations, and compute the pointer analysis. The timesfor SFS are addition-
ally broken down into the three main stages of the analysis: the auxiliary flow-
insensitive pointer analysis, the preparation stage that computes sparseness, and the
solver stage.

The premise ofSFS—that approximating a sparse analysis by using an aux-
iliary pointer analysis to conservatively compute def-useinformation—is clearly
borne out. For the smaller benchmarks, those less than 100K LOC, the advantage
is less clear; sometimesSSO is faster, sometimesSFS is faster. For the benchmarks
with less than 100K LOC,SFS is on average 1.03× faster thanSSO. For the mid-
sized benchmarks, those with between 100K LOC and 400K LOC,SFShas a more
distinct advantage; it is on average 5.5× faster than thanSSO for the six bench-

95

marks that both algorithms complete. In addition,SFSsuccessfully analyzes three
benchmarks, each in less than1

2 hour, thatSSOcannot analyze within an hour.

The one area whereSSO has a clear advantage is memory consumption.
SFS has not been tuned with respect to memory consumption, and webelieve its
memory footprint can be significantly reduced. As a sidenote, keep in mind that
tshark is evaluated using a 64-bit machine, as opposed to the32-bit machine used
for the other benchmarks, so its memory consumption can’t bedirectly compared
with the others because the 64-bit machine inflates the memory footprint compared
to a 32-bit machine.

3.4.3.2 Performance Discussion

There are several observations about theSFSresults that may seem surpris-
ing. First, the solve times forSFSare sometimes smaller than theAUX times. Keep
in mind that theAUX column includes the time needed forAUX to generate con-
straints, optimize those constraints, solve them, then do some post-processing on
the results to prepare them for theSFS solver. On the other hand, the solve times
only include the time taken forSFSto actually compute an answer given the def-use
graph.

We also see that the analysis times can vary quite widely, even for bench-
marks that are close in size. Some smaller benchmarks take significantly longer
than larger benchmarks. The analysis time for a benchmark depends on a number
of factors besides the raw input size: the points-to set sizes involved; the charac-
teristics of the def-use graph, which determines how widelypointer information is
propagated; how the worklist algorithm interacts with the analysis; and so forth. It
is extremely difficult to predict analysis times without knowing such information,
which can only be gathered by actually performing the analysis.

Finally, the prep time forSFS, which includes the time to compute SSA
information using theAUX results and the time to optimize the analysis using Top-
level Pointer Equivalence and Local Points-to Graph Equivalence, takes a signifi-
cant portion of the total time forSFS. While the prep stage is compute-intensive,
there are several optimizations for this stage that we have not yet implemented. We
believe that the times for this stage can be significantly reduced.

96

To better understand the results, we focus on three key aspects of SFS that
contribute to its success, the analysis’ sparsity, the effect of access equivalence, and
the effects of local points-to graph equivalence.

The first aspect is the effect of using a sparse analysis for the address-taken
variables. We measure this effect by counting, for each address-taken variablev, the
number of edges thatv’s points-to information can propagate across. The sparser
the analysis, the fewer edges a variable’s information willpropagate across, and the
more quickly the analysis will complete. Figure 3.13 compares for each benchmark
the average number of edges a variable’s information will propagate across for a
non-sparse analysis versusSFS’s sparse analysis. As expected, the sparse analysis
propagates information across far fewer edges for every benchmark.

The second aspect is the effect of exploiting access equivalence. We use
access equivalence to partition address-taken variables so that we only need def-use
edges per partition, rather than per variable. Figure 3.14 compares the number of
partitions versus the number of address-taken variables, and also the number of def-
use edges used for partitions versus the number of edges thatwould be required if
they were per-variable. Most of the benchmarks, and all of the larger benchmarks,
show a significant reduction in the number of edges required.For the larger bench-
marks, this reduction in absolute terms was from hundreds ofmillions of edges to
millions of edges.

The final aspect that we consider is the effect of the local points-to graph
equivalence optimization for bothSSOandSFS. Figure 3.15 shows the percentage
of the number of nodes that remain after merging nodes that share local points-to
graphs. We see that the optimization is quite effective.

3.5 Chapter Summary

In this chapter, we demonstrate how to greatly increase the scalability of
flow-sensitive, context-insensitive pointer analysis. Our strategy is to exploitspar-
sity in the analysis, allowing the analysis to converge faster and use less memory.

Our first technique, semi-sparse analysis, partitions variables betweentop-
level(variables that cannot be indirectly referenced via a pointer) andaddress-taken
(variables that can be indirectly referenced via a pointer). The top-level variables

97

pa
rs

er

tw
olf ex

vo
rte

x
ga

p

se
nd

m
ail

pe
rlb

m
k

ne
th

ac
k

py
th

on gc
c

vim pin
e

sv
n

gh
os

tsc
rip

t

gim
p

tsh
ar

k
0

5

10

15

20

%
 R

ea
ch

ab
le

 E
dg

es
 A

fte
r

S
S

A

Figure 3.13: This graph reveals the sparsity of the def-use graph by giving the
percentage of edges across which pointer information will be propagated in the
def-use graph in relation to a non-sparse analysis using theCFG. Smaller is better:
the smaller the percentage, the fewer edges a variable’s pointer information will be
propagated across.

98

pa
rs

er

tw
olf ex

vo
rte

x
ga

p

se
nd

m
ail

pe
rlb

m
k

ne
th

ac
k

py
th

on gc
c
vimpin

e
sv

n

gh
os

tsc
rip

t

gim
p

tsh
ar

k
0

20

40

60

80

100
%

 V
ar

ia
bl

es
/E

dg
es

 A
fte

r
A

cc
es

s
E

qu
iv

al
en

ce

Variables
Edges

Figure 3.14: This graph shows the effectiveness of the access equivalence opti-
mization in two ways: Vars is the remaining number of variables after replacing
each variable with a representative from its access equivalence class; Edges is the
number of remaining def-use edges after merging edges for variables from the same
access equivalence class. Both are given as a percentage of the number of variables
and def-use edges without using access equivalence. Smaller is better: the smaller
the percentage, the fewer variables and edges remain in the graph.

99

pa
rs

er

tw
olf ex

vo
rte

x
ga

p

se
nd

m
ail

pe
rlb

m
k

ne
th

ac
k

py
th

on gc
c
vimpin

e
sv

n

gh
os

tsc
rip

t

gim
p

tsh
ar

k
0

20

40

60

80

100
%

 R
em

ai
ni

ng
 L

oa
ds

 a
fte

r
S

ha
rin

g

Figure 3.15: This graph shows the effectiveness of sharing points-to graphs using
local points-to graph equivalence by giving the number ofLOAD instructions that
remain after merging nodes that share points-to graphs, as apercentage of the total
number ofLOADs. Smaller is better: the smaller the percentage of remaining nodes,
the more sharing is being done.

100

are put into SSA form, while the address-taken variables areconnected via an SEG.
The semi-sparse analysis combines a sparse analysis on the top-level variables with
an iterative dataflow analysis on the address-taken variables.

Our second technique, staged analysis, improves on semi-sparse analysis by
transforming the address-taken variables into a conservative SSA form. This trans-
formation allows the address-taken variables to be analyzed using a sparse analysis,
rather than the iterative dataflow analysis used by semi-sparse analysis. In order to
make this technique practical, we identify and exploitaccess equivalenceamong
the address-taken variables, i.e., variables that are guaranteed to have identical
def-use chains in SSA form.

101

Chapter 4

Formal Framework

The previous two chapters of this thesis have focused on two points in the
flow-sensitivitydimension of precision. In the bigger picture, there are many other
possible dimensions of precision for pointer analysis thatcan be approximated in
different ways (e.g., context-sensitivity, the heap model, pointer arithmetic, etc).
Previous work has explored many different points in this larger space of possible
approximations, as evidenced in Hind’s survey paper [43].

Different points in this space of approximations yield different trade-offs
between the precision of the pointer analysis and the scalability of the analysis.
This tradeoff between precision and performance is of utmost importance to those
who rely on pointer analysis. Unfortunately, the current state of pointer analysis re-
search makes it difficult for researchers to clearly communicate the trade-off associ-
ated with a given point in the space of approximations. Pointer analysis researchers
tend to focus on algorithmic design, employ a multitude of algorithmic strategies
(e.g., dataflow analysis [44, 50], set constraints [29, 37],type systems [25, 78], CFL
reachability [77, 84]), use different terminology to referto similar concepts, and
often use informal language to describe the precision of pointer analysis approxi-
mations. These factors make it difficult for researchers to formally and empirically
compare pointer analyses [43].

Researchers lack a unifying, formal specification of pointer analysis. Such
a specification would make it possible to describe and compare the precision of
many different pointer analysis approximations, regardless of their implementation
details. It would provide a common vocabulary for those who perform pointer
analysis research and those who benefit from it.

A formal specification of pointer analysis also serves as a necessary compo-
nent of a more ambitious research goal: the automatic or semi-automatic synthesis

102

of provably correct and efficient pointer analysis algorithms. Algorithm synthe-
sis already exists for other domains such as databases [15],planning and schedul-
ing [65], general fixed-point computations [11], and general dataflow analysis [6].
Each technique turns a declarative description of desired results into an algorithm
that computes those results; and each technique depends on the existence of a for-
mal specification.

This chapter describes a formal framework to precisely describe a large
space of possible pointer analysis approximations. This framework is capable of
describing the precision of the vast majority of existing pointer analyses, regard-
less of how those analyses are implemented algorithmically. While the framework
does not immediately lead to an efficient implementation of aformally specified
approximation, we believe that it represents an important step towards the goal of
declarative pointer analysis. The work described in this chapter has been previously
published by Hardekopf et al. [36].

4.1 Framework Strategy

The material in this chapter is dense and full of formalisms.To help the
reader navigate the chapter, we describe in this section thebasic strategy of our
framework in an informal manner. The framework consists of 2essential parts: (1)
a base semantics, and (2) threesemantic transformations. The base semantics rep-
resents the most precise possible pointer analysis, and itscomplexity is exponential
in the program size (it executes each path in the program independently, and there
are an exponential number of program paths).

The three semantic transformations are: (1)Induced Variable Equivalence
(IVE), (2) Induced Trace Equivalence(ITE), and (3)Induced Control Flow(ICF).
The transformations can be applied to the base semantics in various combinations
in order to model various approximations, reducing the precision of the base seman-
tics. IVE forces the base semantics to treat a given set of variables asequivalent, i.e.,
all variables in the group must have the same pointer information. ITE forces the
base semantics to treat a given set of program paths as equivalent, i.e., the results
of the analysis don’t depend on which path in that group is taken. ICF forces the
base semantics to add additional control flow that was not present in the original
program, i.e., it creates new program paths that did not previously exist.

103

We emphasize that the result of these transformations is notan actual, usable
algorithm for computing these approximations. Instead, the set of transformations
used describe a given level of precision: the algorithm designer can state that the
precision of a given algorithm is identical to the precisionof the base semantics with
a certain combination of semantic transformations appliedto it. This description
makes the approximations used by the given algorithm explicit and precise.

4.2 Background

This section introduces terminology and uses the frameworkof dataflow
analysis to describe the most common approximations made for pointer analysis.
To keep the analysis decidable, all the approximations assume a finite heap model
(i.e., that there is a finite bound on the amount of dynamic memory allocated) and
uninterpreted branch conditions (i.e., all branches nondeterministic). We begin
with a discussion of intraprocedural analysis before extending the discussion to the
interprocedural case.

4.2.1 Dataflow and Pointer Analysis

Dataflow analysis employs a lattice of dataflow factsL , a meet operator on
the lattice

d
, and a family of monotone transfer functionsfi : L → L that map

lattice elements to other lattice elements. For pointer analysis, the lattice elements
are elements of the powerset of possible pointer information, the meet operator
is set union, and the transfer functions compute the effectsof program statements
on pointer information. Analysis is carried out on thecontrol-flow graph(CFG),
a directed graphG = 〈N,E,s〉 with a finite set of nodes (orprogram points) N,
corresponding to program statements, a set of edgesE ⊆ N×N corresponding to
the control flow between statements, and a designated start node s such that all
nodes are reachable froms. A pathπ in the CFG is a sequence of nodes such that
there exists an edge from each node to the next node in the sequence. Each noden
is associated with a transfer functionfn that computes the effects of the associated
program statement. Thepath semanticsfor a path is the composition of the transfer
functions for all the nodes contained in the path:Jn1,n2, . . . ,nkK = fk◦ . . .◦ f2◦ f1.

A flow-sensitiveanalysis respects the restrictions on control flow embodied

104

by the CFG and computes a separate solution for each program point. The precise
flow-sensitive solution is known asmeet-over-all-paths(MOP):

∀n∈ N : MOP(n) =
l
{JπK | π is a path froms to n}

Each program path is analyzed independently. The final solution for each
program point is the meet (i.e., union) of all the pointer information relevant to that
program point. Flow-sensitive meet-over-all-paths pointer analysis (FS-MOP) is
PSPACE-complete [59].

Because the precise solution is intractable, practical flow-sensitive analysis
instead computes themaximal-fixed-point(MFP) solution:

∀n∈ N : MFP(n) =
l
{ fm(MFP(m)) | 〈m,n〉 ∈ E}

The analysis computes the maximal lattice element (i.e., most precise pointer
information) for which the set of transfer functions converges to a fixed-point.
Rather than computing solutions for a potentially unbounded number of paths, the
MFP approach merges all the solutions that reach a given nodealong any path. For
pointer analysis, the transfer functions are not distributive, so the MFP solution is an
over-approximation of the MOP solution [48]. Flow-sensitive maximal-fixed-point
pointer analysis (FS-MFP) isO(n6), wheren is the number of program statements.

In contrast, aflow-insensitiveanalysis does not respect control flow. It as-
sumes that any program statement can follow any other program statement and can
be executed an arbitrary number of times. Equivalently, it assumes that the CFG
is complete, including self-loops. A flow-insensitive analysis computes a single
solution that holds for the entire program. Just as for the flow-sensitive case, the
precise flow-insensitive solution is defined as the meet-over-all-paths solution of
the modified CFG. Flow-insensitive meet-over-all-paths pointer analysis (FI-MOP)
is NP-hard [46].

As with flow-sensitivity, there is a maximal-fixed-point flow-insensitive so-
lution that is an over-approximation of the FI-MOP solution. Flow-insensitive
maximal-fixed-point pointer analysis (FI-MFP) isO(v3), wherev is the number
of program variables.

105

4.2.2 Interprocedural analysis

There are several ways to extend intraprocedural dataflow analysis to the in-
terprocedural case. Acontext-sensitiveanalysis respects the semantics of procedure
calls and returns by analyzing each distinct context of a procedure independently.
Without recursion, context-sensitive analysis is equivalent to inlining all procedure
calls, and its complexity is exponential in the number of calls in the program. There
are two general approaches to context-sensitivity that define the meaning of “dis-
tinct context” in different ways:functionalandcall-string [76].

The functional approach memoizes procedures. Whenever a procedure is
re-analyzed using incoming pointer information that has been previously seen, the
analysis re-uses the results from the previous computation. This approach distin-
guishes contexts dynamically during the analysis based on the incoming pointer
information.

The call-string approach statically distinguishes contexts based on the string
of procedure calls made to reach the procedure, i.e., the call-stack. The number of
possible call-strings is infinite in the presence of recursion. The traditional response
is to k-limit the call-string by using only the lastk elements of the string to distin-
guish context, for some constantk.

A context-insensitiveanalysis does not respect the semantics of procedure
calls and returns. It instead treats all calls and returns asgoto statements. Informa-
tion from multiple callers is merged before analyzing a procedure, and information
passed to a procedure by one caller is passed back to all of theprocedure’s callers.
This merging of information means that the context-insensitive solution is an over-
approximation of the context-sensitive solution.

4.2.3 Other Approximations

The representation of the pointer information itself can have an impact
on the precision of the analysis. The two standard representations arealias rela-
tions[51] andpoints-to relations[28] (the alternativecompact alias representation
is closely related to the points-to relation [17]). The points-to relation expresses
the fact that a pointer may hold the address of a particular memory location (e.g.,
if x can hold the address ofy andy can hold the address ofz thenx→ y,y→ z).

106

The alias representation explicitly lists all pairs of pointer expressions that may re-
solve to the same memory location (e.g.,〈∗x,y〉,〈∗y,z〉,〈∗∗x,z〉). In effect, the alias
representation is the transitive closure of the points-to relation.

For FS-MOP and flow-insensitive analysis, these representations are equiv-
alent, but for FS-MFP their precision is incomparable — eachmay be more precise
than the other in different circumstances [55]. However, when usingstrong updates
(explained further in Section 4.4.4) the alias relation is strictly more precise than
the points-to relation for FS-MFP [55]. Our work uses the alias relation coupled
with strong updates to provide maximum precision; in Section 4.5.2 we discuss the
exact difference between the representations and how to useour transformations to
yield precision equivalent to using points-to relations.

Two other dimensions of precision arefield sensitivityand theheap model.
Field-sensitivity specifies how individual fields of a struct are distinguished. The
heap model specifies how the (conceptually) infinite-size heap is abstracted into a
finite number of abstract memory locations. For simplicity our framework does
not directly address field-sensitivity, but Section 4.5.3 briefly describes how our
framework could handle it. The heap model is addressed in Section 4.7.2.

4.3 Related Work

Bruns and Chandra have previously developed a theoretical model to de-
scribe points-to analysis approximations, using it to explore the relationships among
some of the common intraprocedural approximations [9]. They introduce four
coarse-grained semantic transformations that compose to specify solutions equiv-
alent to FS-MOP, FS-MFP, FI-MOP, and FI-MFP. They introducean additional
transformation that suggests a more efficient FI-MFP algorithm. Our work is in-
spired by their effort, but we seek to create a framework thatis both simpler and
at the same time more expressive than the one they describe. We employ three se-
mantic transformations that specify the same approximations as Bruns and Chandra
plus many more, including heap models and interprocedural approximations. Our
transformations are designed to tune the precision of an approximation, rather than
the efficiency of any one algorithm. Our model uses aliasing rather than points-to
relations in order to create a more general framework.

107

Milanova and Ryder describe a practical framework for FI-MFP pointer
analysis that uses annotated inclusion constraints [57]. By varying the annotations,
their framework can specify a wide range of inclusion-basedflow-insensitive anal-
yses, from context-insensitive to both the call-string andfunctional approaches to
context-sensitivity.

Grove et al. describe a lattice-theoretic model of context-sensitive call-graphs
which they use to specify different families of call-graph construction algorithms,
leading to a parameterized framework for interprocedural context-sensitive anal-
ysis [33]. Their framework does not directly address pointer analysis or flow-
sensitivity.

Deutsch [26] and Sagiv et al. [71] present parametric frameworks that de-
scribe broad spectra ofshape analysisapproximations. The boundary between
shape analysis and pointer analysis is nebulous. For the purposes of this disserta-
tion, we will define pointer analysis as an approximation of stack-allocated pointers
and shape analysis as an approximation of heap-allocated (and often cyclic) data.
This paper’s focus is pointer analysis approximations. Nevertheless, our model can
describe a subset of the shape analysis approximations described by Deutsch and
Sagiv et al. Section 4.7.2 discusses these issues in more detail.

4.4 Intraprocedural Reference Model

The intraprocedural reference model provides the base semantics for our
framework. The reference model computes the FS-MOP solution for a program that
contains a single procedure. We give an informal overview ofthe reference model
followed by a formal definition of the model’s syntax and semantics. Section 4.6
discusses how to extend this model to apply to programs that contain multiple pro-
cedures.

Our framework is a form ofabstract interpretation[21], where a pointer
analysis approximation abstracts away information from the base reference model.
In this view, our base reference model acts as the concrete semantics and computes
the precise FS-MOP solution of alias relations that occur ina program. Abstract
interpretation traditionally involves separate concreteand abstract domains, but our
framework uses a single domain that can express degrees of abstraction. It is in
effect an abstract domain that contains the concrete domainas a special case. We

108

define a single semantics that works for both concrete and abstract computations
and vary the degree of abstraction as desired.

4.4.1 Overview

A program in the reference model consists of a control-flow graph for a sin-
gle procedure with branches and assignment statements. Thebranches do not have
conditions. Instead, we follow common practice in replacing branch conditions
with nondeterministic gotos in order to guarantee decidability.

We define atrace-basedsemantics [73]. The semantics is nondeterministic
and generates a program’scomputation tree. This tree represents all the program’s
possible execution paths. Each path in the tree is atrace that corresponds to one
possible execution of the program. Each node in the trace contains information
about the program’s store (i.e., the computed pointer information) at a given state-
ment.

The store is modeled as a set of alias relations. If the store contains the
relation(∗ix,y) then the expression∗ix (i.e., the variablex dereferencedi times)
and the variabley are aliases. The reference model semantics ensures that thestore
remains closed under reachability. The semantics also ensures that the store remains
finite, even in the presence of cycles among the alias relations.

The non-deterministic semantics may generate computationtrees of infinite
size; but because the store is finite, an infinite computationtree must be regular —
every trace contains a repeating node. This repetition ensures that the computation
can safely terminate once all its traces reach a repeated node.

We now provide formal definitions for the syntax and semantics of the in-
traprocedural reference model. Section 4.5 defines three transformations that may
be combined to describe a particular pointer analysis approximation.

4.4.2 Syntax

The syntax of expressions and statements is given in Figure 4.1. A pointer
expression can take the address of a variable (&x) or dereference a variable (∗nx) an
arbitrary number of times, where∗0x≡x. The only statements are assignment and
skip. The statements in a program are labeled by a finite set ofprogram points.

109

n∈ N x∈ Variable ρ ∈ ProgPoint

e∈ PtrExpr ::= &x | ∗nx

s∈ Stmt ::= ∗nx := e | skip

Pr ∈ Program : ProgPoint→ Stmt×ProgPoint

Figure 4.1: An unstructured pointer language without procedures.

A program is a control-flow graph, which is defined as a mappingPr(ρ)

from program points to a pair〈statement,goto set〉. At program pointρ with Pr(ρ) =

〈s,P 〉 the program executes statements and then branches nondeterministically to
one of the program points in the goto setP . The distinguished program pointρ0

refers to the program’s unique entry point. A program also has a unique exit point
that maps to the pair〈skip, /0〉.

Figure 4.2 gives an example program (a) and its corresponding control-flow
graph (b). This program represents a structured program with a conditional (state-
ments 0–4) and a loop (statements 6–8). The program’s entry point is 0 and its exit
point is 10. For brevity, some of our examples will use a basic-block form (c) of the
program.

4.4.3 Semantic Domain

The semantic domain consists of computation trees where each path in the
tree is a trace of one possible program execution. Each node in the trace describes
the alias relations at a particular program point. We now provide formal definitions
for these domains. We also provide order relations, which are useful for proving
soundness and termination. Section 4.4.4 defines how the program semantics ma-
nipulate these domains.

Stores. A store is a set of relations:

σ ∈ Store: N×Variable×Variable

If the store contains the relation(∗ix,y), then the expression∗ix and the variabley
are aliases.Store’s order relation⊑ is the subset relation (⊆), and its join operator

110

ρ statement P
ρ0 = 0 skip {1,3}

1 x := &p {2}
2 y := &q {5}
3 x := & r {4}
4 y := & s {5}
5 z := x {6,9}
6 x := y {7}
7 y := z {8}
8 z := &q {6,9}
9 ∗x := y {10}
10 skip /0

(a) Program definition.

skip10

z:=x5

z:=&q8y:=z7

x:=&p1

y:=&q2 y:=&s4

x:=&r3

*x:=y9x:=y6

skip 0

(b) Control-flow graph.

x:=y

y:=z

z:=q

6

x:=&r

y:=&s
3

x:=&p

y:=&q
1

skip10

z:=x5

*x:=y9

skip 0

(c) Basic-block control-flow
graph.

Figure 4.2: The definition, corresponding control-flow graph, and basic-block graph
for a program with one conditional and one loop. The basic-block graph is a more
compact representation that helps condense the presentation of some examples in
this chapter. Each basic block is labeled with the program point of the first statement
in the block.

111

σi [x] =

{

{x} i = 0

{y | (∗ix,y) ∈ σ} i > 0

(a) Lookup.

[x
i
7→ y]σ = {(∗nw,z) ∈ t∗(σ′) | n < k}

where

σ′ = σ∪{(∗ix,y)}∪{(∗i+ jx,z) | (∗ jy,z) ∈ σ}
t(σ) = {(∗m+nw,z) | {(∗mw,x),(∗nx,z)} ⊆ σ′}

(b) Insert. Adding an alias relation triggers the addition of any appropriate transitive relations. The
constantk bounds the size of the store. The expressiont∗ computes the transitive closure oft.

σ\ [x i
7→ y] = σ′ \{(∗nw,z) | w

n
 z 6∈ σ′}

where

σ′ = σ\{(∗ix,y)}

x0
n
 xn−1 ∈ σ ⇒

(

n−2
[

i=0

{(∗1xi ,xi+1)}

)

⊆ σ

(c) Delete. Removing an alias relation triggers the removalof any appropriate transitive relations.

Figure 4.3: Store operations. Each operation is implicitlylifted to operate on sets
of variables.

⊔ is set union (∪).1 We sometimes want to refer to all the pointer variables in a
store, which we denote by the functiondom(i.e.,domain):

dom(σ) = {x | (∗ix,y) ∈ σ}

1The reference model follows the convention used in abstractinterpretation, where the least ele-
ment is the most precise and the merge operation is join. In Section 4.2, we followed the convention
used in dataflow analysis where the greatest element is the most precise and the merge operation is
meet.

112

Figure 4.3 defines three operations on stores:lookup, insert, anddelete. The
lookup operationσi [x] yields the set{y | (∗ix,y) ∈ σ}, whereσ0[x] = {x}.

The insert operation[x
i
7→ y]σ adds the relation(∗ix,y) to the store. The

store must remain closed under reachability, so the insert operation also adds all
transitive relations that result from adding the specified relation. If the newly added
relation induces a cycle in the alias relations, then the newstore will be infinite.
This property would cause the concrete execution to diverge. We therefore restrict
the store so that all the alias relations’dereference exponents iare less than some
constantk (i.e., ∀(∗ix,y) ∈ σ : i < k). The constantk must be greater than the
maximum number of dereferences that syntactically appear in any of the program’s
statements, to ensure that the store remains closed for all the operations the program
might perform.

The delete operationσ \ [x
i
7→ y] removes the specified relation from the

store. This operation also removes any transitive relations invalidated by removal.

The semantics make use of the lookup, insert, and delete operations. We
also extend these operations to operate on sets of variables.

Configurations. A configurationpairs a program point with a store:

τ ∈ Configuration: ProgPoint×Store

A configuration represents a single node in a program trace. Individual components
of a configuration are referred to using field-access notation: 〈ρi,σi〉.ρ = ρi and
〈ρi,σi〉.σ = σi . Configurations are ordered point-wise:

〈ρ,σ〉 ⊑ 〈ρ′,σ′〉 ⇔ (ρ = ρ′)∧ (σ⊑ σ′)

Traces. A trace is an ordered sequence of configurations that represents a history
of program execution:

T ∈ Trace:
−−−−−−−−−→
Configuration

The empty trace is denoted byε. The concatenation operationT :τ appends a con-
figuration to a trace. We writeT �P T ′ if T is a prefix ofT ′. Traces are ordered as
follows:

τ1: · · · :τn⊑ τ′1: · · · :τ′n⇔ τi ⊑ τ′i

113

Note that two traces are comparable only if they contain the same sequence of
program points.

The set of all possible traces induced by a given program defines the pro-
gram’s computation tree. We delay a formal definition of computations until we
have formally defined the program semantics.

4.4.4 Semantics

The semantics is a nondeterministic big-step operational semantics [73].
The transition relationBASE on configurations is defined in Figure 4.4. The pro-
gramPr is globally defined.

A skip statement (RuleSKIP) creates a new configuration for each program
point ρ′ in the goto setP of the current program pointρ. The unmodified store is
copied to each new program point.

An assignment statement (RuleASSIGN) updates the store to map the vari-
able represented by the left-hand side of the assignment to the value represented by
the right-hand side. The value represented by the right-hand side is computed using
the function[[e]]σ, defined just below RuleASSIGN.

RuleASSIGN contains added complexity, because the base semantics apply
to both concrete and abstract executions. In a concrete execution, thel-value of an
assignment corresponds to only one variable. Every concrete assignment overwrites
the old value (indicated in RuleASSIGN askill) with the new value. This operation
is calledstrong update.

In an abstract execution, thel-value may correspond to multiple variables.
In this case, the semantics must conservatively merge the old and new values. This
operation is calledweak update. Because weak update performs a merge, it loses
precision. The abstract semantics can avoid this loss of precision when the state-
ment’sl-value corresponds to only one variable.

Computation Trees. We model a computation tree as the set of traces generated
by executing a program’s statements. Each computation stepgenerates a new tree
where each new trace is extended by one application ofBASE:

114

Pr(ρ) = 〈skip,P 〉 ρ′ ∈ P

〈ρ,σ〉 BASE
−→ 〈ρ′,σ〉

(SKIP)

Pr(ρ) = 〈∗nx:=e,P 〉 ρ′ ∈ P

kill =

{

[σn[x]
1
7→ σn+1[x]] : |σn[x]|= 1

/0 : otherwise

σ′ = [σn[x]
1
7→ [[e]]σ](σ\kill)

〈ρ,σ〉 BASE
−→ 〈ρ′,σ′〉

(ASSIGN)

[[&x]]σ = {x}

[[∗nx]]σ = σn+1[x]

Figure 4.4: Intraprocedural reference model semantics.

Γ′ = {T:τ:τ′ | T:τ ∈ Γ∧ τ BASE
−→ τ′}

Γ C
→ Γ∪Γ′

(C)

Given a set of tracesΓ, executing a statement extends each trace inΓ with a new
configurationτ′. The new set of tracesΓ′ is unioned with the previous setΓ to
create a new computation tree. Thus the tree contains a history of all the traces
generated by each step of a program’s execution. Each trace has finite length, but
a tree may contain an infinite number of traces. The complete tree is computed by
taking the transitive closure ofC rooted at the initial trace set{〈ρ0, /0〉}. Figure 4.5
contains a partial computation tree for the program in Figure 4.2. Note how the
non-deterministic semantics generate different paths to program point 10.

Transformations. A transformationt of a computationC forms a new transition
relation t(C). Transformationt is defined by a functionft that modifies a set of
traces to compute the tree for the next step of the computation. These modified
traces introduce abstractions based on the current or previous computation steps.
Our framework transforms the semantics by modifying the setof traces generated at
each computation step. Such transformations are used by theframework to specify
over-approximations of the concrete semantics.

115

Γ3

Γ4

Γ5

Γ6

Γ2

Γ1

Γ0

...

0

1 3

q

*x p

*y
5

q

*x,*z p

*y
6

p

*x,*z q

*y
6

q

*x p

*y,*z
9

q

*x p

*y,*z,*p

**x

10

s

*x r

*y
5

s

*x,*z r

*y
9

s

*x,*z r

*y,*r

**x

10

...

...

...

Figure 4.5: A partial computation tree for the program in Figure 4.2c. Each dot-
ted horizontal line represents one computation step and each node represents one
configuration. The stores are organized as a two-column table; for each row, the ex-
pressions in the first column are aliased with the expressions in the second column.

Given a transformation functionft , a new transition relation for computa-
tions is defined as follows:

Γ C
−→ Γ′

Γ
t(C)
−→ ft(Γ′)

(t)

The new transition relation usesft to transform the concrete treeΓ′ into an abstract
tree.

Section 4.5 describes three transformation functions thatgenerate safe over-
approximations of their inputs. These transformations canbe composed to describe
a broad spectrum of pointer analysis approximations.

4.5 Intraprocedural Pointer Analysis

The purpose of pointer analysis is to answer queries about possible aliasing
between pointer expressions. In the intraprocedural case,we consider pointer anal-
yses that determine—at a specific program point—whether thestore contains a spe-

116

cific alias relation. Determining whether the semantics generates a store that con-
tains a given alias relation corresponds to a query over the computation tree [20, 73].
More formally, given a queryφ = 〈ρ,(∗ix,y)〉 the analysis determines if the com-
putation tree contains a trace whose final store contains thealias relation:

Γ |= 〈ρ,(∗ix,y)〉 ⇔ ∃ T:〈ρ,σ〉 ∈ Γ | y∈ σi [x]

The result of a query on the computation tree generated by thebase semantics is
equivalent to an FS-MOP analysis for that query.

Because a precise solution is intractable, analyses must approximate the
FS-MOP solution. Section 4.2 described several over-approximations of FS-MOP.
These approximations are usually described algorithmically. In this section, we
analyze the approximations to identify a small set of primitive semantic transfor-
mations that can be combined to specify the existing approximations. In addition,
we generalize existing approaches by converting binary design choices into contin-
uous spectra of options, where possible. The transformations are designed so that
any approximation defined using the primitives is sound by construction.

4.5.1 FS-MOP vs FS-MFP

In this section we explain how the FS-MOP and FS-MFP approximations
are in fact endpoints of a continuum of approximations and introduceInduced Trace
Equivalenceas a technique for specifying arbitrary points along this continuum.

FS-MOP computes a separate result for each path through the CFG. There
are potentially an infinite number of paths, and even when thenumber of paths
is finite it is still exponential in the number of branches in the CFG. An FS-MFP
pointer analysis mitigates this problem by merging resultsfrom separate paths when
they reach a common program point. In essence, the FS-MFP analysis groups paths
into a polynomial number of equivalence classes.

We abstract and generalize this approximation mechanism into a transfor-
mation on the computation tree called Induced Trace Equivalence (ITE). This trans-
formation partitions individual computation paths (i.e.,traces) into arbitrary equiv-
alence classes based on a given equivalence relation for traces. ITE is a general
semantic transformation that accumulates pointer information by unioning stores
from equivalent traces. In the transformed semantics, a newconfiguration is the

117

T:τ ∈ Γ
Γ′ = {T ′ ∈ Γ | T ′

T
≡ T:τ}

σ′ =
F

{τ′.σ | T ′:τ′ ∈ Γ′}
T:〈τ.ρ,σ′〉 ∈ fITE(Γ)

(ITE)

T:τ1:τ ∈ Γ
ρ′ ∈ {τ.ρ}∪F[(τ1.ρ)]

T:τ1:〈ρ′,τ.σ〉 ∈ fICF(Γ)
(ICF)

T:τ ∈ Γ
σ′ =

F

x∈dom(τ.σ)
IVE(x,τ)

T:〈τ.ρ,σ′〉 ∈ fIVE(Γ)
(IVE)

IVE(x,〈ρ,σ〉) = {(∗ix′,y′) | x′ ∈ PE∧y′ ∈ LEi}, where

PE = {x′ | x
PE
≡σ x′}

LEi = {y′ | y∈ σi [PE]∧y
LE
≡σ y′}

Figure 4.6: Intraprocedural trace transformations.

118

union of the final store of all equivalent traces in the underlying semantics. The
equivalence relation must respect the ordering on traces:

T1
T
≡ T2 T1⊑ T ′1 T2⊑ T ′2

T ′1
T
≡ T ′2

The Induced Trace Equivalence transformation is formally defined by RuleITE in
Figure 4.6. For each trace generated by the underlying semantics, ITE replaces the
last store in the trace with the union of all final stores from equivalent traces.

There are several existing algorithms for FS-MFP [44, 80] that differ greatly
in their implementation. However, the precision of their results are equivalent and
the following ITE equivalence relation captures their equivalence:

T1:〈ρ,σ1〉
T
≡ T2:〈ρ,σ2〉

The effect of this transformation on the reference model is shown in Figure 4.7a.

ITE is a powerful abstraction that can specify an arbitrary point in the con-
tinuum that lies between FS-MOP and FS-MFP simply by changing the equiva-
lence relation to modulate those computation paths that areconsidered equivalent.
A practical example of one point in this space isalias instances, as described by
Hind et al. [44]. Many other approximations can be created byparameterizingITE

with different equivalence relations. For example, loops can be unrolled or even
partitioned arbitrarily (e.g., partitioned into even and odd iterations). In addition to
looking at program points, the equivalence relation can also use stores to determine
equivalence.

ITE is general enough to capture other abstractions, such asmemoization.
Memoization is a classic widening operator that forces the computation to accumu-
late pointer information at a program point that appears multiple times in a single
path (i.e., program points within a loop). In Figure 4.7b, when program point 6 is
encountered for the second time, it accumulates the information from the previous
visit to program point 6.ITE can specify memoization by using the equivalence
relation:

T1�P T2∨T2�P T1

T1 = T ′1:〈ρ,σ1〉 T2 = T ′2:〈ρ,σ2〉

T1
T
≡ T2

119

Γ3

Γ4

Γ2

Γ1

Γ0

...

0

1 3

q,s

*x p,r

*y
5

q,s

*x,*z p,r

*y
9

q,s

*x,*z p,r

*y,*p,*r

x,z

10

q,s

*x p,r

*y
5

q,s

*x,*z p,r

*y
9

q,s

*x,*z p,r

*y,*p,*r

x,z

10

...

(a) FS-MFP usingITE.

Γ3

Γ4

Γ5

Γ6

Γ2

Γ1

Γ0
0

1

q

*x p

*y
5

q

*x,*z p

*y
6

p,q*x,*y,*z6

q

*x,*y,*z,*q

x,y,**z,**p
p

*x,*y,*z,*p

x,y,**z,**q

10

...

...

... p,q*x,*y,*z9

(b) Memoization usingITE.

Γ3

Γ�Γ1
Γ0

0

*z q

q,s

*x p,r

*y

1

-

10

*z p,r,q

q,s

*x p,r,q,s

*y,*p,*r

**x

1

-

10

p,r,q,s

*x,*y,*z

*p,*r,*q,*s

x,y,**z

p,r,**q,**s

1

-

10

Γ4

1

-

10

(c) FI-MFP usingITE andICF.

Figure 4.7: Transformed program trees that compute approximations usingITE (for
FS-MFP and memoization) andITE composed withICF (for FI-MFP). The graphs
use the same conventions as Figure 4.5.

120

ITE can also be used to specify a points-to-based pointer analysis, rather
than an alias-based pointer analysis. Recall from Section 4.2 that an alias-based
FS-MFP pointer analysis with strong-update semantics is strictly more precise than
its points-to-based equivalent. The reason for this difference is that an alias-based
analysis may, in some instances, maintain distinct resultsfor distinct paths; whereas
a points-to-based analysis implicitly merges results fromdistinct paths. For exam-
ple, consider a join point that is reached along one path withresults(∗x,y) and along
another path with results(∗y,z). The points-to based analysis does not explicitly
maintain information about transitive aliases, so it must answer queries by taking
the transitive closure of the points-to relation — since at the join point there exists
a points-to relation fromx to y and another fromy to z, a points-to-based analysis
must (imprecisely) conclude that∗2x aliasesz. By contrast, the alias-based analy-
sis can be more precise, because it explicitly maintains information about transitive
aliases — while the alias relations(∗x,y) and (∗y,z) both exist at the join point,
the relation(∗2x,z) does not, and the analysis correctly concludes that∗2x does not
aliasz.

Since the aliased-based analysis is more precise than the points-to-based
one, we can approximate points-to with a transformation. Wemodify ITE to take
as a parameter a join operation, which is used to join the finalstores of equivalent
paths. Alias analysis uses set union as the join operator. Points-to analysis uses a
join operator that joins two stores, removes any relations of the form(∗nx,y) where
n > 1, then computes the transitive closure of the result.

4.5.2 Flow-Sensitivity vs Flow-Insensitivity

A flow-sensitive analysis respects a program’s control flow as embodied by
the CFG. In contrast, a flow-insensitive analysis ignores a program’s control flow
and assumes that any statement can be executed after any other statement. This
approximation can be expressed by adding additional edges to the CFG to make it a
complete graph, including reflexive edges. We abstract and generalize this approx-
imation mechanism into a transformation on the computationtree calledInduced
Control Flow (ICF). This transformation allows us to add additional control-flow
beyond that specified by the control-flow graph.

Rule ICF in Figure 4.6 formalizes this behavior by defining transformation
function fICF. The transformation relies on anICF mapF : ProgPoint→ ProgPoint,

121

which defines the degree of control-flow abstraction. IfPr(ρ) = 〈stmt,P 〉 and
F(ρ) = P ′, then execution proceeds non-deterministically fromρ to any program
point inP ∪P ′.

ICF can specify an FI-MOP analysis using the following map:

∀ρ ∈ ProgPoint: F[ρ] = ProgPoint

SinceF maps each program point to every existing program point, queries on the
transformed computation tree are equivalent to FI-MOP. By changingF we can use
ICF to vary the precision of the pointer analysis along a spectrum between FS-MOP
and FI-MOP.

The two transformationsITE and ICF can be used in combination to spec-
ify even more levels of precision, for example FI-MFP. Thereare many existing
algorithms for FI-MFP [29, 37] that have very different implementations. How-
ever, their results are equivalent and those results can be specified by using theITE

equivalence relation MFP and theICF mapF as given above. Figure 4.7c gives an
example. Note that at each computation step of the FI-MFP analysis, every program
point has the same store.

By selectively adding edges to the original CFG usingICF and varying the
ITE equivalence relation, we can tune the analysis at a very fine granularity of pre-
cision anywhere between FS-MOP and FI-MFP. In addition, by extendingITE to
have a separate equivalence relationper variablewe could control the precision on
a per-variable basis. This change would enable the framework to specify analyses
such as Guyer et al.’s client-driven pointer analysis [34],which uses per-variable
flow-sensitivity.

4.5.3 Variable Equivalence

This section shows how a set of existing pointer analyses, which use differ-
ent abstractions of pointer information, can be unified by a single transformation,
which we callInduced Variable Equivalence. In particular, several analyses — in-
cluding Steensgaard’s near linear-time analysis [78], Shapiro and Horwitz’s family
of analyses [75], and Das’ One-Level Flow analysis [25] — assume an FI-MFP
analysis as a starting point but differ in how they abstract pointer information.

122

We distinguish two kinds of pointer information abstractions:pointer equiv-
alenceand location equivalence. Variablesx andy are pointer equivalent if they
point to the same values. Variablesx andy are location equivalent if they are pointed
to by the same variables.

Steensgaard’s analysis maintains an invariant on pointer relations requiring
that no pointer equivalence class can point to more than one location equivalence
class. The Shapiro-Horwitz family of analyses can be specified as a simple exten-
sion to Steensgaard’s analysis: randomly assignk labels to the program variables
and only apply Steensgaard’s invariant to memory locationswith the same label,
thereby enforcing the property that no pointer equivalenceclass can point to more
thank location equivalence classes (when|k| is equal to the number of variables,
this analysis is equivalent to FI-MFP). Das’ One-Level Flowanalysis treats top-
level pointers (those that have nothing pointing to them) similarly to FI-MFP but all
other pointers similarly to Steensgaard.

We generalize these restrictions on pointer- and location-equivalence classes
as a transformation called Induced Variable Equivalence (IVE). This transformation
forces variables to be pointer and/or location equivalent according to the equiva-

lence relations
PE
≡σ and

LE
≡σ given to the analysis. Given a store, variablesx andy are

pointer equivalent with respect toσ (denotedx
PE
≡σ y) if σ1[x] = σ1[y]. Variablesx

andy are location equivalent (denotedx
LE
≡σ y) if ∀z∈dom(σ) : x∈σ1[z]⇔ y∈σ1[z].

We formally define the transformation with RuleIVE in Figure 4.6, which
updates the store of a generated configuration to obey given pointer and location

equivalence relations. For convenience we define the equivalence relation
LPE
≡ σ as

x
LPE
≡ σ y⇔ x

PE
≡σ y∧ x

LE
≡σ y. The combined relation must respect the ordering on

stores:

x
LPE
≡ σ x′ σ⊑ σ′

x
LPE
≡ σ′ x′

For simplicity, our framework has assumed a field-insensitive pointer semantics.
Our framework can vary field-sensitivity usingIVE by dividing struct fields into
different partitions and making all fields in the same partition both pointer and lo-
cation equivalent. A practical example of this capability is thenormalize, lookup,
andresolvefunctions defined by Yong et al. [83].

123

By enforcing the following invariant on theIVE equivalence relations we
correctly specify Steensgaard’s analysis:

p∈ dom(σ) {q, r} ⊆ σ1[p]

q
LPE
≡ σ r

The invariant states that if a pointer points to two different memory locations, those
memory locations are both pointer- and location-equivalent.

We can specify the One-Level Flow analysis using the following two invari-
ants:

Pr(ρ1) = (p := &q,P1)
Pr(ρ2) = (p := & r,P2)

q
LPE
≡ σ r

w∈ σ1[x]
{y,z} ⊆ σ1[w]

y
LPE
≡ σ z

Currently, no approximations exploit the ability to separate the notions of
pointer equivalence and location equivalence. An interesting area for future work
is to create new approximations by treating these two notions independently.

4.6 Interprocedural Reference Model

We extend the reference model introduced in Section 4.4 to include multiple
procedures with local variables. For clarity the language is kept simple but could
be extended to include more features as needed.

4.6.1 Overview

The extended language of this section permits multiple procedures and pro-
vides call and return statements. In a language with procedures, variable names
are not equivalent to variable locations, because each procedure invocation must be
distinct. Each invocation of a procedure generates new locations (i.e.,addresses)
for the procedure’s formal parameters and local variables.A variable’s value is
determined by first retrieving the variable’s address for the current invocation, then
looking up the value of that address in the store. Thus the interprocedural semantics
require an extra level of indirection in the memory model.

124

n∈ N x∈ Variable ρ ∈ ProgPoint

pe ∈ ProcEntry ⊂ ProgPoint

e∈ PtrExpr ::= &x | ∗nx

s∈ Stmt ::= ∗nx := e | skip |

∗nx := call pe(e) | return e

Pr ∈ Program : ProgPoint→ Stmt×ProgPoint

Figure 4.8: An unstructured pointer language with procedures.

Because each procedure invocation maps its variables to addresses, the in-
terprocedural semantics also require astack. The stack maintains variable addresses
for nested procedure calls. A procedure call creates new addresses for each of the
procedure’s variables and pushes this information on the stack. A procedure return
pops this information off the stack.

The remainder of this section gives the formal definitions for the syntax,
program domain, and semantics of the interprocedural reference model. These def-
initions are similar to those of Section 4.4, but have been extended to incorporate
the level of indirection required to accommodate addresses.

4.6.2 Syntax

Figure 4.8 extends the reference model language to include procedure calls
and returns. A subset of the program points are distinguished as procedure entry
points; each procedure has a unique entry point, and there isexactly one procedure
entry point that is also the entire program’s entry point. Each procedure also has a
unique exit point, mapped to either〈skip, /0〉 or 〈return e, /0〉.

A procedure body is the set of program points reachable from aprocedure
entry point without transferring control through acall or return. Each procedure
has a formal parameter and a set of local variables associated with it. We define the
following mappings:

body: ProgPoint→ ProgPoint Given a program pointρ, yields all program points

125

in the body of the procedure that containsρ.

param: ProcEntry→Variable maps a procedure entry point to the procedure’s
formal parameter.

locals: ProcEntry→ Variable maps a procedure entry point to the variables that
syntactically appear in the procedure body.

The semantics sometimes must refer to all variables that a procedure di-
rectly references. For convenience, we define this set asvars(pe) = {param(pe)}∪

locals(pe). We assume this set is distinct for each procedure.

4.6.3 Semantic Domain

The semantic domain is similar to that of the intraprocedural model, except
the memory model includes addresses.

Addresses. An address provides a location for a variable. Each formal and local
variable of a procedure is mapped to a new address for each distinct procedure
invocation. The domainAddressis potentially infinite and totally ordered.

Address Maps. An address mapprovides addresses for variables:

m∈ AddressMap: Variable→ Address

Each invocation of a procedure generates an address map for the variables directly
referenced by that procedure. An address mapm implicitly defines an inverse map
m−1 which provides variable names for addresses. We define the function rng(m)

to mean all the addresses in mapm.

Stores. Stores now describe relationships among addresses:

σ ∈ Store: N×Address×Address

Stores and address maps work together to provide a variable’s value. Given an
address mapm and a storeσ, the addresses that alias∗ix are given byσi [m[x]]. We
lift store lookup and update to operate on sets of addresses.

126

Pr(ρ) = 〈skip,P 〉 ρ′ ∈ P ′

〈ρ,σ,A〉
P-BASE
−→ 〈ρ′,σ,A〉

(P-SKIP)

Pr(ρ) = 〈∗nx:=e,P 〉 ρ′ ∈ P ′

kill =

{

[σn[α[x]]
1
7→ σn+1[α[x]]] : |σn[α[x]]|= 1

/0 : otherwise

σ′ = [σn[α[x]]
1
7→ [[e]]σα](σ\kill)

〈ρ,σ,α:A〉
P-BASE
−→ 〈ρ′,σ′,α:A〉

(P-ASSIGN)

[[&x]]σα = {α[x]}

[[∗nx]]σα = σn+1[α[x]]

Pr(ρ) = 〈∗nx:=call pe(e),P 〉

α′ = (ρ,
F

x∈vars(pe)
[x

1
7→ fresh])

σ′ = [α′[param(pe)]
1
7→ [[e]]σα]σ

〈ρ,σ,α:A〉
P-BASE
−→ 〈pe,σ′,α′:α:A〉

(P-CALL)

Pr(ρ) = 〈return e, /0〉
Pr(α.ρ) = (∗nx:=call pe(ec),P

′) ρ′ ∈ P ′

σ′ = [σn[α′[x]] 1
7→ [[e]]σα]σ

〈ρ,σ,α:α′:A〉 P-BASE
−→ 〈ρ′,σ′,α′:A〉

(P-RET)

Figure 4.9: Interprocedural reference model semantics.

127

The following order relation on store, address-map pairs helps prove sound-
ness:

〈σ1,m1〉 ⊑ 〈σ2,m2〉 ⇔

∀x∈ dom(m1) : (∗im1[x],a2) ∈ σ1⇒

∃(∗im2[x],a
′
2) ∈ σ2 |m

−1
2 [a′2] = m−1

1 [a2]

Frames. Each procedure invocation is associated with aframe. A frame is a
program-point, address-map pair:

α ∈ Frame : ProgPoint×AddressMap

A frame provides context for a procedure invocation. The program-point
element corresponds to the statement that invoked the current procedure. The
address-map element provides addresses for each variable directly referenced by
the current procedure. A frame’s elements are referenced with field access nota-
tion. For convenience we writeα[x] to meanα.m[x] andα−1[x] to meanα.m−1[x].

Stacks. A stack is an ordered sequence of frames:

A∈ Stack:
−−−→
Frame

A procedure call pushes a new frame on the stack; returning from a procedure pops
that procedure’s frame from the stack.

Configurations. The configuration structure and order relation are extendedfrom
the intraprocedural model to include a stack:

τ ∈ Configuration: ProgPoint×Store×Stack

〈ρ,σ,〈ρm,m〉:A〉 ⊑ 〈ρ′,σ′,〈ρ′m,m′〉:A′〉 ⇔

(ρ = ρ′)∧ (〈σ,m〉 ⊑ 〈σ′,m′〉)∧ (ρm = ρ′m)

128

4.6.4 Semantics

Figure 4.9 defines the configuration transition relationP-BASE for skip, as-
signment,call, andreturn. RulesP-SKIP andP-ASSIGN propagate the stack with-
out modifying it. The expressionα:A in the conclusion of ruleP-ASSIGN refers to
a stack whose top element isα and whose remaining elements areA. Variable as-
signment has the same strong/weak update semantics as in Section 4.4.4, extended
to incorporate an address map. The expression evaluation function[[]] operates over
both a store and an address map.

RuleP-CALL applies tocall statements. The semantics creates a new frame
for the procedure invocation by generating fresh addressesfor the invoked proce-
dure’s formal and local variables. The argument values are bound to the formal
parameter values. The new frame is pushed on the stack, and control is transferred
to the invoked procedure’s entry point.

Rule P-RET applies toreturn statements. The callee’s return expression is
evaluated in its frame, and the results are stored in the caller’s frame. The callee
frame is popped off the stack, and control is transferred to the program points in the
calling statement’s goto set.

4.7 Interprocedural Pointer Analysis

Interprocedural pointer analysis is a variation of the pointer analysis of Sec-
tion 4.5 modified to operate on configurations that contain address maps. Interpro-
cedural FS-MOP pointer analysis may not terminate, due to recursive calls, heap
allocation, or loops that contain callsites. The analysis designer must ensure that
an approximation guarantees termination. Section 4.8.2 discusses the necessary
termination conditions and suggests how to ensure them.

Figure 4.10 gives the formal definitions of the interprocedural transforma-
tion functions. With two exceptions, the interprocedural transformations are iden-
tical to the intraprocedural ones, modulo address map operations. We provide an
informal overview of the these differences, then show how these small modifica-
tions permit a wider range of pointer analysis approximations.

Induced Trace Equivalence. InterproceduralITE extends intraproceduralITE to

129

T:τ ∈ Γ τ = 〈ρ,σ,〈ρa,ma〉:A〉

Γ′ = {T ′ ∈ Γ | T ′
T
≡ T:τ}

σ′ =
F

{τ′.σ | T ′:τ′ ∈ Γ′}
fm = M ({α′.m | T:τ′ ∈ Γ′∧ τ′.A = α′:A′})
T:〈τ.ρ, fm(σ′),〈ρa, fm◦ma〉:A〉 ∈ fITE(Γ)

(P-ITE)

T:τ1:τ ∈ Γ
ρ′ ∈ {τ.ρ}∪F[(τ1.ρ)]
F[τ1.ρ]⊆ body(τ1.ρ)

T:τ1:〈ρ′,τ.σ,τ.A〉 ∈ fICF(Γ)
(P-ICF)

T:τ ∈ Γ τ = 〈ρ,σ,α:A〉
σ′ =

F

x∈dom(α.m)
IVE(x,τ)

T:〈τ.ρ,σ′,τ.A〉 ∈ fIVE(Γ)
(P-IVE)

IVE(x,〈ρ,σ,α:A〉) = {(∗ia,a′) | a∈ PE∧a′ ∈ LEi}, where

PE = {α[x′] | x
PE
≡σα x′}

LEi = {α[y′] | ay ∈ σi [PE]∧α−1[ay]
LE
≡σα y′}

fm(σ) = {(∗i fm(a1), fm(a2)) | (∗
ia1,a2) ∈ σ}

M (m∗) =
[

m∈m∗

[

x∈dom(m)

{

(m[x],m0[x]) x∈ dom(m0)

(m[x],m[x]) otherwise

where∀mi ∈m∗ : min(rng(m0))≤min(rng(mi))

Figure 4.10: Interprocedural trace transformations.

130

merge address maps as well as stores. The variables of distinct, concrete invocations
are distinct. InterproceduralITE can blur this distinction, in order to tune context
sensitivity. Section 4.7.1 describes several such approximations.

RuleP-ITE in Figure 4.10 defines a functionM , which merges address maps
in a way that permitsITE to ensure termination conditions. The function forces
variables for equivalent contexts to have equivalent addresses in the store. We omit
the technical details for brevity; they can be found in [36].

Induced Control Flow. InterproceduralICF is constrained so that it adds addi-
tional control flow onlywithin the body of a procedure, neverbetweenprocedures.
However, control flow can still pass between arbitrary statements in the program
simply by following the correct sequence of calls and returns between the two state-
ments.

Induced Variable Equivalence. InterproceduralIVE extends intraproceduralIVE

to operate on address maps. TheIVE equivalence relations
PE
≡σ and

LE
≡σ are on vari-

ables, but stores now contain addresses. FunctionIVE translates between these
two domains to ensure that the store properly obeys the equivalence relations.

4.7.1 Context-Sensitivity

Surprisingly, these simple extensions to the intraprocedural version of the
three transformations are sufficient to specify the precision of a host of interpro-
cedural approximations. We show how the transformations can specify both call-
string and functional context-sensitivity, along with a number of variations of the
same.

4.7.1.1 Call-string Equivalence

The currentcall-stack(i.e., the sequence of procedure calls without match-
ing returns that led to the current program point) is contained in the current configu-
ration. Traditional call-string context-sensitivity is specified by using the call-stack
to distinguish contexts, similarly to Emami et al. [28]. We can useITE to union the
stores of all paths to a procedure’s entry point that containidentical call-stacks:

131

A = α1:· · ·:αn A′ = α′1:· · ·:α′n αi .ρ = α′i .ρ

T:〈pe,σ,A〉
T
≡ T ′:〈pe,σ′,A′〉

In the presence of recursion there are an infinite number of possible call-
stacks. The usual response is to only consider thek most recent calls on the stack,
yielding the traditionalk-limitedcontext-sensitivity. However, our framework ex-
poses other opportunities: k-limited context-sensitivity is fairly arbitrary — we can
be more precise, while still maintaining a finite call-stack, by limiting the number
of repeated elementson the call-stack. For example, instead of k-limiting the call-
stack, we could k-limit the unrolling of recursive procedures. Settingk to 0 yields
the common practice of collapsing recursive cycles in the call-graph and treating
them context-insensitively.

Our framework can control the level of context-sensitivityat a very fine
granularity. Guyer et al.’s client-driven pointer analysis [34] allowsper-procedure
context-sensitivity; our framework can capture this approximation by specifying
the dual (i.e., per-procedure context-insensitivity). Tomake a procedure with entry
pointpe context-insensitive, we use the equivalence relation:

T1:〈pe,σ1,A1〉
T
≡ T2:〈pe,σ2,A2〉

Our framework can go further and specify context-sensitivity at aper-call
level, meaning that the contexts for a given procedure are partitioned using the call-
stack, with contexts in the same partition being treated context-insensitively with
respect to each other. Many otherITE equivalence relations based on the call-stack
are possible.

4.7.1.2 Functional Equivalence

Our framework can also determineITE equivalence based on the contents
of the store at procedure entry, specifying something similar to functional context-
sensitivity. It can require that memory stores for equivalent contexts be functionally
identical, similar to Wilson and Lam’spartial transfer functions[82]:

T1:〈pe,σ,A1〉
T
≡ T2:〈pe,σ,A2〉

Our framework can also be used to describeObject-sensitivity[57], which
is a technique for object-oriented programs that uses equivalent contexts for all

132

method calls on the same receiver object. In object-oriented languages, a pointer to
the receiver object, calledthis, is passed as an implicit parameter to all methods; by
using the receiver object in the store to determine trace equivalence, our framework
can specify object-sensitivity:

σ1
1[α1[this]] = σ1

2[α2[this]]

T1:〈pe,σ1,α1:A1〉
T
≡ T2:〈pe,σ2,α2:A2〉

4.7.1.3 Limitations

There is a class of sound context-sensitive approximation,known asbottom-
up context-sensitivity[64], that our framework cannot represent. Its defining char-
acteristic is that (1) like a context-sensitive analysis, information passed to a pro-
cedure from one call-site cannot be returned by that procedure to a different call-
site; (2) unlike a full context-sensitive analysis, all contexts for a given procedure
are merged when analyzing that procedure. Thus, bottom-up context sensitivity
represents a mid-way point between full context-sensitivity and complete context-
insensitivity.

Bottom-up context-sensitivity is achieved by processing aprogram from
the bottom up (hence the name), i.e., it starts at the leaves of the call-graph and
creates summaries of each function, repeatedly propagating information upwards
through the call-graph. Our reference model only allows forward propagation of
information, so it is unable to replicate the effects of bottom-up context-sensitivity.

4.7.2 Heap Model

Until now we have not addressed the issue of dynamic memory. The in-
terprocedural reference model can accommodate it by defining a proceduremalloc
with entry pointpem such thatlocals(pem) = {x} and body(pem) = {return x}.
Each call tomalloc returns a fresh address, which models the potentially infinite
heap space.

The infinite number of addresses that can be returned bymallocimplies that
the pointer analysis may never converge, therefore we need to be able to approxi-
mate the heap using a finite number of abstract memory locations. The interproce-
dural transformations can be used to specify a variety of heap abstractions.

133

The purpose of abstracting the heap is to represent the heap using a finite
number of addresses. Each concretemalloccall is distinct and yields a new address,
so abstracting the heap requires partitioning these addresses into a finite number
of equivalence classes. Since each equivalence class maps to multiple concrete
addresses, the semantics should always use weak updates forany variable that holds
the result of amalloccall.

To accommodate this requirement we modify the definition ofmalloc to:
locals(pem) = {x,y} andbody(pem) = {x := &x,x := &y, return x}. We then use
ITE to ensure that the return value ofmallocmust point to multiple memory loca-
tions (i.e., bothx andy), and therefore these return values will always be subject to
weak updates.

{ρ1,ρ2} ⊆ body(pem)

T1:〈ρ1,σ1,A1〉
T
≡ T2:〈ρ2,σ2,A2〉

(ITE-MALLOC)

We can now specify several common heap models. In a context-sensitive heap
model,malloc should return a fresh address for eachmalloc call-site in each dis-
tinct context; however, multiple traversals of the samemalloccall-site in the same
context should return the same address. A context-sensitive analysis as outlined in
Section 4.7.1 automatically yields a context-sensitive heap model.

A less precise heap model treats each static allocation site(i.e., eachmalloc
call-site) as a single abstract memory location, regardless of the call’s surrounding
context. This model can be specified using a modified form of the context insen-
sitivity transformation from Section 4.7.1.1, which equates traces that end in the
samemalloccall-site.

The least precise heap model represents the entire heap as a single abstract
memory location by forcingmalloc to return the same address for every call. This
model can be specified using a modified form of the context insensitivity transfor-
mation from Section 4.7.1.1, which equates traces that end with pem, the entry point
of malloc.

The heap model can also be parameterized by a constantk. A k-limited heap
model treats each static allocation site ask distinct abstract memory locations. The
first k− 1 calls are modeled with distinct addresses that map to distinct concrete
addresses and can be strongly updated; all subsequent callsare modeled with a

134

single address that may map to multiple concrete addresses and must be weakly
updated. This model can be specified using a modified form ofITE-MALLOC that
equates traces that end in amalloccall-site only if the trace containsk−1 instances
of that same call-site.

The frameworks of Sagiv et al. [71] and Deutsch [26] characterize more
expressive heap approximations than our heap model, because their frameworks
operate on a richer abstract domain. The two frameworks describe incomparable
precision classes [71]. We believe that with some additional effort, our model could
be enriched so that it were more compatible with either Sagivet al.’s or Deutsch’s.
This effort would increase the range of heap approximationsthat we could specify.

4.8 Soundness and Termination

All transformations describe sound analyses. However, an analysis only
terminates under certain conditions. In this section, we outline a soundness proof
and describe the properties required to prove termination.

4.8.1 Soundness

TheITE, ICF, andIVE transformations each generate sound over-approximations
of the FS-MOP solution: all queries returning true in the base analysis are true in
the transformed analysis, but the inverse does not necessarily hold. In this section
we sketch a proof that every analysis described by a combination of transformations
computes a sound approximation of the concrete computation.

Theorem6 (Soundness). Let t = tn ◦ · · · ◦ t1 ◦C be the composition ofn transfor-
mations of a computation, whereti ∈ {ITE, ICF, IVE}. For all programs with ini-
tial configurationsτ0 = 〈ρ0, /0〉 and all queriesφ = 〈ρ,(∗ix,y)〉: C∗({τ0}) |= φ⇒
t∗({τ0}) |= φ.

Proof Sketch.First note that for each transformation functionft , Γ ⊑ ft(Γ) and
that P-BASE is monotone. For the soundness condition to hold, the existence of a
satisfying traceT in C must imply the existence of an overapproximationT ′ ∈ t∗

such thatT ⊑ T ′. This property can be proved by an induction over the length of
computation.

135

4.8.2 Termination

A concrete computation of the reference model does not terminate on pro-
grams that contain cyclic control-flow graphs, because trees have an infinite number
of traces. However, if the domain of configurations is finite then the computation
trees are regular. In this case, we can employ asummarizationtechnique which
terminates the computation when every trace contains a repeated node [73].

The domain of configurations is finite for the intraprocedural but infinite
for the interprocedural model, because address maps are always unique. AnITE

transformation—such ask-limiting the stack—can be employed to ensure termina-
tion by ensuring that all computation trees in the approximate semantics are regular.

4.9 Chapter Summary

In this chapter, we create a formal framework for describingthe space of
possible pointer analysis approximations. This frameworkis useful because it aids
systematic exploration of this space and allows researchers to precisely characterize
the precision of the various algorithms they devise.

The heart of the framework is the idea ofinduced equivalence. We define
a base semantics that describes the most precise, NP-hard MOP pointer analysis.
We then define three semantic transformations that (1) collapse variables together,
(2) collapse program paths together, and (3) add additionalcontrol-flow. These
transformations combine to create a new,approximatesemantics that reduces the
precision of the MOP analysis. However, in return the transformations guarantee
invariants about the approximate analysis that researchers can take advantage of to
create efficient pointer analysis algorithms (the particular invariants guaranteed de-
pend on how the transformations are used; for example, a flow-insensitive analysis
guarantees that every program point has an identical solution, and therefore only a
single solution needs to be computed).

We demonstrate that, by defining various combinations of these transforma-
tions, we can succinctly specify the precision of almost allexisting pointer analysis
algorithms.

136

Chapter 5

Conclusion

Pointer analysis is a fundamental enabling technology for program analy-
sis. The goal of pointer analysis is to resolve the indirection, both in data-flow
and control-flow, that is present in almost all programming languages. The more
precisely that pointer analysis can resolve this indirection, the more effective the
subsequent program analysis can be. Therefore, by improving the scalability of
precise pointer analysis, we will make a positive impact across a wide range of pro-
gram analyses used for many different purposes, including program verification,
model checking, optimization, parallelization, program understanding, hardware
synthesis, and more.

In this thesis, we have presented a suite of new algorithms aimed at im-
proving pointer analysis scalability. We have focused specifically on two types of
pointer analysis: inclusion-based flow- and context-insensitive pointer analysis and
flow-sensitive, context-insensitive pointer analysis. These new algorithms make
inclusion-based analysis over 4× faster while using 7× less memory than the pre-
vious state-of-the-art (Chapter 2); they also enable flow-sensitive pointer analysis
to handle programs with millions of lines of code, two ordersof magnitude greater
than the previous state of the art (Chapter 3).

If we examine the entire set of algorithms described in this thesis, a common
theme emerges: all of the algorithms are based on identifying and exploiting various
types ofequivalence. The four types of equivalence exploited arepointer equiva-
lence (cycle detection in Section 2.3, HVN, HR, HU, and HRU inSection 2.4.1, top-
level pointer equivalence in Section 3.3.2.1),locationequivalence in Section 2.4.2,
program-pointequivalence (sparseness in Sections 3.3, 3.4), andaccessequiva-
lence in Section 3.4.1.3. We believe that these notions of equivalence apply to more
than inclusion-based and flow-sensitive pointer analyses;they can be exploited for
other types of pointer analysis as well, such as context-sensitive pointer analysis.

137

Extending the application of these equivalences to new types of pointer analysis is
an interesting direction for future work.

Another contribution of this thesis is a formal framework for describing the
space of pointer analysis approximations. The space of possible approximations is
complex and multi-dimensional, and until now has not been well-defined in a for-
mal manner. We believe that the framework is useful for its own sake as a method to
meaningfully compare the precision of the multitude of existing pointer analyses,
as well as aiding in the systematic exploration of the entirespace of approxima-
tions. In addition, such a formal framework is a necessary first step towards an
even more ambitious goal:declarativepointer analysis. A given pointer analy-
sis approximation could be specified using our formal framework, and an efficient,
provably correct pointer analysis algorithm could be (semi-)automatically synthe-
sized to compute the given approximation. While such a system is currently out
of reach, it would greatly aid a systematic search of the space of approximations
in order to find “sweet spots” in the trade-off between precision and performance,
as well as being a great boon to non-pointer analysis expertswho still need to de-
rive correct and efficient pointer analysis algorithms to use for their own program
analyses.

In summary, this thesis has presented a method to characterize the space
of pointer analysis approximations and a set of new algorithms that significantly
extend scalability for two distinct points in this space. The formal framework and
the principled approach used to create these new algorithmsoffer clear avenues for
future work, as outlined above.

138

Bibliography

[1] Lars Ole Andersen.Program Analysis and Specialization for the C Program-
ming Language. PhD thesis, DIKU, University of Copenhagen, May 1994.

[2] Dzintars Avots, Michael Dalton, V. Benjamin Livshits, and Monica S. Lam.
Improving software security with a c pointer analysis. In27th International
Conference on Software Engineering (ICSE), pages 332–341, 2005.

[3] John Aycock and R. Nigel Horspool. Simple generation of static single-
assignment form. In9th International Conference on Compiler Construction
(CC), pages 110–124, 2000.

[4] Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K. Rajamani.
Automatic predicate abstraction of C programs. InProgramming Language
Design and Implementation (PLDI), pages 203–213, 2001.

[5] Rajeev Barua, Walter Lee, Saman Amarasinghe, and Anant Agarawal. Com-
piler support for scalable and efficient memory systems.IEEE Trans. Com-
put., 50(11):1234–1247, 2001.

[6] William C. Benton and Charles N. Fischer. Interactive, scalable, declarative
program analysis: from prototype to implementation. In9th International
Conference on Principles and Practice of Declarative Programming (PPDP),
pages 13–24, 2007.

[7] Marc Berndl, Ondrej Lhotak, Feng Qian, Laurie Hendren, and Navindra Uma-
nee. Points-to analysis using BDDs. InProgramming Language Design and
Implementation (PLDI), pages 103–114, 2003.

[8] Gianfranco Bilardi and Keshav Pingali. Algorithms for computing the static
single assignment form.Journal of the ACM, 50(3):375–425, 2003.

[9] Glenn Bruns and Satish Chandra. Searching for points-toanalysis.SIGSOFT
Software Engineering Notes, 27(6):61–70, 2002.

139

[10] Randal E. Bryant. Graph-based algorithms for Boolean function manipula-
tion. IEEETC, C-35(8):677–691, Aug 1986.

[11] J. Cai and R. Paige. Program derivation by fixed point computation. Science
of Computer Programming, 11(3):197–261, 1989.

[12] Venkatesan T. Chakaravarthy. New results on the computability and com-
plexity of points–to analysis. InSymposium on Principles of Programming
Languages (POPL), pages 115–125, 2003.

[13] Walter Chang, Brandon Streiff, and Calvin Lin. Efficient and extensible se-
curity enforcement using dynamic data flow analysis. InComputer and Com-
munications Security (CCS), pages 39–50, 2008.

[14] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of point-
ers and structures. InProgramming Language Design and Implementation
(PLDI), pages 296–310, 1990.

[15] Surajit Chaudhuri. An overview of query optimization in relational systems.
In Symposium on Principles of Database Systems (PODS), pages 34–43, 1998.

[16] Peng-Sheng Chen, Ming-Yu Hung, Yuan-Shin Hwang, Roy Dz-Ching Ju, and
Jenq Kuen Lee. Compiler support for speculative multithreading architecture
with probabilistic points-to analysis.SIGPLAN Notices, 38(10):25–36, 2003.

[17] Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient flow-sensitive
interprocedural computation of pointer-induced aliases and side effects. In
Principles of Programming Languages (POPL), pages 232–245, 1993.

[18] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. Automatic construction
of sparse data flow evaluation graphs. InSymposium on Principles of Pro-
gramming Languages (POPL), pages 55–66, 1991.

[19] Fred Chow, Sun Chan, Shin-Ming Liu, Raymond Lo, and MarkStreich. Ef-
fective representation of aliases and indirect memory operations in SSA form.
In Computational Complexity, 1996.

[20] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of
Logic and Computation, 2(4):511–547, August 1992.

140

[21] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. InSymposium on Principles of Programming Languages (POPL),
pages 238–252, 1977.

[22] R. Cytron and R. Gershbein. Efficient accomodation of may-alias information
in SSA form. InProgramming Language Design and Implementation (PLDI),
pages 36–45, June 1993.

[23] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the
control dependence graph.ACM Transactions on Programming Languages
and Systems, 13(4):451–490, 1991.

[24] Ron K. Cytron and Jeanne Ferrante. Efficiently computing Φ-nodes on-the-
fly. ACM Transactions on Programming Languages and Systems, 17(3):487–
506, 1995.

[25] Manuvir Das. Unification-based pointer analysis with directional assign-
ments.ACM SIGPLAN Notices, 35:535–46, 2000.

[26] Alain Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-
limiting. ACM SIGPLAN Notices, 29(6):230–241, 1994.

[27] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. Reducing the cost of
data flow analysis by congruence partitioning. InComputational Complexity,
pages 357–373, 1994.

[28] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function pointers. In
Programming Language Design and Implementation (PLDI), pages 242–256,
1994.

[29] Manuel Faehndrich, Jeffrey S. Foster, Zhendong Su, andAlexander Aiken.
Partial online cycle elimination in inclusion constraint graphs. ACM SIG-
PLAN Notices, 33(5):85–96, 1998.

141

[30] Stephen Fink, Eran Yahav, Nurit Dor, G. Ramalingam, andEmmanuel Geay.
Effective typestate verification in the presence of aliasing. In International
Symposium on Software Testing and Analysis, pages 133–144, 2006.

[31] Rakesh Ghiya. Putting pointer analysis to work. InPrinciples of Program-
ming Languages (POPL), pages 121–133, 1998.

[32] D. Goyal. An improved intra-procedural may-alias analysis algorithm. Tech-
nical report, New York University, 1999.

[33] David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. Call graph
construction in object-oriented languages. InACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages and Ap-
plications (OOPSLA), pages 108–124, 1997.

[34] Samuel Z. Guyer and Calvin Lin. Error checking with client-driven pointer
analysis.Science of Computer Programming, 58(1-2):83–114, 2005.

[35] Brian Hackett and Radu Rugina. Region-based shape analysis with tracked
locations. InSymposium on Principles of Programming Languages (POPL),
pages 310–323, 2005.

[36] B. Hardekopf, B. Wiedermann, W. Cook, and C. Lin. A unifying framework
for describing the space of pointer analysis approximations. Technical Report
TR-08-32, The University of Texas at Austin, 2008.

[37] Ben Hardekopf and Calvin Lin. The Ant and the Grasshopper: Fast and accu-
rate pointer analysis for millions of lines of code. InProgramming Language
Design and Implementation (PLDI), pages 290–299, 2007.

[38] Ben Hardekopf and Calvin Lin. Exploiting pointer and location equivalence
to optimize pointer analysis. InInternational Static Analysis Symposium
(SAS), pages 265–280, 2007.

[39] Ben Hardekopf and Calvin Lin. Semi-sparse flow-sensitive pointer analysis.
In Principles of Programming Languages (POPL), 2009.

142

[40] Rebecca Hasti and Susan Horwitz. Using static single assignment form to
improve flow-insensitive pointer analysis. InProgramming Language Design
and Implementation (PLDI), pages 97–105, 1998.

[41] Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using CLA: A
million lines of C code in a second. InProgramming Language Design and
Implementation (PLDI), pages 23–34, 2001.

[42] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, andGr Egoire Sutre.
Lazy abstraction. InSymposium on Principles of Programming Languages,
pages 58–70, 2002.

[43] Michael Hind. Pointer analysis: haven’t we solved thisproblem yet? In
Workshop on Program Analysis for Software Tools and Engineering (PASTE),
pages 54–61, 2001.

[44] Michael Hind, Michael Burke, Paul Carini, and Jong-Deok Choi. Interproce-
dural pointer alias analysis.ACM Transactions on Programming Languages
and Systems, 21(4):848–894, 1999.

[45] Michael Hind and Anthony Pioli. Assessing the effects of flow-sensitivity
on pointer alias analyses. InStatic Analysis Symposium (SAS), pages 57–81,
1998.

[46] Susan Horwitz. Precise flow-insensitive may-alias analysis is NP-hard.ACM
Transactions on Programming Languages and Systems, 19(1):1–6, 1997.

[47] Vineet Kahlon. Bootstrapping: a technique for scalable flow and context-
sensitive pointer alias analysis. InProgramming language design and imple-
mentation, pages 249–259, 2008.

[48] J. B. Kam and J. D. Ullman. Monotone data flow analysis frameworks.Acta
Informatica, 7:309–317, 1977.

[49] W. Landi. Undecidability of static analysis.ACM Letters on Programming
Languages and Systems, 1(4):323–337, 1992.

143

[50] William Landi and Barbara G. Ryder. A safe approximate algorithm for
interprocedural pointer aliasing. InProgramming Language Design and Im-
plementation (PLDI), pages 235–248, 1992.

[51] J. R. Larus and P. N. Hilfinger. Detecting conflicts between structure accesses.
In Programming Language Design and Implementation (PLDI), pages 24–31,
1988.

[52] Chris Lattner. LLVM: An infrastructure for multi-stage optimization. Mas-
ter’s thesis, Computer Science Dept., University of Illinois at Urbana-Champaign,
Dec 2002.

[53] O. Lhotak, S. Curial, and J.N. Amaral. Using ZBDDs in points-to analysis.
In Workshops on Languages and Compilers for Parallel Computing (LCPC),
2007.

[54] J. Lind-Nielson. BuDDy, a binary decision package.

[55] Thomas J. Marlowe, William G. Landi, Barbara G. Ryder, Jong-Deok Choi,
Michael G. Burke, and Paul Carini. Pointer-induced aliasing: a clarification.
SIGPLAN Notices, 28(9):67–70, 1993.

[56] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Precise and efficient
call graph construction for c programs with function pointers. Automated
Software Engineering special issue on Source Code Analysisand Manipula-
tion, 11(1):7–26, 2004.

[57] Ana Milanova and Barbara G. Ryder. Annotated inclusionconstraints for pre-
cise flow analysis. InICSM ’05: Proceedings of the 21st IEEE International
Conference on Software Maintenance (ICSM’05), pages 187–196, 2005.

[58] M. Mock, D. Atkinson, C. Chambers, and S. Eggers. Improving program
slicing with dynamic points-to data. InFoundations of Software Engineering,
pages 71–80, 2002.

[59] Robert Muth and Saumya Debray. On the complexity of flow-sensitive dataflow
analysis. Technical Report 99-12, Department of Computer Science, Univer-
sity of Arizona, 2000.

144

[60] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer.
CIL: Intermediate language and tools for analysis and transformation of C
programs. InComputational Complexity, pages 213–228, 2002.

[61] F. Nielson, H. R. Nielson, and C. L. Hankin.Principles of Program Analysis.
Springer-Verlag, 1999.

[62] Diego Novillo. Design and implementation of Tree SSA, 2004.

[63] Esko Nuutila and Eljas Soisalon-Soininen. On finding the strong compo-
nents in a directed graph. Technical Report TKO-B94, Helsinki University of
Technology, Laboratory of Information Processing Science, 1995.

[64] Erik M. Nystrom, Hong-Seok Kim, and Wen mei W. Hwu. Bottom-up and
top-down context-sensitive summary-based pointer analysis. In International
Symposium on Static Analysis, pages 165–180, 2004.

[65] Dusko Pavlovic and Douglas R. Smith. Software development by refinement.
In Bernhard K. Aichernig and Tom Maibaum, editors,Formal Methods at the
Crossroads, volume 2757 ofLecture Notes in Computer Science. Springer
Verlag, 2003.

[66] David Pearce, Paul Kelly, and Chris Hankin. Efficient field-sensitive pointer
analysis for C. InACM Workshop on Program Analysis for Software Tools
and Engineering (PASTE), pages 37–42, 2004.

[67] David J. Pearce, Paul H. J. Kelly, and Chris Hankin. Online cycle detection
and difference propagation for pointer analysis. In3rd International IEEE
Workshop on Source Code Analysis and Manipulation (SCAM), pages 3–12,
2003.

[68] G. Ramalingam. On sparse evaluation representations.Theoretical Computer
Science, 277(1-2):119–147, 2002.

[69] John H. Reif and Harry R. Lewis. Symbolic evaluation andthe global value
graph. InPrinciples of programming languages (POPL), pages 104–118,
1977.

145

[70] Atanas Rountev and Satish Chandra. Off-line variable substitution for scaling
points-to analysis.ACM SIGPLAN Notices, 35(5):47–56, 2000.

[71] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. ACM Transactions on Programming Languages and Systems, 24(3):217–
298, 2002.

[72] Alexandru Salcianu and Martin Rinard. Pointer and escape analysis for mul-
tithreaded programs. InSymposium on Principles and Practices of Parallel
Programming (PPoPP), pages 12–23, 2001.

[73] David A. Schmidt. Trace-based abstract interpretation of operational seman-
tics. Lisp Symbolic Computing, 10(3):237–271, 1998.

[74] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detect-
ing format string vulnerabilities with type qualifiers. InProceedings of the
10th USENIX Security Symposium, pages 201–220, 2001.

[75] Marc Shapiro and Susan Horwitz. Fast and accurate flow-insensitive points-to
analysis. InSymposium on Principles of Programming Languages (POPL),
pages 1–14, 1997.

[76] M. Sharir and A. Pnueli.Program Flow Analysis: Theory and Applications.
Prentice-Hall, 1981.

[77] Manu Sridharan and Rastislav Bodik. Refinement-based context-sensitive
points-to analysis for Java.SIGPLAN Notices, 41(6):387–400, 2006.

[78] Bjarne Steensgaard. Points-to analysis in almost linear time. InSymposium
on Principles of Programming Languages (POPL), pages 32–41, 1996.

[79] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal
of Computing, 1(2):146–160, June 1972.

[80] Teck Bok Tok, Samuel Z. Guyer, and Calvin Lin. Efficient flow-sensitive
interprocedural data-flow analysis in the presence of pointers. In15th Inter-
national Conference on Compiler Construction (CC), pages 17–31, 2006.

146

[81] John Whaley and Monica S. Lam. Cloning-based context-sensitive pointer
alias analysis. InProgramming Language Design and Implementation (PLDI),
pages 131–144, 2004.

[82] Robert P. Wilson and Monica S. Lam. Efficient context-sensitive pointer anal-
ysis for C programs. InProgramming Language Design and Implementation
(PLDI), pages 1–12, 1995.

[83] Suan Hsi Yong, Susan Horwitz, and Thomas W. Reps. Pointer analysis for
programs with structures and casting. InProgramming Language Design and
Implementation (PLDI), pages 91–103, 1999.

[84] Xin Zheng and Radu Rugina. Demand-driven alias analysis for C. InSym-
posium on Principles of Programming Languages (POPL), pages 197–208,
2008.

[85] Jianwen Zhu. Symbolic pointer analysis. InInternational Conference on
Computer-Aided Design (ICCAD), pages 150–157, 2002.

[86] Jianwen Zhu. Towards scalable flow and context sensitive pointer analysis.
In Conference on Design Automation (DAC), pages 831–836, 2005.

[87] Jianwen Zhu and Silvian Calman. Symbolic pointer analysis revisited. In
Programming Language Design and Implementation (PLDI), pages 145–157,
2004.

147

Vita

Ben Hardekopf received a BSE in Electrical Engineering witha 2nd major
in Computer Science from Duke University in 1997. While serving as an active duty
officer in the United States Air Force, he received a Masters in Computer Science
from SUNY at Utica/Rome in 2000. In 2001 he entered the Ph.D. program at The
University of Texas at Austin.

Permanent address: 11005 Floral Park #2135
Austin, Texas 78759

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

148

