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Abstract

ZPL is a parallel array language designed for high per-
formance scientific and engineering computations. Unlike
other parallel languages, ZPL is founded on a machine
model (the CTA) that accurately abstracts contemporary
MIMD parallel computers. This makes it possible to cor-
relate ZPL programs with machine behavior. As a result,
programmers can reason about how code will perform on
a typical parallel machine and thereby make informed de-
cisions between alternative programming solutions. This
paper describes ZPL’s performance model and its syntac-
tic cues for conveying operation cost. Thewhat-you-see-
is-what-you-get(WYSIWYG) nature of ZPL operations is
demonstrated on the IBM SP-2, Intel Paragon, SGI Power
Challenge, and Cray T3E. Additionally, the model is used to
evaluate two algorithms for matrix multiplication. Experi-
ments show that the performance model correctly predicts
the faster solution on all four platforms for a range of prob-
lem sizes.

1. Introduction

High-level programming languages offer an expressive
and portable means of implementing algorithms. They
spare programmers the burden of coding in assembly lan-
guage and simplify the task of porting programs to new
machines. However, without a well-defined performance
model that indicates how language constructs are mapped to
the target machine, the advantages of a high-level program-
ming language are diminished. Without any guidelines as�This research was supported in part by DARPA Grants N00014-92-
J-1824 and E30602-97-1-0152, NSF Grant CCR-9710284, and a grant of
HPC time from the Arctic Region Supercomputing Center.

to how language constructs are implemented, performance-
conscious programmers have little basis on which to make
implementation choices. In addition, programs that execute
efficiently on one platform may suffer significant perfor-
mance degradation on other platforms because there are no
guarantees as to how a compiler will implement the lan-
guage’s features.

Performance models are well-understood for popular se-
quential languages such as C and Fortran, because there is
a clear mapping between their constructs and the von Neu-
mann machine model, which reasonably approximates con-
temporary uniprocessors. This ability to “see” an accurate
picture of the machine through the language is the most cru-
cial characteristic of a good performance model. Note that
although the model does not specify an exact cost for lan-
guage operators and cannot be used to determine the precise
running time of a program, it nevertheless aids program-
mers by giving them a rough sense of the consequences of
their implementation choices.

As a simple example, analysis of the following two loops
shows them to be algorithmically and asymptotically equiv-
alent. However, C programmers use the first implemen-
tation because it accesses the elements in the same order
that C’s language definition requires them to be laid out in
memory. This results in an implementation that respects the
memory hierarchy of contemporary machines.

const int m = 1000, n = 2000;
double A[m][n], B[m][n], C[m][n];
int i, j;

for (i=0; i<m; i++)
for (j=0; j<n; j++)

C[i][j] = A[i][j] + B[i][j];

for (j=0; j<n; j++)
for (i=0; i<m; i++)

C[i][j] = A[i][j] + B[i][j];

Implementation 1 Implementation 2



This example illustrates that even after asymptotic analysis
and algorithmic design, second-order implementation de-
tails are still a factor in obtaining good performance. Al-
though a sophisticated compiler might transform the second
implementation into the first, C’s performance model does
not guarantee this, and therefore programmers concerned
with portable performance will not rely on it. As a result,
the first implementation is theright choice in C. Conversely,
Fortran uses column-major order, so Fortran programmers
will use the second loop ordering. Other aspects of both
languages are subject to similar evaluation, including pa-
rameter passing mechanisms, procedure call overheads, li-
brary routines, and system calls. Consideration of a lan-
guage’s performance model in this way enables high quality
machine-independent programming.

In the realm of parallel programming, there is a simi-
lar need for language performance models that account for
the costs associated with running on multiple processors in
addition to those inherited from the sequential domain. In
particular, these parallel models should emphasize the cost
of interprocessor data movement since communication of-
ten significantly impacts application performance.

ZPL was the first parallel language to provide an ex-
plicit performance model distinct from an implementing
machine. The effectiveness of its performance model is the
result of an early design decision to preserve machine visi-
bility rather than to rely on sophisticated compiler analysis
and optimization. This is in stark contrast with parallel lan-
guages such as High Performance Fortran (HPF) that uti-
lize directives to specify parallelism. Because HPF’s direc-
tives are optional and because the compiler is free to ignore
them, it is difficult for a programmer to reason about an al-
gorithm’s performance without detailed knowledge of the
compiler. Ngo has shown that this lack of a performance
model leads to unpredictable, inconsistent, and poor perfor-
mance [11].

In this paper we describe the performance model of the
ZPL parallel array language. We describe the straightfor-
ward mapping of ZPL constructs to theCandidate Type Ar-
chitecture(CTA), a parallel analog of the von Neumann ma-
chine model that accurately abstracts contemporary MIMD
parallel computers [15]. This allows programmers to rea-
son about the behavior of their ZPL programs on paral-
lel machines. In addition, we demonstrate that ZPL’s syn-
tax inherently identifies operations that induce communica-
tion. These visual cues simplify the first-order evaluation
of a parallel program’s cost and motivate our description of
the performance model as “what-you-see-is-what-you-get”
(WYSIWYG).

We demonstrate the use of ZPL’s WYSIWYG perfor-
mance model in two experiments. The first verifies the ac-
curacy of its syntactic cues across several problem sizes,
architectures, and numbers of processors. The second il-

lustrates the use of ZPL’s performance model to accurately
select the better of two matrix multiplication codes written
in ZPL.

The remainder of the paper is organized as follows. In
the next section, we summarize related work. In Section 3
we provide a brief introduction to ZPL, and in Section 4
we describe its performance model. Section 5 contains ex-
periments designed to validate our performance model. We
conclude in Section 6.

2. Related work

A common method of parallel programming is to use a
scalar language such as C or Fortran, in combination with
message passing libraries such as PVM or MPI. This ap-
proach has an implicit performance model formed by the
performance model inherited from the sequential language
in combination with the explicit interprocessor communica-
tion specified by the programmer. However, coding at this
per-processor level is tedious and error-prone, motivating
the need for higher-level parallel programming languages.

NESL is an example of a higher-level parallel language
that includes a well-defined performance model [2]. It uses
a work/depth scheme to calculate asymptotic bounds for the
execution time of NESL programs on parallel computers.
Although this model matches NESL’s functional paradigm
well and allows users to make coarse-grained algorithmic
decisions, it reveals very little about the lower-level im-
pact of one’s implementation choices and how they will be
mapped to the target machine. For example, the cost of in-
terprocessor communication is considered negligible in the
NESL model and is therefore ignored entirely.

The most prevalent parallel language, High Performance
Fortran [6], suffers from the complete lack of a performance
model. As a result, programmers must re-tune their pro-
grams for each compiler and platform that they use, neu-
tralizing any notion of portable performance. Ngoet al.
demonstrate that this lack of a performance model results in
erratic execution times when compiling HPF programs us-
ing different compilers on the IBM SP-2 [12]. One of the
biggest causes of ambiguity in the performance of HPF pro-
grams is the fact that communication is completely hidden
from the user, making it difficult to evaluate different imple-
mentation options [5]. As an example, Ngo compares ma-
trix multiplication algorithms written in HPF, demonstrat-
ing that there is neither any source-level indication of how
they will perform, nor any consistency in the relative per-
formance of the algorithms [11]. By defining a performance
model to which all HPF compilers must adhere, this prob-
lem could have been alleviated. Most compilers compen-
sate for HPF’s lack of a performance model by providing
tools that give source-level feedback about the compilation
process and/or program execution. The dPablo toolkit [1]



is one such example. The problem with this approach is
that such tools are tightly coupled to a particular compiler’s
compilation model, and therefore do not aid in the creation
of portably performing programs.

In contrast with HPF’s hidden and unspecified communi-
cation model, F�� was developed to make communication
explicit and highly visible to the programmer using a sim-
ple and natural syntax extension to Fortran 90 [13]. This
results in a clearer performance model than HPF, but not
without some cost. The user is forced to program at a local
per-processor level, thereby forfeiting some of the benefits
of higher-level languages, such as sequential semantics and
deterministic execution. Furthermore, by explicitly spec-
ifying interprocessor data transfers, programmers are not
shielded from race conditions and deadlock as they would
be in a higher-level language. Thus, although F�� is more
convenient to use than scalar languages with message pass-
ing, it does not raise the level of abstraction to a sufficiently
convenient level.

These examples demonstrate a tension between provid-
ing the benefits of a high-level language and giving the pro-
grammer a low-level view of the execution costs of their
algorithm. In ZPL, we strive to achieve the best of both
worlds by providing a powerful and expressive language in
which low-level operations such as communication are di-
rectly visible to programmers through the language’s oper-
ators.

3. Introduction to ZPL

ZPL is a portable data-parallel language that has been
developed at the University of Washington. Its syntax is
array-based and includes constructs and operators designed
to expressively describe common programming paradigms
and computations. ZPL has sequential semantics that allow
programs to be written and debugged on sequential work-
stations and then ported to parallel architectures in a single
recompilation.

ZPL generally outperforms HPF and has proven to be
competitive with hand-coded C and message passing [10,
9]. Applications from a variety of disciplines have been
written using ZPL [4, 7, 14], and the language was re-
leased for widespread use in July, 1997. Supported plat-
forms include the Cray T3D/T3E, Intel Paragon, IBM SP-2,
SGI Power Challenge/Origin, clusters of workstations using
PVM and MPI, and sequential workstations.

In this section, we give a brief introduction to ZPL con-
cepts that are required to understand this paper. More com-
plete presentations of the language are available in the ZPL
Programmer’s Guide and Reference Manual [8, 16].

3.1. Regions and arrays

Theregionis ZPL’s most fundamental concept. Regions
are index sets through which a program’s parallelism is ex-
pressed. In their most basic form, regions are simply dense
rectangular sets of indices similar to those used to define
arrays in traditional languages. Region definitions can be
inlined directly into a ZPL program, or given names as fol-
lows:

region R = [1..n ,1..n ];
Top = [0 ,1..n ]; (1)
BigR = [0..n+1,0..n+1];

These declarations define three regions:R is ann�n index
set;Top describes the row just aboveR; BigR is an exten-
sion of R by an extra row and column in each direction.
Diagrams of these regions are shown in Figure 1.

R

(c)

Top

BigR

(a) (b)

Figure 1. Diagrams of the region declarations
in code fragment 1: (a) region R, (b) region
Top , and (c) region BigR . The dashed boxes
indicate the index space [0.. n+1,0..n+1].

Regions have two main roles in ZPL. The first is to de-
clare parallel arrays. This is done by referring to the region
in a variable’s type specifier as follows:

var A: [R] double; (2)
B: [BigR] integer;

These declarations define two arrays:A, ann � n array of
doubles, andB, an integer array defined overBigR. Figure 2
shows diagrams of these arrays.

The second use of regions is to open aregion scopethat
specifies the indices over which an array operation should
execute. For example, the following statement increments
each element ofA by its corresponding value ofB over the
index range specified byR:

[R] A := A + B; (3)

Figure 3 illustrates this statement.
Regions are ZPL’s fundamental source of parallelism.

Each region’s index set is partitioned across the processor
set, resulting in the distribution of each array and operation
defined in terms of that region. Section 4.1 describes the
distribution of regions in more detail.
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Figure 2. Diagrams of the array declarations in
code fragment 2: (a) array A, declared to be of
size R; (b) array B, declared to be of size BigR .
The shading indicates that, unlike regions, ar-
rays have data associated with each index.

:=A A

:= +

+ B[R]

Figure 3. Illustration of the array addition in
code fragment 3. The darker shading indi-
cates the array elements referenced in each
expression.

3.2. The @ operator

Since regions eliminate explicit array indexing, ZPL pro-
vides the@ operatorto allow translated references to ar-
rays. The @ operator takes an array and an offset vector
called adirection as operands and shifts references to the
array by the offset. For example, to replace each element
of B with the sum of its left and right neighbors, one would
write:

[R] B := B@[0,–1] + B@[0,1]; (4)

Directions are generally named in order to improve a
program’s readability. For example, line (4) could have
been written:

direction left = [0,–1];
right = [0,1 ]; (5)

[R] B := B@left + B@right;

Figure 4 shows a picture of this operation. Directions are
typically reused throughout a program, so naming them
meaningfully also reduces careless indexing mistakes.

B[R] :=

:=

B@left B@right

+

+

Figure 4. Illustration of the neighbor summa-
tion expressed in code fragment 5. Note that
the @ operator translates references to B.

3.3. Reductions and floods

Reductionsandfloodsare ZPL’s operators for combin-
ing and replicating array values. The reduction operator
(op<<) uses a binary operator to combine array elements
along one or more dimensions, resulting in an array slice or
scalar value. For example:

[Top] B := +<<[R] B; (6)
[R] biggestA := max<< A;

In the first statement, we use apartial reductionto replace
each element in the top row ofB with the sum of the values
in its corresponding column (illustrated in Figure 5). The
region scope at the beginning of the statement (Top) speci-
fies the indices to be assigned, while the one supplied with
the reduction operator (R) specifies which elements are to
be combined. The two regions are compared to determine
which dimension(s) should be collapsed. The second state-
ment uses afull reduction to merge all the elements ofA
into a single scalar,biggestA, using the “max” operator.
Full reductions require only a single region scope since as-
signment to a scalar does not require a region.

[Top]

+ + ++

B := +<<[R] B

Figure 5. Illustration of the partial reduction
in code fragment 6. Values of B are added
column-wise over R and the sums are as-
signed to the corresponding elements in Top .

The flood operator (>>) is the dual of a partial reduc-
tion. It replicates the values of an array slice across an array.



Consider:

[R] begin
B := >>[Top] B; (7)
A := >>[1,1] A;

end;

This code demonstrates the application of a single region
scope (R) to a block of statements. In the first assignment
statement, the top row ofB is replicated across all the rows
of B in regionR (shown in Figure 6). As with partial reduc-
tions, two regions are needed to specify the flood operation:
one to indicate the source indices of the flood (Top) and the
second to specify the destination (R). In the second state-
ment, the value of the first element ofA is flooded across all
elements ofA in regionR.

>>[Top] BB :=[R]

Figure 6. Illustration of the first flood state-
ment in code fragment 7. Each element of B
in Top is replicated across its corresponding
column in R.

3.4. Gather and scatter

The gather (<##) andscatter (>##) operators are a
means of arbitrarily rearranging data in ZPL. As arguments,
they take a list of arrays that are used to index into the source
or destination array (for gather and scatter, respectively).
For example, the following code uses the scatter operator to
perform a matrix transpose ofB, assigning the result toA:

var I,J: [R] integer;
[R] begin

I := Index1; (8)
J := Index2;
A := >##[J,I] B;

end;

This code makes use of the built-in ZPL arraysIndex1 and
Index2. Indexi is a constant array in which every element’s
value is equal to its index in theith dimension. Thus, this
scatter will replace each element ofA with the element of
B whose index is specified by the corresponding values ofI
andJ. This is illustrated in Figure 7. Although we have set

[R] A := >##[J,I] B

Figure 7. Illustration of the scatter operation
in code fragment 8. Each element in B is as-
signed to the element in A specified by its
corresponding values of J and I.

I andJ to perform a transpose in this example, any permu-
tation or rearrangement of an array’s values is possible.

These operators form a representative sampling of the
features available to the ZPL programmer. In the next sec-
tion we will reason about their implementation costs and
WYSIWYG performance.

4. ZPL’s performance model

The accuracy of ZPL’s performance model depends both
on the mapping of ZPL constructs to the CTA parallel ma-
chine model and on the CTA’s ability to model real paral-
lel computers. If both of these mappings are straightfor-
ward, programmers will be able to accurately reason about
the performance of ZPL programs. In the context of this
paper, the two significant features of the CTA are that it em-
phasizes data locality and that it neither specifies nor places
importance on the processor interconnect topology. ZPL re-
flects the CTA’s emphasis on locality by its syntactic iden-
tification of operators that induce communication. The lack
of emphasis on interconnect topology allows ZPL to com-
pute using a virtual hypergrid of processors.

The performance of ZPL code depends on three criteria:
scalar performance, concurrency, and interprocessor com-
munication. ZPL programs are compiled to C as an interme-
diate format, so their scalar performance is dictated heavily
by C’s performance model. Concurrency and interprocessor
communication are both determined by the distribution of
ZPL regions, arrays, and scalars across the processor grid.

4.1. ZPL’s data distribution scheme

The key to ZPL’s WYSIWYG performance model lies
in its region distribution invariant, which constrains how
regions’ index sets are partitioned across the virtual proces-
sor grid. ZPL dictates that all regions must be partitioned
in a grid-alignedfashion. This implies that each dimension



of the region is mapped independently to its corresponding
dimension in the virtual processor grid. For example, in
two dimensions each region would require two mappings:
one between its rows and the processor rows, the second
between its columns and the processor columns. This no-
tion generalizes tor-dimensional regions onr-dimensional
virtual processor grids (where some dimensions may be de-
generate). Note that partitioning each dimension of a region
using a blocked, cyclic, or block-cyclic scheme results in
grid-alignment. Our ZPL compiler uses blocked partition-
ing by default, and for simplicity we will use this scheme
for the remainder of the paper.

ZPL places additional constraints oninteracting regions.
Two regions are considered to be interacting if they are both
referenced within a single statement. These references can
either be explicit (by referring to the region within a region
scope) or implicit (by referring to an array that was declared
over the region). For example, in the code fragments of Sec-
tion 3, R andBigR are considered to be interacting due to
the use ofB (declared overBigR) within the scope ofR in
code fragment 3. Furthermore,Top andR interact due to
their uses in the partial reduction and flood statements of
code fragments 6 and 7. Thus, all three regions are interact-
ing.

ZPL requires the mapping functions used to partition in-
teracting regions to be identical for all indices common to
both regions. For example, sinceR andTop are interact-
ing, columni of Top must be mapped to the same processor
column as columni of R for all i, 1 � i � n. Since this
requirement applies to every dimension, any index common
to a pair of interacting regions must necessarily be located
on the same processor for both regions. Thus, every index(i; j) of R will be mapped to the same processor as the cor-
responding index(i; j) in BigR.

Once regions are partitioned across the processors, each
array is allocated using the same distribution as the region
over which it was declared. Array operations are computed
on the processors that own the elements in the enclosing re-
gion scopes. Thus, region partitioning determines the con-
currency of a ZPL program.

One final characteristic of ZPL’s data distribution
scheme is that scalar variables are replicated across pro-
cessors. Coherency is maintained either through redundant
computation or interprocessor communication.

It might be argued that ZPL’s data distribution scheme
is overly restrictive, forcing programmers to formulate their
problems in terms that are amenable to the region distribu-
tion invariant. Alternatively, ZPL could support arbitrary ar-
ray alignment and indexing, thereby providing greater flex-
ibility to the programmer. The problem with this approach
is that the communication cost of a statement would be
determined by the degree to which its arrays are aligned,
something that would not be apparent in the source code.

Thus, estimating performance in such a scheme would re-
quire programmers to look at their code more globally than
the statement level. In contrast, ZPL’s communication costs
are dependent only on the operations within a statement and
can therefore be trivially identified. These costs are evalu-
ated qualitatively in the next section.

4.2. Qualitative evaluation of operators

Once ZPL’s data distribution scheme is defined, the rel-
ative costs of its operators become readily apparent. For
example, in the element-wise addition and assignment of
code fragment 3, we know that corresponding elements of
A and B are assigned to the same processor and therefore no
communication is required to complete this operation. By
this same reasoning any ZPL statement that only uses as-
signment, traditional operators, and function calls will also
be communication-free. Thus, communication is only in-
duced when ZPL’s nontraditional operators are used, allow-
ing programmers to readily identify it. Furthermore, the
cost of these communications can be estimated based on an
understanding of the data distribution scheme.

The @ operator. Since the @ operator is used to shift
an array’s references, interacting array values are no longer
guaranteed to reside on the same processor. Therefore,
point-to-point communication is required to transfer remote
values to a processor’s local memory. For example, in the
case of a blocked decomposition, the statement in code frag-
ment 5 would require each processor to exchange a column
of B with both of the neighboring processors in its row.
Since the @ operator generally requires such communica-
tion, the programmer can expect that array references with
@’s will tend to be more expensive than normal array refer-
ences.

Floods and reductions. Flooding replicates values along
one or more dimensions of an array. Since the region dis-
tribution invariant guarantees that array slices will reside on
processor slices, flooding can be achieved by broadcasting
values to processors within the appropriate slice. For exam-
ple, the first flood in code fragment 7 requires that each pro-
cessor owning a section ofTop broadcast its relevant values
of B to the processors in its column. Similarly, the second
statement requires the processor with the first element ofA
to broadcast the value to all other processors. Once the data
is received, it can be replicated across the processor’s lo-
cal block of values. Due to the fact that broadcasts become
more expensive as the number of processors grows, we can
expect the cost of flooding to increase similarly.

Partial reductions are the dual of flooding, so they will
need to combine values along a processor slice, placing the
result at the appropriate processor (e.g., using a combining



communication communication communication
operator paradigm complexity volume flops

@-reference point-to-point O(1) O(n) 0
flood broadcast O(log p) O(n) 0

partial reduce reduction O(log p) O(n) O(n2)
full reduce reduction O(log p) O(1) O(n2)

gather/scatter permutation O(p2) O(n2) 0
Table 1. Summary of the expected cost per processor of select ed ZPL operators, assuming a p � p
processor grid with a distribution of n � n array elements per processor. Communication paradigm
indicates the induced style of data transfer; communication complexity signifies the depth of the
communication schedule; communication volume indicates the number of elements transferred at
each step in the schedule; flops indicates the number of floating point operations required t o perform
the operation.

tree). Full reductions are similar, but require a final broad-
cast to replicate the resulting scalar value across all proces-
sors. Since reductions have communication patterns that
are similar to flooding, we expect them to scale similarly,
but to be more expensive due to the operations required to
combine array values.

Gathers and scatters. Gathers and scatters are used to
express arbitrary data movement and therefore tend to move
larger volumes of data in less regular communication pat-
terns. They will tend to require more communication due
to the fact that the source, target, and indexing arrays are all
distributed across the processor grid. Performance is further
impacted by the cache contention resulting from the number
of arrays in use as well as the random data access required
for the source or destination array. As a result of all of these
factors, the programmer can expect gathers and scatters to
be the most expensive operation described in this paper.

Other operators. Table 1 summarizes this analysis of
ZPL operators, estimating their expected costs asymptoti-
cally in terms of problem and processor grid size. ZPL con-
tains additional operators not described in this paper such
as wraps, reflects, and partial and full scans. Although
it could be enlightening to discuss each of them in turn,
the more important point is this:Knowing what an oper-
ator does and being familiar with ZPL’s data distribution
scheme, it is possible for a programmer to qualitatively as-
sess the communication style required by any operator as
well as to roughly estimate its performance impact.In this
way, the communication in a ZPL program is directly vis-
ible to programmers without burdening them with the task
of explicitly specifying data transfer. What they see is what
they get.

5. Experiments

In this section, we experimentally demonstrate the effec-
tiveness of the ZPL performance model. In the first exper-
iment, we measure the execution time of a number of ZPL
statements and compare the results to our expectations from
the qualitative analysis of the previous section. In the sec-
ond experiment, we show that the source-level evaluations
of two matrix multiplication algorithms can accurately pre-
dict their relative performance.

Both experiments were run on four different parallel ma-
chines: the IBM SP-2, the Intel Paragon, the SGI Power
Challenge, and the Cray T3E. All interprocessor communi-
cation was efficiently implemented using the communica-
tion libraries of each machine: MPI on the Power Challenge
and the SP-2, NX on the Paragon, and SHMEM on the T3E.

5.1. Performance of ZPL operations

Figure 8 shows the measured execution times of several
ZPL operations performed on arrays of doubles: array copy
([R] A := B), array addition ([R] A := A+B), array transla-
tion ([R] A := B@south), flooding ([R] A := >>[Top] B),
partial reduction ([Top] B := +<<[R] A), full reduction
([R] sum := +<< B), and matrix transpose using scatter
([R] A := >##[J,I] B). Each graph shows the statements’
execution times on three processor grids of varying size.
Each row of graphs represents a particular machine, while
each column represents a specific problem size. The prob-
lem size indicates the number of elements ofR assigned to
eachprocessor.R is scaled in this way to maintain similar
cache effects and data transfer volumes across all processor
grids for a platform. Note that statements which scale per-
fectly will have consistent running times within a graph. By
comparing bars within a graph, across a row of graphs, or
along a column of graphs, one can evaluate how ZPL’s op-
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Figure 8. Measured performance of ZPL operations. Each grap h shows the execution times on three
processor configurations. Each column of graphs represents a per-processor problem size, and
each row represents a machine.

erators scale with the number of processors, scale with the
problem size, and perform across architectures.

Although numerous observations can be made from
these graphs, we list just a few to highlight performance
issues related to our analysis in the previous section. To
begin with, the WYSIWYG model indicates that the array

copy and array addition statements should require no com-
munication and therefore scale perfectly as the number of
processors increases. This is demonstrated to be true by the
consistent execution times of the first two bars within each
graph.

Comparing the array translation (bar 3) with the array



communication communication elements
statement complexity volume flops referenced
[R] A := B 0 0 0 2n2
[R] A := A+B 0 0 n2 2n2
[R] A := B@south 1 n 0 2n2
[R] A := >>[Top] B log p n 0 n2 + n
[Top] B := +<<[R] A log p n n2 � n n2 + n
[R] sum := +<< B 2 log p 1 n2 n2
[R] A := >##[J,I] B p2 n2 0 4n2

Table 2. Summary of expected statement costs per processor. The first three columns are as in Ta-
ble 1. Elements referenced gives the number of distinct array references required by ea ch statement.

copy (bar 1), we see that it tends to be more expensive as
expected, due to the required communication. The differ-
ence is least significant for the single processor cases where
there is no communication. Note that for the SP-2, Paragon,
and Power Challenge, where only a modest number of pro-
cessors were available, increasing the processor grid sizere-
sults in an increased execution time in spite of the expectedO(1) communication complexity. This is due to the fact that
each processor in a2 � 2 grid is either a source or a desti-
nation of communication, while larger grids require some
processors to do both. On the T3E where more processors
are available, it can be seen that the time to perform the
translation levels off, confirming the predictedO(1) com-
munication complexity. On all platforms, the time required
to perform then2 assignments tends to dominate theO(n)
communication as the problem size grows, reducing the per-
formance gap between the two types of assignment.

As predicted, the flood operator’s performance (bar 4)
becomes slower as the number of processors increases.
Looking at how the flood operator scales with the number
of processors, note that on the Cray T3E where large pro-
cessor sets were available, the flood does not level off as the
@ operator did. This is consistent with itsO(log p) com-
munication complexity as predicted in Table 1.

Examining the partial and full reductions (bars 5 and 6),
we see that they similarly match their predicted commu-
nication complexity, becoming more expensive as the the
number of processors increases. In addition, note that on
smaller problem sizes where communication is less domi-
nated by theO(n2) computation, the full reduction does not
scale with the number of processors as well as the partial
reduction. This is evidence of the fact that the full reduce
requires a broadcast in addition to the reduction overall the
processors, whereas the partial reduction simply requiresa
reduction over a single column of processors.

Finally, as predicted, the scatter-based matrix transposi-
tion (bar 7) consistently proves to be significantly more ex-
pensive than the other operators, generally costing an order

of magnitude more than the next most expensive statement.
There are a few results that may seem surprising at first

glance. For instance, why are the floods so much cheaper
than other statements on so many configurations? And why
do full reductions often outperform partial reductions when
they require more communication? The proper response
to these questions is to notice that our analysis up to this
point has been concerned with parallel performance issues
to the exclusion of the scalar component of the performance
model—in particular, the memory hierarchy.

To rectify this problem, let us consider the statements
more thoroughly. Table 2 presents a summary of the state-
ments’ costs, using an analysis similar to Table 1. We dis-
pense with the big-O notation in order to display constants
that may be relevant for this analysis. In addition, we in-
spect the regions and arrays used in each statement to deter-
mine the number of distinct elements that it references. For
example, the array copy statement accesses all elements in
A andB overR and therefore references2n2 elements.

With this more complete analysis, it becomes appar-
ent that the memory hierarchy accounts for these seem-
ing anomalies. For example, the flood is shown to refer-
ence fewer array elements than all other statements except
the reductions (which requireO(n2) additions). Thus, its
modest memory requirements and lack of floating point op-
erations most likely account for its better relative perfor-
mance. Memory requirements can also explain the dispar-
ity between the partial and full reductions since the full re-
duction can accumulate its values into a scalar rather than
an array, resulting in greater locality. The fact that the ob-
served behaviors are amplified on larger problem sizes and
the Paragon (which has a smaller cache) serves as further
confirmation that the memory hierarchy is responsible.

It is important to realize that the contents of Table 2 can
be generated simply by examining the statements individ-
ually, reasoning about the type of communication they re-
quire, and calculating the number of array references, all
within the context of the ZPL performance model. No fur-



direction right = [0,1];
below = [1,0];

region R = [1..n,1..n];

var A,B,C:[R] double;

(a) Common declarations for
n� n matrix multiplication

[R] begin
C := 0.0;
for i := 1 to n do

C += (>>[1..n,i] A) � (>>[i,1..n] B);
end;

end;

(b) SUMMA matrix multiplication

[R] begin
/* initialize matrices by skewing */
for i := 2 to n do

[right of R] wrap A;
[i..n,1..n] A := A@right;
[below of R] wrap B;
[1..n,i..n] B := B@below;

end;
/* compute first product and iterate */
C := A � B;
for i := 2 to n do

[right of R] wrap A;
A := A@right;
[below of R] wrap B;
B := B@below;
C += A � B;

end;
end;

(c) Cannon’s matrix multiplication

Figure 9. Two algorithms for n � n matrix multiplication in ZPL and their common declarations .

ther information is needed to produce these estimates, and
yet they can accurately characterize performance. In the
next section we use this identical technique to evaluate ma-
trix multiplication algorithms.

5.2. Matrix multiplication

Although analyzing the performance of individual ZPL
statements is instructive, the real test of the WYSIWYG
performance model is in evaluating whole algorithms. In
Figure 9, we give two ZPL implementations for dense
matrix-matrix multiplication: SUMMA [17] and Cannon’s
Algorithm [3]. SUMMA is considered to be the most scal-
able of portable parallel matrix multiplication algorithms.
It iteratively floods a column of matrixA and a row of ma-
trix B, accumulating their product inC. Cannon’s algorithm
skews theA andB matrices as an initialization step and then
iteratively performs cyclic shifts ofA and B, multiplying
and accumulating them into theC matrix. The skewing and
cyclic shifts are achieved using ZPL’swrapoperator within
an of region—another form of point-to-point communica-
tion in ZPL.

Analyzing these algorithms asymptotically reveals that
they both performO(n3) computation andO(n) commu-
nications. However, using the WYSIWYG performance
model as we did in the previous section, we can perform
a more precise evaluation.

Table 3 summarizes the results of this analysis. The first
column shows that the initialization step of Cannon’s algo-

rithm requires it to perform twice as many communications
than the SUMMA algorithm overall. Although the commu-
nication in Cannon’s algorithm is more scalable due to itsO(1) communication complexity, it is not obvious that this
will be sufficient to make up for the factor of two difference
in the number of communications. Looking at the memory
footprint of each algorithm, we see that the implementa-
tion of Cannon’s algorithm touches far more memory than
SUMMA. This is due not only to its initialization step, but
also because it accesses every element of all three matrices
while performing the shifts in its main loop. In contrast,
each iteration of SUMMA only has to referencen elements
of theA andB matrices to perform the floods.

Based on this analysis, we can hypothesize that SUMMA
will tend to outperform Cannon’s algorithm, especially on
the larger problem sizes where memory is expected to be-
come the bottleneck.

To test our hypothesis, we ran both programs on the same
four machines for a variety of problem sizes (once again
scaling the problem to maintain a constant amount of data
per processor). Figure 10 shows our results and verifies
that SUMMA outperforms Cannon’s algorithm in all cases.
Performing the equivalent experiment in HPF, Ngo demon-
strated that not only is it virtually impossible to predict the
relative performance of these algorithms by looking at the
HPF source, but also that neither algorithm consistently out-
performs the other across all compilers [11]. ZPL’s WYSI-
WYG performance model makes both source-level evalua-
tion and portable performance a reality.



number of communication communication elements
algorithm communications complexity volume flops referenced

Cannon 4n 1 n 2n3 � n2 n � (2n22 + 3n2)
SUMMA 2n log p n 2n3 n � (n2 + 2n)

Table 3. Summary of the expected costs of the matrix multipli cation algorithms per processor. Num-
ber of communications indicates the number of times a communication (cyclic shift or flood) is used
by the algorithm. The other communication statistics are re ported per communication. All other
columns are as in Table 2.

5.3. Summary

In our experiments, we see that ZPL’s WYSIWYG per-
formance model allows us to reason about the execution of
a program without having a specific machine in mind. It
should be noted that, as in the sequential domain, ZPL’s
performance model does not yield exact information about
a program’s running time. This would be impossible. How-
ever, it does allow programmers to be aware of the implica-
tions of their implementation decisions by making the map-
ping of their code to a parallel machine explicit. As with
sequential languages, a programmer’s intuition may be in-
accurate due to the complexity of modern machines or the
impact of compiler optimizations (e.g., pipelining commu-
nication or removing redundant communications). How-
ever, we expect that by revealing the mapping of ZPL to
parallel machines, both through its performance model and
its syntactic cues, the programmer will be better equipped
to confront these challenges.

6. Conclusions and future work

A language’s performance model gives programmers a
rough understanding of a code’s performance, facilitating
the selection between alternative implementations. Such
models are particularly crucial in the parallel domain where
the cost of language features may vary greatly in magnitude
(e.g., local versus remote memory access). Yet, ZPL is the
first high-level parallel programming language to present a
performance model that allows users to see the target ma-
chine through their code. This is done by cleanly map-
ping the language to the hardware via the CTA machine
model, and it gives programmers the ability to reason about
a code’s relative performance. Moreover, operators that in-
duce communication are clearly visible in ZPL syntax. We
refer to this as ZPL’s WYSIWYG performance model. We
have given an explanation of how the language achieves it,
demonstrated how programmers can use it, and experimen-
tally verified that a diverse collection of parallel machines
respect it.

In future work we will be extending the ZPL language to
handle irregular and sparse problems. The challenge will be
to do so while preserving ZPL’s WYSIWYG properties.
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