
CopyrightbyIbrahim Hur2006

The Dissertation Committee for Ibrahim Hurerti�es that this is the approved version of the following dissertation:
Enhaning Memory Controllers to Improve DRAMPower and Performane

Committee:Calvin Lin, SupervisorKathryn S. MKinleyMargarida F. JaomeGustavo de VeianaDewayne E. Perry

Enhaning Memory Controllers to Improve DRAMPower and PerformanebyIbrahim Hur, B.S.; M.S.
DissertationPresented to the Faulty of the Graduate Shool ofThe University of Texas at Austinin Partial Ful�llmentof the Requirementsfor the Degree ofDotor of Philosophy

The University of Texas at AustinDeember 2006

To Ee

Aknowledgments
This work would not have been possible without the relentless support and enour-agement of my advisor Dr. Calvin Lin. I would like to thank him for his wisdom,advie, patiene, and invaluable guidane during my dotoral studies.I would also like to thank members of my dissertation ommittee, Dr. KathrynS. MKinley, Dr. Margarida F. Jaome, Dr. Gustavo de Veiana, and Dr. DewayneE. Perry. I espeially thank Dr. MKinley for taking time and e�ort to help meimprove this dissertation.Many thanks to David W. Matula, Harvey G. Cragon, Earl Swartzlander,and Turhan Tunali who inspiredme to do researh in omputer arhiteture. Thanksto my friends Alper Buyuktosunoglu, Daniel A. Jimenez, Men-Chow Chiang, andBrian O'Krafka for their help in my researh. Thanks to Alison N. Norman, MariaJump, and all members of the Speedway group for their feedbak on my pratietalks. I also thank Murat M. Tanik, Mehmet M. Kayaalp, and Cengiz Erbas fortheir help during my �rst years in the graduate shool.I would like to thank the faulty and sta� of The University of Texas atAustin. I espeially thank Melanie Gulik and Gem Naivar for their help in everyadministrative issue. I also thank International Business Mahines Corporation forgiving me resoures, �nanial support, and exibility during my graduate studies.I am very fortunate to have wonderful parents and a sister who have alwaysbelieved in me. I thank my father Hamza, my mother Mu�de, and my sister Sa�yev

for their onstant enouragement. I am grateful to Remziye Sener Devei, TekinSayilar, and Neset Sayilar for their inuene on me for doing aademi researh.I would also like to thank my grandparents for their belief in the importane ofeduation.Finally, many thanks go to my best friend Ee. I am truly grateful to herfor her unonditional support over many years. Without her enouragement duringevery day of my graduate studies, I would not be able �nish this dissertation.
Ibrahim HurThe University of Texas at AustinDeember 2006

vi

Enhaning Memory Controllers to Improve DRAMPower and PerformanePubliation No.Ibrahim Hur, Ph.D.The University of Texas at Austin, 2006Supervisor: Calvin Lin
Tehnologial advanes and new arhitetural tehniques have enabled pro-essor performane to double almost every two years. However, these performaneimprovements have not resulted in omparable speedups for all appliations, beausethe memory system performane has not kept pae with proessor performane inmodern systems. In this dissertation, by onentrating on the interfae between theproessors and memory, the memory ontroller, we propose novel solutions to allthree aspets of the memory problem, that is bandwidth, lateny, and power.To inrease available bandwidth between the memory ontroller and DRAM,we introdue a new sheduling approah. To hide memory lateny, we introdue avii

new hardware prefething tehnique that is useful for appliations with regular orirregular memory aesses. And �nally, we show how memory ontrollers an beused to improve DRAM power onsumption.We evaluate our tehniques in the ontext of the memory ontroller of ahighly tuned modern proessor, the IBM Power5+. Our evaluation for both tehni-al and ommerial benhmarks in single-threaded and simultaneous multi-threadedenvironments show that our tehniques for bandwidth inrease, lateny hiding,and power redution ahieve signi�ant improvements. For example, for single-threaded appliations, when our sheduling approah and prefething method areimplemented together, they improve the performane of the SPEC2006fp, NAS, anda set of ommerial benhmarks by 14.3%, 13.7%, and 11.2%, respetively.In addition to providing substantial performane and power improvements,our tehniques are superior to the previously proposed methods in terms of ost aswell. For example, a version of our sheduling approah has been implemented inthe Power5+, and it has inreased the transistor ount of the hip by only 0.02%.This dissertation shows that without inreasing the omplexity of neither theproessor nor the memory organization, all three aspets of memory systems an besigni�antly improved with low-ost enhanements to the memory ontroller.

viii

Contents
Aknowledgments vAbstrat viiList of Tables xiiiList of Figures xivChapter 1 Introdution 11.1 Our Solution . 21.2 Thesis Statement . 31.3 Contributions . 31.4 Organization . 5Chapter 2 Bakground and Methodology 62.1 A Modern Arhiteture: The IBM Power5+ 62.1.1 DRAM Organization and Power Consumption 82.1.2 Arhitetural Parameters . 92.2 Simulation Methodology . 102.2.1 Proessor, Nest, and Main Memory Simulators 112.2.2 Veri�ation of the Simulators 122.2.3 Simulation Approahes . 13ix

2.3 Benhmarks and Mirobenhmarks 132.3.1 Test Case Generation . 16Chapter 3 Improving Memory Bandwidth with Smart Sheduling 183.1 Adaptive History-Based Memory Shedulers 223.1.1 History-Based Shedulers . 233.1.2 Design Details of History-Based Shedulers 243.1.3 Adaptive Seletion of Shedulers 293.2 Experimental Results . 303.2.1 Evaluating Previous Approahes 303.2.2 Tuning the AHB Sheduler 333.2.3 Benhmark Results . 353.2.4 Understanding the Results 383.3 Sensitivity Analysis . 433.3.1 Memory Controller Parameters 443.3.2 DRAM Parameters . 493.3.3 System Parameters . 513.4 Hardware Costs . 533.5 Summary . 54Chapter 4 Improving Memory Lateny of Irregular Appliations 564.1 Memory Prefething Using Adaptive Stream Detetion 594.1.1 Adaptive Stream Detetion 604.1.2 Using the SLH to Detet Loality 624.1.3 Prefether Design . 634.1.4 Implementation of Adaptive Stream Detetion 654.1.5 Adaptive Sheduling . 664.2 Experimental Results . 67x

4.2.1 Hardware Costs . 684.2.2 Benhmark Results . 684.2.3 Detailed Results . 724.3 Summary . 80Chapter 5 DRAM Power Optimizations 815.1 Power- and Performane-Aware Memory Controllers 835.1.1 Power-Down Unit in the Memory Controller 835.1.2 Power-Aware Adaptive History-Based Shedulers 855.2 Evaluation of the Power-Down Mehanism 875.2.1 DAXPY Results . 875.2.2 Stream and NAS Results . 905.3 Throttling Mehanism . 915.3.1 Estimating the Throttling Delay 925.3.2 Relationship Between Power and Throttling Delay 945.3.3 Models for Throttling Delay 945.3.4 Regression Models . 965.3.5 Statistial Analysis . 975.3.6 Comparison of the Model Results 985.4 Summary . 98Chapter 6 Related Work 1026.1 Methods to Improve Bandwidth . 1026.1.1 Stati Methods . 1026.1.2 Dynami Methods . 1036.2 Hardware Prefething for Irregular Appliations 1046.3 DRAM Power Optimizations . 1066.3.1 Hardware-Based Approahes 106xi

6.3.2 Compiler- or Operating System-Based Approahes 1076.3.3 Hybrid Approahes . 108Chapter 7 Conlusions and Future Work 110Bibliography 115Vita 123

xii

List of Tables
2.1 Power onsumption for various states of the Miron 512MB DDR2. . 92.2 Base parameters for the IBM Power5+. 102.3 The extended set of Stream Benhmarks. 142.4 The NAS Benhmarks. 152.5 The SPEC2006fp Benhmarks. 163.1 Performane (in CPI) of the Previous Sheduling Approahes for theStream Benhmarks. 333.2 Tuning of the AHB Sheduler. 343.3 Comparison of CPI's of the AHB sheduler to the in-order and mem-oryless shedulers for the Stream benhmarks. 363.4 Comparison of CPI's of the AHB sheduler to the in-order and mem-oryless shedulers for the NAS benhmarks. 363.5 Comparison of CPI's of the AHB sheduler to the in-order and mem-oryless shedulers for the ommerial benhmarks. 37

xiii

List of Figures
2.1 The IBM Power5+ hip. 72.2 The Power5+ memory ontroller. 82.3 Perent error, in CPI, introdued by trae sampling, for the NASbenhmarks. 172.4 Perent error, in CPI, introdued by trae sampling, for the SPEC2006fpbenhmarks. 173.1 Transition diagram for the urrent state R1W1R0. Eah availableommand type has di�erent seletion priority. 243.2 Overview of dynami seletion of arbiters in memory ontroller. . . 293.3 Performane omparison on our mirobenhmarks. 383.4 Utilization of the DRAM for the daxpy kernel. 383.5 Comparison of retry rates. 393.6 Comparison of the number of bank onits in the reorder queues. . 403.7 Redution in the ourrenes of empty reorder queues, whih is ameasure of the oupany of the reorder queues. 413.8 Inreases in the ourrenes where the CAQ is the bottlenek. . . . 413.9 Redution in standard deviations for 16-di�erent address o�sets. . . 423.10 ST and SMT results for the memoryless and the AHB with varyinglengths of the CAQ. 45xiv

3.11 ST and SMT results for memoryless and AHB with various reorderqueue lengths. 473.12 ST and SMT results for the memoryless and the AHB with varyingwait times for bank onits. 493.13 ST and SMT results for memoryless and AHB, varying memory ad-dress and data bus widths. 503.14 ST and SMT results for memoryless and AHB, varying the maximumnumber of DRAM ommands. 513.15 ST and SMT results for the memoryless and the AHB with varyingnumber of banks in a rank. 523.16 ST and SMT results for memoryless and AHB, with 1.5x, 2x, 3x, and4x proessor frequeny. 534.1 Stream Length Histogram (SLH) for an arbitrary epoh of the GemsFDTDbenhmark. 614.2 Stream Length Histograms (SLH) for the GemsFDTD benhmarkfrom the SPEC2006fp suite show that the SLH's vary widely at dif-ferent points in time. Here the epoh length is 2000 reads. 614.3 Overview of our prefether. 644.4 Performane improvements for the SPEC2006fp Benhmarks. . . . 684.5 Performane improvements for the NAS Benhmarks. 694.6 Performane improvements for the ommerial benhmarks. 704.7 DRAM Power and Energy omparison for the SPEC2006fp benhmarks. 704.8 DRAM Power and Energy omparison for the NAS benhmarks. . . 714.9 DRAM Power and Energy omparison for the ommerial benhmarks. 714.10 Impat of Adaptive Stream Detetion and Adaptive Sheduling. . . 734.11 Stream Length Histograms of eight benhmarks. Streams of lengthsbetween 1 and 5 onstitute 78{96% of all streams. 74xv

4.12 E�etiveness of our prefething approah. 754.13 Sensitivity of PMS to prefeth bu�er size. 754.14 Sensitivity of PMS to stream �lter size. 764.15 Performane e�ets of overage rate. Solid line represents the per-fet prefether, \+" represents our ASD prefether, dotted line is forthe maximum overage that a memory-side prefether an ahievewithout prefething the �rst elements of streams, and 100% overageorresponds to the ideal prefether. 774.16 Auray of alulating Stream Length Histograms. 795.1 Left: Power onsumption of Inorder, Memoryless, and Adaptive History-Based shedulers (without the Power-Down mehanism). Right: Per-formane of these three shedulers. 885.2 Left: Power onsumption of Inorder, Memoryless, and Adaptive History-Based shedulers with the Power-Down mehanism. Right: Perfor-mane of these shedulers with the Power-Down mehanism. 885.3 EÆieny Comparison, Left: no Power-Down, Right: with Power-Down. 895.4 Comparison of power onsumption for the Stream Benhmarks. . . 905.5 EÆieny omparison for the Stream Benhmarks. 915.6 Comparison of power onsumption for the NAS Benhmarks. 925.7 EÆieny omparison for the NAS Benhmarks. 935.8 Relationship between DRAM power onsumption and the throttlingdelay, for the Stream benhmarks. 955.9 Errors in prediting the throttling delay, T. 995.10 Proximity to the target DRAM power. 100
xvi

Chapter 1
Introdution

In the past few deades, advanes in silion proess tehnology have signi�antlyredued the size and swithing times of transistors. As a result, both the numberof transistors on a single die and lok rates of proessors have inreased rapidly,enabling proessor performane to double almost every two years. However, theseperformane improvements have not resulted in omparable speedups for all applia-tions. For instane, inreasing proessor performane by 50% of an IBM Power5+system improves the performane of the SPEC2006 benhmarks by only 13.1%.Overall performane does not sale at omparable rates in all appliations beausethe memory system performane has not kept pae with proessor performane inmodern systems.There are two aspets of the memory system performane: lateny and band-width. Today, latenies have already reahed hundreds of proessor yles, beausememory aess delays do not derease as fast as proessor speeds inrease. More-over, memory latenies are expeted to beome even longer in the foreseeable futurebeause memory developers are required to reate a balane between the speed andapaity of memory hips, rather than fousing solely on speed. In order to tol-erate growing latenies, modern systems inreasingly use tehniques, suh as data1

prefething and simultaneous multithreading, whih often elevate memory band-width demands. In addition to lateny tolerating tehniques, tehnology trends,suh as faster proessor lok rates and hip multi-proessors, inrease bandwidthrequirements in modern systems. Hene, memory bandwidth, one a onern foronly streaming sienti� odes, has beome ruial for non-streaming appliationsas well.While long lateny and insuÆient bandwidth limit the performane of mod-ern systems, another performane riteria has reently emerged: power. Power isnot an issue just for proessors, but it is a �rst order onern for DRAM as well.For example, in systems with large memory apaities, DRAM's are reported toonsume up to 45% of a system's total power [42℄. Limited power budgets foredesigners to trade o� performane for power. Therefore, power savings in DRAMwill redue overall power onsumption and may improve system performane andenergy usage.1.1 Our SolutionPrevious proposals for improving lateny, bandwidth, or power aspets of memorysystems have signi�antly inreased the omplexity of proessors and/or main mem-ory organizations. For example, prefething approahes for hiding lateny requirelarge hip area to be e�etive for irregular memory aesses; bandwidth improv-ing methods, suh as multiple banks and multiple hannels between proessors andmemory, reate a hallenge for the proessors to shedule memory ommands intel-ligently; and mehanisms for reduing DRAM power onsumption require omplexalgorithms to redue performane degradations.Although proessor and memory systems have been explored extensively, theinterfae between them, the memory ontroller, had reeived relatively less atten-tion. The memory ontroller, either o�-hip or integrated with the hip, ontrols2

the ow of data to and from the memory, bu�ers data if neessary, and performsoptimizations to improve performane. As proessors and memory systems beomeinreasingly omplex, it makes sense to explore ways that the memory ontroller anbe made more sophistiated. Therefore, we onentrate on the interfae between theproessor and memory, and we propose a low ost memory ontroller design thatimproves all three aspets of memory systems:� To hide lateny, we propose a new prefething approah that is useful forappliations with regular or irregular memory aesses.� To improve bandwidth, we introdue a memory ommand reordering tehniquethat redues ontention in the memory system.� To address DRAM power onsumption, we augment our ommand reorderingapproah to inlude power optimizations, and we present a new model-basedthrottling tehnique.� To put it all together, we present and evaluate a memory ontroller designthat inludes all of our enhanements for lateny, bandwidth, and power.1.2 Thesis StatementAll three aspets of memory systems, that is lateny, bandwidth, and power on-sumption, an be signi�antly improved with small modi�ations to the memoryontroller.1.3 ContributionsIn this dissertation, we make the following ontributions:
3

� To deal with inreasing memory latenies, we introdue a probabilisti hard-ware prefething tehnique that is partiularly useful for appliations with lowspatial loality. This tehnique keeps trak of the frequeny of stream sizes inan appliation and uses that information to make prefething deisions. Weimplement this low ost method as a memory-side prefether, and we showthat it omplements an existing proessor-side prefether. To better assignresoures to prefeth and regular ommands, we also introdue an adaptiveapproah that modulates the relative priority of prefeth ommands and reg-ular ommands by monitoring the status of the memory system.� To satisfy growing memory bandwidth demands, we present a new mem-ory sheduling approah. To redue ontention in the memory system, thissheduling tehnique hooses ommands to issue to memory by onsideringphysial harateristis of main memory and the history of memory ommands.In addition, to redue bottleneks in the memory ontroller itself, this teh-nique mathes the sequene of memory ommands to a predetermined om-mand pattern. To make this method work for more than one ommand pat-tern, we introdue an adaptive method that dynamially selets from amongmultiple shedulers.� To address the power issue, we provide an algorithm to manage powerdownapabilities of DRAM hips; we design a memory sheduler that optimizesfor both performane and power; and we develop an approah to throttlememory traÆ, with minimal performane degradation, so that DRAM poweronsumption will meet some spei�ed budget.� We evaluate our tehniques in the ontext of the memory ontroller of a highlytuned modern proessor, the IBM Power5+. Our evaluation overs both teh-nial and ommerial benhmarks in single-threaded and simultaneous multi-4

threaded environments. We show that our tehniques for lateny hiding, band-width inrease, and power redution, ahieve substantial improvements. Forexample, our prefething approah improves the performane of our tehnialand ommerial benhmarks by an average of 10.2% and 8.4%, respetively.Similarly, on the same benhmarks, our sheduling method inreases perfor-mane by 9.7% and 7.5%. When we ombine our lateny hiding and shedulingmethods, we ahieve 14.3% and 11.2% performane improvement.1.4 OrganizationThis dissertation is organized as follows. The next hapter presents bakgroundand our experimental methodology. In the following three hapters, we present ournew solutions and their empirial evaluation: in Chapter 3, the Adaptive History-Based Shedulers to improve available bandwidth; in Chapter 4, Adaptive StreamDetetion for lateny hiding; and in Chapter 5, DRAM Power Optimizations. InChapter 6, we plae our work in the ontext of prior work; and �nally in Chapter7, we onlude and disuss future work.

5

Chapter 2
Bakground and Methodology

We evaluate our bandwidth, lateny, and power improvement tehniques using sim-ulation of a modern arhiteture, the IBM Power5+. In this hapter, we �rst presentan overview of the Power5+ arhiteture. We then desribe our simulation method-ology. Finally, we disuss the details of the benhmarks that we use to evaluate ourapproahes.2.1 A Modern Arhiteture: The IBM Power5+The IBM Power5+ [10, 35℄ is the suessor to the Power5 and is the latest memberof the Power4 [69℄ line of proessors. The Power5+ hip has about 300 million tran-sistors and is designed to address both sienti� and ommerial workloads. Someimprovements in the Power5 and Power5+ over the previous generation Power4 in-lude a larger L2 ahe, simultaneous multithreading, power-saving features, and anon-hip memory ontroller.As shown in Figure 2.1, the Power5+ has two proessors per hip, whereeah proessor has split �rst-level data and instrution ahes. Eah hip has auni�ed seond-level ahe shared by the two proessors, and it is possible to attah6

an optional L3 ahe. Four Power5+ hips an be pakaged together to form an8-way SMP, and up to eight suh SMP's an be ombined to reate 64-way SMPsalability.The Power5+ [35℄ has an aggressive proessor-side prefething unit [69℄ thatprefethes from memory to L2 and from L2 to L1. The prefether implementsa sequential prefething poliy that waits to issue prefethes until it detets twoonseutive ahe misses. There are 12 entries in the stream detetion unit, andeight streams an be prefethed onurrently. When the steady state is reahed,eah stream brings one additional line into the L1 ahe, and one additional lineinto the L2 ahe.

Figure 2.1: The IBM Power5+ hip.The Power5+'s memory ontroller, as shown in Figure 2.1, is shared by twoproessors. The memory ontroller has two reorder queues: a Read Reorder Queueand a Write Reorder Queue. Eah of these queues an hold 8 memory referenes,7

where eah memory referene is an entire L2 ahe line or a portion of an L3 aheline. An arbiter selets an appropriate ommand from these queues to plae in theCentral Arbiter Queue (CAQ), where they are sent to memory in FIFO order. Thememory ontroller an keep trak of the 12 previous ommands that were passedfrom the CAQ to the DRAM.
CAQ

Centralized
Arbiter
Queue

DRAM

Memory Controller

Queue

Queue

Read

Write

bus

Arbiter

cache

cache
L3

L2

Figure 2.2: The Power5+ memory ontroller.The Power5+ does not allow dependent memory operations to enter thememory ontroller at the same time, so the arbiter is allowed to reorder memoryoperations arbitrarily. Furthermore, the Power5+ gives priority to demand missesover prefethes, so from the memory ontroller's point of view, all ommands in thereorder queues are equally important. Both of these features greatly simplify thetask of the memory sheduler.2.1.1 DRAM Organization and Power ConsumptionThe Power5+ systems that we onsider use DDR2 SDRAM hips, whih are essen-tially a 5D struture. Two ports onnet the memory ontroller to the DRAM. TheDRAM is organized as 4 ranks, where eah rank is an organizational unit onsistingof 4 banks. Eah bank in turn is organized as a set of rows and olumns. Thisstruture imposes many performane onstraints. For example, port onits, rankonits, and bank onits eah inur their own delay, and the osts of these delaysdepends on whether the operations are Reads or Writes. In this system, bank on-8

State Average Power (normalized)Read transfer (1 bank) 1.000Read transfer (4 banks, staggered) 1.875Ativate-Preharge (1 bank) 0.594Idle (preharge quiet) 0.281Power-down (preharge) 0.038Table 2.1: Power onsumption for various states of the Miron 512MB DDR2.it delays are an order of magnitude greater than the delays introdued by rank orport onits.With multiple ranks in a system, it is possible that at any given time someof the ranks are idle. While DRAM power onsumption is lower when a rank is idle,the low-power mode an redue power onsumption by another order of magnitude.Table 2.1 shows the relative power onsumption for some prominent modes for theranks of a Miron 512MB DDR2-533MHz SDRAM hip. A rank an enter low-powermode, with a ommand from the memory ontroller, only if no bank of the rankis proessing a memory ommand. There is an exit lateny, whih is 12 proessoryles for the memory hips that we simulate, for transitioning from the low-powermode to other modes. Additionally, other timing onstraints plae restritions onhow soon the low-power mode an be entered. Our simulation environment [59℄aurately models all timing onstraints, modes, and ativities of the ranks andbanks; it uses the orresponding power onsumption information from the DRAMdatasheets [22℄ to orretly model power and performane of the DRAM hips.2.1.2 Arhitetural ParametersIn Table 2.2 we present the base parameters for the IBM Power5+ systems that wesimulate in our studies. These parameters represent one of the most modern systemon�gurations with the Power5+. 9

Parameter ValueL1D, L1I 64KB, 2way, 128BL2 1.9MB, 10way, 128B, sharedL3 36MB, 16way, 128B, shared, vitimFrequeny 2.132 GHzMemory Address Bus 8BMemory Read Data Bus 16BMemory Write Data Bus 8BRead Reorder Queue 8Write Reorder Queue 8Centralized Arbiter Queue 3DRAM Type DDR2DRAM Speed 533 MHzNumber of Ranks 4Banks in a Rank 4Ative Commands in DRAM 12Table 2.2: Base parameters for the IBM Power5+.2.2 Simulation MethodologyThe simulators that we use are for atual ommerial produts, namely the IBMPower4, Power5, and Power5+ systems. They are developed by the proessor de-sign and modeling teams of IBM. The simulators represent the modeled systems inextensive detail. Their development, validation, and veri�ation took many yearsof manpower. For example, one of the simulators onsists of about 1.5 million linesof VHDL ode and is yle aurate. With our set of simulators, we an simulatedetails of both the proessor and memory system. We are also able to performmultithreaded simulations as well as multiple proessor simulations.The simulation environment that we use onsists of three main parts: asimulator for the proessor, a simulator for the level two and level three ahes, anda simulator for the main memory. The simulators for ahes and main memory usethe event-driven CSIM [63℄ framework.
10

2.2.1 Proessor, Nest, and Main Memory SimulatorsOur proessor simulator, ProSim, is a trae driven simulator for a single proessorof the Power4, Power5, or Power5+ system. The proessor inludes exeution units,ontrol logi, pipeline struture, and the �rst level data and instrution ahes.ProSim reads a single reord from an instrution trae and proesses it through theproessor units. This simulator is designed with the purpose of evaluating variousdesign options. Therefore, we are able to hange many arhitetural parametersbefore simulation. Cahe size, assoiativity, number of oating point units, andbranh history table size are a few examples of these on�gurable paramaters.ProSim delays the proessing of an instrution if that instrution auses amiss in a �rst level ahe. NestSim, the seond part of the simulation environment,handles the proessing of these missed instrutions. As soon as a load or storeinstrution misses in a �rst level ahe, a new thread is generated. This threadows through the seond and third level ahes and returns the result to ProSim towake the sleeping ProSim thread. NestSim simulates the details of the seond andthird level ahes in detail, but it stops proessing the level-1 ahe miss when thereis a need for a main memory aess.The third simulator, MemSim, is a DRAM simulator that jointly modelspower and performane of the main memory subsystem. It is also a highly on-�gurable simulator, originally designed for modeling the main memory system ofhigh-end servers, with support for di�erent memory interleaving, page modes, andpower management poliies. We extend MemSim to at as a module in our simu-lation environment along with yle-by-yle traking of ativities in the memorysystem. In this mode, MemSim models all the memory system ativity while syn-hronizing with the NestSim simulator at every proessor yle.We integrate NestSim with the MemSim memory simulator by replaingNestSim's �xed-lateny memory model with MemSim. The integrated simulator11

generates timing information for both proessor and memory subsystems. In addi-tion, MemSim provides detailed power and energy information for DRAM.2.2.2 Veri�ation of the SimulatorsWe verify our simulators against an RTL simulator (VSim). VSim onsists of about1.5 million lines of VHDL ode that has been developed by the IBM designers for thePower4, Power5, and Power5+ systems. Even though VSim represents the atualsystem orretly, it annot be used in our studies beause it is extremely slow anddiÆult to modify. VSim has been intensively validated and veri�ed for funtionalityand performane. Veri�ation of VSim itself is beyond the sope of our study.We have performed performane veri�ation and simulator development on-urrently. Whenever a disrepany is deteted between VSim and our simulators,we modify our simulators and perform the omparisons again. The development ofVSim and our simulators is also onurrent. In other words, as the designers addnew details, VSim hanges, whih further ompliates our simulator developmentproess.We reate a veri�ation environment where we an run the same test aseswith VSim and with our ombined simulators. To test various setions of the hard-ware, there are several hundred basi test ases with one or a few instrutions. Wealso have longer test ases to test memory bandwidth.In general, the error between our simulators and the VSim is within 1%.The veri�ation proess involves not only the omparison of the absolute exeutiontimes, but it also ompares the of timing of various events. For example, for aninstrution that needs main memory aess, it is important to math memory queueentry and exit times in addition to overall memory lateny. For most test ases, weperform these omparisons manually.
12

2.2.3 Simulation ApproahesThere are two modes of running simulations. In the �rst mode (trae-based), in-strutions are fed to the simulator from a trae �le. Instrutions are proessedthrough all levels of the simulaton environment, i.e. ProSim, NestSim, and Mem-Sim. In the seond mode (stream-based), only NestSim and MemSim are used. Weuse this mode to study test ases with heavy main memory aess requirements.A stream generator reates various number of data streams (Reads and/or Writes)and feeds those to NestSim. Multiproessor simulations an use only this mode.For a set of mirobenhmarks, we ompared the results of trae-based and stream-based approahes, and we found that average performane di�erene between theseapproahes is 1.3%.Our simulation environment allows us to perform uniproessor or multipro-essor runs. We an simulate any test ase with uniproessor on�gurations, butmultiproessor simulations have limitations. If the on�guration is for a uniproes-sor, we an also speify the number threads to run. Eah thread an use di�erenttrae �les.2.3 Benhmarks and MirobenhmarksWe evaluate our bandwidth, lateny, and power improvement tehniques using bothtehnial and non-tehnial benhmarks. For tehnial benhmarks, we use theStream [48℄, NAS [3℄, and reently released SPEC2006fp benhmarks [68℄. For non-tehnial workloads, we use IBM internal benhmarks for ommerial appliations.We also reate a set of mirobenhmarks for detailed analysis of the memory on-troller.The �rst set of benhmarks measures streaming behavior. The Stream benh-marks, whih others have used to measure the sustainable memory bandwidth of13

Kernel Desriptiondaxpy x[i℄=x[i℄+a*y[i℄opy x[i℄=y[i℄sale x[i℄=a*x[i℄vsum x[i℄=y[i℄+z[i℄triad x[i℄=y[i℄+a*z[i℄�ll x[i℄=asum sum=sum+x[i℄Table 2.3: The extended set of Stream Benhmarks.systems [12, 64, 8, 72℄, onsist of four simple vetor kernels: opy, sale, vsum, andtriad. The Stream2 benhmarks, whih onsist of �ll, opy, daxpy, and sum, wereintrodued to measure the e�ets of all levels of ahes and to show the perfor-mane di�erenes of reads and writes. In our study, we ombine the Stream andthe Stream2 to reate the extended Stream benhmarks that onsist of seven vetorkernels. We list these kernels in Table 2.3 and, for simpliity, we refer to themolletively as the Stream benhmarks in the rest of this dissertation.The seond set of workloads, the NAS (Numerial Aerodynami Simulation)benhmarks, is a group of eight programs developed by NASA (see Table 2.4).These programs are derived from omputational uid dynamis appliations andare good representatives of sienti� appliations. The NAS benhmarks are fairlymemory intensive, but they are also good in measuring various other performaneharateristis of high performane omputing systems. There exists parallel andserial implementations of the various sizes of the NAS benhmarks. In our studies,we use serialized versions of lass B.The third set of tehnial workloads that we use are the SPEC2006fp benh-marks [68℄. As depited in Table 2.5, this benhmark suite onsists of 17 sienti�appliations. SPEC benhmarks are onsidered the industry standard in evaluat-ing performane of omputer systems. This benhmark suite has both integer andoating point benhmark sets. We do not evaluate integer benhmarks beause with14

Program Desriptionbt Blok-Tridiagonal Systemsg Conjugate Gradientep Embarrassingly Parallelft Fast Fourier Transform for Laplae Equationis Integer Sortlu Lower-Upper Symmetri Gauss-Seidelmg Multi-Grid Method for Poisson Equationsp Salar Pentadiagonal SystemsTable 2.4: The NAS Benhmarks.large ahes of the Power5+, memory pressure of these benhmarks are low.For the non-tehnial workloads, we use �ve ommerial server appliations,namely tp, trade2, pw2, sap, and notesbenh. Tp is an online transation pro-essing workload; pw2 is a Commerial Proessing Workload that simulates thedatabase server of an online transation proessing environment; trade2 is an end-to-end web appliation that models an online brokerage; sap is a database workload;and notesbenh is a tool that evaluates the performane of a set of systems whihare running Lotus Notes.Finally, we use a set of 14 mirobenhmarks, whih allows us to explore awider range of memory ontroller on�gurations, and whih allows us to explore indetail the behavior of our memory ontrollers. Eah of our mirobenhmarks usesa di�erent Read/Write ratio, and eah is named xRyW , indiating that it has xRead streams and y Write streams. These mirobenhmarks represent most of thedata streaming patterns that we expet to see in real appliations. There are twoother reasons that we use mirobenhmarks. First, the simulation times for thesebenhmarks are very short, e.g. in the order of minutes. We need short simulationtimes to investigate a large number of design on�gurations. Seond, our simulationenvironment has a limitation to perform multiple proessor simulations only withthis type of mirobenhmarks. 15

Program Appliation Areabwaves Fluid dynamisgamess Quantum hemistrymil Physis/Quantum hromodynamiszeusmp Physisgromas Biohemistry/Moleular dynamisatusADM Physis/General relativityleslie3d Fluid dynamisnamd Biology/Moleular dynamisdealll Finite element analysissoplex Linear programming, optimizationpovray Image ray-traingalulix Strutural mehanisGemsFDTD Computational eletromagnetistonto Quantum hemistrylbm Fluid dynamiswrf Weather modelingsphinx3 Speeh reognitionTable 2.5: The SPEC2006fp Benhmarks.2.3.1 Test Case GenerationFor the Stream, NAS, and SPEC2006fp benhmarks, we reate traes using aninternal IBM tool. This tool generates, from an exeutable, as many instrutions aswe speify. The output an be a ertain ontiguous setion of the instrution streamor the onatenation of uniformly sampled piees. For the Stream benhmarks weuse ontiguous traes. However, the NAS and SPEC benhmarks are prohibitivelylong for a single trae �le. For example, if not sampled, some SPEC programs runsfor about 3 trillion instrutions, whih would require about 70 years of simulationtime in our detailed simulators. Therefore, for the NAS and SPEC2006fp workloadswe generate sampled traes. We �rst generate 50 uniformly distributed piees, eahhaving 2 million instrutions, and then we ombine those piees to reate a singletrae of 100 million instrutions. To evaluate the representativeness of the sampledtraes, we ompare the CPI's of the entire programs on an atual Power5+ to16

the simulator output of the traes. As we show in Figure 2.3 and Figure 2.4, oursampling approah reates a good math to the original CPI of the benhmarks.
bt cg ep ft is lu m
g sp

A
ve

ra
ge

0

5

10

15

20

(%
)

Figure 2.3: Perent error, in CPI, introdued by trae sampling, for the NAS benh-marks.
bw

av
es

ga
m

es
s

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
A

D
M

le
sl

ie
3d

na
m

d

de
al

II

so
pl

ex

po
vr

ay

ca
lc

ul
ix

G
em

sF
D

T
D

to
nt

o

lb
m

w
rf

sp
hi

nx
3

A
ve

ra
ge

0

5

10

15

20

(%
)

Figure 2.4: Perent error, in CPI, introdued by trae sampling, for the SPEC2006fpbenhmarks.For the ommerial workloads, we use traes olleted by speial hardware.Finally, to generate mirobenhmarks, we use a stream generator. This tool runsonurrently with the simulator and, as input, it takes the number of Read or Writestreams, the length of eah stream, and the o�set among the streams. The o�setamong the streams a�ets the order of the ommands going to memory, whih mayhange the number of the bank or rank onits.17

Chapter 3
Improving Memory Bandwidthwith Smart Sheduling

Memory bandwidth is an inreasingly important aspet of overall system perfor-mane. Early work for improving available bandwidth foused on streaming work-loads, whih plae the most stress on the memory system. Early work also fousedon avoiding bank onits, sine bank onits typially lead to long stalls in theDRAM. In partiular, numerous hardware and software shemes have been pro-posed for interleaving memory addresses [11℄, skewing array addresses [21, 13℄, andotherwise [7, 49, 50, 51, 52℄ attempting to spread a stream of regular memory a-esses aross the various banks of DRAM. Valero et al. [71, 57℄ desribe a methodof dynamially reordering memory ommands so that the banks are aessed in astrit round-robin fashion. More reently, Rixner et al. [61℄ evaluate a set of sim-ple heuristis for reordering memory ommands, some of whih onsider additionalDRAM struture, suh as the rows and olumns that make up banks. Rixner et al.do not identify a onlusive winner among their various heuristis, but they do �ndthat simply avoiding bank onits performs as well as any of their other heuristis.Reently, the need for inreased memory bandwidth has begun to extend18

beyond streaming workloads. Faster proessor lok rates and hip multi-proessorsinrease the demand for memory bandwidth. Furthermore, to ope with relativelyslower memory latenies, modern systems inreasingly use tehniques that redueor hide memory lateny at the ost of inreased memory bandwidth demands. Forexample, simultaneous multi-threading hides lateny by using multiple threads, andhardware-ontrolled prefething speulatively brings in data from higher levels ofthe memory hierarhy so that it is loser to the proessor. To aommodate moreparallelism, modern DRAM's are also inreasing in omplexity. For example, theDDR2-533 SDRAM hips have a 5D struture and a wide variety of osts assoiatedwith aess to the various sub-strutures.In the fae of these tehnologial trends, previous solutions are limited intwo ways. First, it is no longer suÆient to fous exlusively on streams as a speialase; we instead need to aommodate riher patterns of data aess. Seond, it isno longer suÆient to fous exlusively on avoiding bank onits; sheduling dei-sions instead need to onsider other physial sub-strutures of inreasingly omplexDRAM's.Previous work is also limited in its avoidane of bottleneks within the mem-ory ontroller itself. To understand this problem, onsider the exeution of thedaxpy kernel on the IBM Power5+'s memory ontroller. The daxpy kernel performstwo reads for every write. If the sheduler does not shedule memory operationsin the ratio of two reads per write, either the Read queue or the Write queue willbeome saturated under heavy traÆ, reating a bottlenek. To avoid suh bottle-neks, the sheduler should selet memory operations so that the ratio of reads andwrites mathes that of the appliation.In this hapter, we desribe a new approah|adaptive history-based (AHB)memory sheduling|that addresses all three limitations by maintaining informationabout the state of the DRAM along with a short history of previously sheduled19

operations. Our solution avoids bank onits by simply holding in the reorder queueany ommand that will inur a bank onit; history information is then used toshedule any ommand that does not have a bank onit. Our approah providesthree oneptual advantages: (1) it allows the sheduler to better reason about thedelays assoiated with its sheduling deisions, (2) it is appliable to omplex DRAMstrutures, and (3) it allows the sheduler to selet operations so that they maththe program's mixture of Reads and Writes, thereby avoiding ertain bottlenekswithin the memory ontroller.A version of the AHB sheduler that uses one bit of history and that istailored for a �xed Read-Write ratio of 2:1 has been implemented in the reentlyshipped IBM Power5+. Nevertheless, important questions about the AHB shed-uler still exist. Perhaps the most important question is whether our solution willbeome more or less important to future systems, whih we an study by alter-ing various arhitetural parameters of the proessor, the memory system, and thememory ontroller. For example, is the AHB sheduler e�etive for multi-threadedand multi-ore systems? Is the AHB sheduler needed for DRAM's that will havemany more banks and thus muh more parallelism? If we inrease the size of thememory ontroller's internal queues, would a simpler solution suÆe? Finally, anthe solution be improved by inorporating more sophistiated methods of avoidingbank onits? In this hapter, we answer these questions and others to demonstratethe exibility and robustness of our solution, evaluating it in a variety of situations.In partiular, this hapter makes the following ontributions:� We present the notion of adaptive history-based shedulers, and we providealgorithms for designing suh shedulers.� While most previous memory sheduling work pertains to aheless streamingproessors, we show that the same need to shedule memory operations appliesto general purpose proessors. In partiular, we evaluate our solution in the20

ontext of the IBM Power5+, whih has a 5D struture (port, rank, bank,row, olumn), plus ahes.� We evaluate our solution using a yle-aurate simulator for the Power5+.When ompared with an in-order sheduler, our solution improves IPC onthe NAS [3℄ benhmarks by a geometri mean of 16.8%, and it improves IPCon the Stream benhmarks [48℄ by 45.5%. When ompared against one ofRixner et al.'s solution, our method sees improvements of 5.8% for the NASbenhmarks and 11.3% for the Stream benhmarks. In addition to NAS andStream, we also evaluate our approah on ommerial benhmarks, wherewe see 32.8% and 5.6% performane improvements ompared to in-order andRixner's approah, respetively.� We show that multi-threaded workloads inrease the performane bene�t ofour solution. This result may be surprising beause multi-threading wouldseem to defeat our tehnique's ability to math the workload's mixture ofReads and Writes. However, we �nd that the inreased memory system pres-sure inreases the bene�t of smart sheduling deisions. For example, whenompared with the state of the art on a two proessor system eah runningtwo threads, our approah improves performane of ommerial benhmarks,ompared to Rixner's approah, between 6% and 10%. We �nd the some-what surprising result that for previous memory shedulers, the use of SMTproessors an atually derease performane beause the DRAM beomes abottlenek.� We provide insights to explain why our solution improves the bandwidth ofthe Power5+'s memory system.� We tune our solution and evaluate its sensitivity to various internal parame-ters. For example, we �nd that the riterion of minimizing expeted lateny21

is more important than of mathing the expeted ratio of Reads and Writes.� We show that our solution tends to be more valuable in future systems. Inaddition to the multi-threading results, we show that our solution performswell as we alter various memory ontroller parameters, DRAM parameters,and system parameters.� We explore the e�ets of varying parameters of the memory sheduler itself.We �nd that our AHB sheduler provides signi�ant bene�ts in performaneand hardware osts when ompared with other approahes. In many ases, ourtehnique is superior to other approahes even when ours is given a frationof the resoures.� We show that the hardware ost of our approah is minimal.This hapter is organized as follows. The next setion presents our solu-tion, followed by experimental evaluation and sensitivity analysis, then we disussimplementation ost of our approah and we provide onluding remarks.3.1 Adaptive History-Based Memory ShedulersThis setion desribes our new approah to memory ontroller design, whih fouseson making the sheduler both history-based and adaptive. A history-based sheduleruses the history of reently sheduled memory ommands when seleting the nextmemory ommand. In partiular, a �nite state mahine enodes a given shedulinggoal, where one goal might be to minimize the lateny of the sheduled ommandand another might be to math some desired balane of Reads and Writes. Beauseboth goals are important, we probabilistially ombine two FSM's to produe ansheduler that enodes both goals. The result is a history-based sheduler thatis optimized for one partiular ommand pattern. To overome this limitation,22

we introdue adaptivity by using multiple history-based shedulers; our adaptivesheduler observes the reent ommand pattern and periodially hooses the mostappropriate history-based sheduler.3.1.1 History-Based ShedulersIn this setion we desribe the basi struture of history-based shedulers. Similarto branh preditors, whih use the history of the previous branhes to make predi-tions [11℄, history-based shedulers use the history of previous memory ommandsto deide what ommand to send to memory next. These shedulers an be imple-mented as an FSM, where eah state represents a possible history string. For exam-ple, to maintain a history of length two, where the only information maintained iswhether an operation is a Read or a Write, there are four possible history strings|ReadRead, ReadWrite, WriteRead, and WriteWrite|leading to four possiblestates of the FSM. Here, a history string xy means that the last ommand trans-mitted to memory was y and the one before that was x.Unlike branh preditors, whih make deisions based purely on branh his-tory, history-based shedulers make deisions based on both the ommand historyand the set of available ommands from the reorder queues. The goal of the shed-uler is to enode some optimization riteria to hoose, for a given ommand history,the next ommand from the set of available ommands. In partiular, eah stateof the FSM enodes the history of reent ommands, and the FSM heks for pos-sible next ommands in some partiular order, e�etively prioritizing the desirednext ommand. When the sheduler selets a new ommand, it hanges state torepresent the new history string. If the reorder queues are empty, there is no statehange in the FSM.As an illustrative example, we present an FSM for an sheduler whih usesa history length of three. Assume that eah ommand is either a Read or a Write23

operation to either port number 0 or 1. Therefore, there are four possible ommands,namely Read Port 0 (R0), Read Port 1 (R1), Write to Port 0 (W0), and Write toPort 1 (W1). The number of states in the FSM depends on the history length andthe type of the ommands. In this example, sine the sheduler keeps the historyof the last three ommands and there are four possible ommand types, the totalnumber of states in the FSM is 4�4�4=64. In Figure 3.1 we show an exampleof transitions from one partiular state in this sample FSM. In this hypothetialexample, we see that the FSM will �rst see if a W1 is available, and if so, it willshedule that event and transition into a new state. If this type of ommand is notavailable, the FSM will look for an R0 ommand as the seond hoie, and so on.
from reorder queues
receive available commands

R1W1R0

command to memory

First choice: W1 W1R0W1

nothing
available

W1R0W0

W1R0R0

W1R0R1

Second choice: R0

Fourth choice: W0

Third choice: R1

next state

current state

send the most appropriateFigure 3.1: Transition diagram for the urrent state R1W1R0. Eah availableommand type has di�erent seletion priority.3.1.2 Design Details of History-Based ShedulersAs mentioned earlier, we have identi�ed two optimization riteria for prioritization:the amount of deviation from the ommand pattern and the expeted lateny of24

the sheduled ommand. The �rst riterion allows an sheduler to shedule om-mands to math some expeted mixture of Reads and Writes. mixture of Reads andWrites. The seond riterion represents the mandatory delay between the new mem-ory ommand and the ommands already being proessed in the memory. We �rstpresent algorithms for generating shedulers for eah of the two prioritization goalsin isolation. We then provide a simple algorithm for probabilistially ombining twoshedulers.Optimizing for the Command PatternAlgorithm 1 generates state transitions for an sheduler that shedules ommands tomath a ratio of x Reads and y Writes in the steady state. The algorithm starts byomputing, for eah state in the FSM, the Read/Write ratio of the state's ommandhistory. For eah state, the algorithm then omputes the Read/Write ratio of eahpossible next ommand. Finally, the next ommands are sorted aording to theirRead/Write ratios. For example, onsider an sheduler with the desired pattern of\one Read per Write", and assume that the urrent state of the FSM is W1R1R0.The �rst hoie in this state should either be a W0 or W1, beause only those twoommands will move the Read/Write ratio loser to 1.In situations where multiple available ommands have the same e�et onthe deviation from the Read/Write ratio of the sheduler, the algorithm uses someseondary riterion, suh as the expeted lateny, to make �nal deisions.Optimizing for the Expeted LatenyTo develop a sheduler that minimizes the expeted delay of its sheduled opera-tions, we �rst need a ost model for the mandatory delays between various memoryoperations. Our goal is to ompute the delay aused by sending a partiular om-mand, new, to memory. This delay is neessary beause of the onstraints between25

Algorithm 1 ommand pattern sheduler(n)// n is the history length1: for all ommand sequenes of size n do2: r old:=Read/Write ratio of the ommand sequene.3:4: for eah possible next ommand do5: r new:=Read/Write ratio.6: end for7: if r old < ratio of the sheduler, x=y then8: Read ommands have higher priority.9: else10: Write ommands have higher priority.11: end if12: if there are ommands with equal r new then13: Sort them with respet to expeted lateny.14: Pik the ommand with the minimum delay.15: end if16:17: for eah possible next ommand do18: Output the next state in the FSM.19: end for20: end for

26

new and the previous n ommands that were sent to memory. We refer to theprevious n ommands as 1, 2,. . . , n, where 1 is the most reent ommand sentand n is the oldest ommand sent.We de�ne k ost funtions, f1::k(x; y), to represent the mandatory delaysbetween any two memory ommands, x and y, that ause a hardware hazard. Here,both k and the ost funtions are memory system-dependent. For our system, wehave ost funtions for \the delay between a Write to a di�erent bank after a Read",\the delay between a Read to the same port after a Write", \the delay between aRead to the same port but to a di�erent rank after a Read", et.We assume that the sheduler does not have the ability to trak the numberof yles passed sine the previously issued ommands were sent. So, our algorithmassumes that those ommands were sent at one yle intervals. In the next step,the algorithm alulates the delays imposed by eah x, x 2 [1; n℄ on new for eahfuntion, fi::k, whih is appliable to any (x; new) pair. Here, the term \appliablefuntion" refers to a funtion whose onditions have been satis�ed. We also de�nen �nal ost funtions, fosti::n, suh thatfosti(new) = max(fj(i; new))� (i� 1)where i 2 [1; n℄, j 2 [1; k℄, and fj(i; new) is appliableWe take the maximum of fj funtion values beause any previous ommand,i, and new may be related by more than one fj funtion. In this formula, thesubtrated term (i� 1) represents the number of yles i that had been sent beforenew. Thus, the expeted lateny that will be introdued by sending new isTdelay(new) = max(fost1::n(new))Algorithm 2 generates a FSM for a sheduler that uses the expeted lateny,Tdelay, to prioritize the ommands. As with the previous algorithm, if multipleavailable ommands have the same expeted lateny, we use a seondary riterion|27

in this ase the deviation from the ommand pattern|to break ties.Algorithm 2 expeted lateny sheduler(n)// n is the history length1: for all ommand sequenes of size n do2:3: for eah possible next ommand do4: Calulate the expeted lateny, Tdelay.5: end for6: Sort possible ommands with respet to Tdelay.7: for ommands with equal expeted lateny value do8: Use Read/Write ratios to make deisions.9: end for10:11: for eah possible next ommand do12: Output the next state in the FSM.13: end for14: end forA Probabilisti Sheduler Design AlgorithmTo ombine our two optimization riteria, Algorithm 3 weighs eah riterion andprodues a probabilisti deision. At runtime, a random number is periodiallygenerated to determine the rules for state transitions as follows:Algorithm 3 probabilisti sheduler1: if random number < threshold then2: ommand pattern sheduler3: else4: expeted lateny sheduler5: end ifBasially, we interleave two state mahines into one, periodially swithingbetween the two in a probabilisti manner. In this approah, the threshold value issystem dependent and should be determined experimentally.28

3.1.3 Adaptive Seletion of ShedulersOur adaptive history-based sheduler is shematially shown in Figure 3.2. Thememory ontroller traks the ommand pattern that it reeives from the proessorsand periodially swithes among the shedulers depending on this pattern.
queue

...arbiter 2 arbiter narbiter 1

memory

logic
arbiter selection

read

reordered reads/writes

select 1 select 2
select n

reads

writes

write
queue

Figure 3.2: Overview of dynami seletion of arbiters in memory ontroller.Deteting Memory Command PatternTo selet one of the history-based arbiters, our memory ontroller assumes the avail-ability of three ounters: Rnt and Wnt ount the number of reads and writesreeived from the proessor, and Cnt provides the period of adaptivity. EveryCnt yles, the ratio of the values of Rnt and Wnt is used to selet the mostappropriate history-based sheduler. The Read/Write ratio an be alulated usingleft shift and addition/subtration operations; sine this omputation is performedone every Cnt yles, its ost is negligible. To prevent retried ommands fromskewing the ommand pattern, we distinguish between new ommands and retriedommands, and only new ommands a�et the value of Rnt andWnt. The valuesof Rnt and Wnt are set to zero when Cnt beomes zero.29

3.2 Experimental ResultsIn this setion, we evaluate the AHB sheduler and ompare its performane to theprevious sheduling approahes. First, we identify a baseline by omparing previoussheduling methods. Then, using the Stream, NAS, and ommerial benhmarks, weompare performane of our approah to the baseline. Finally, we use mirobenh-marks to investigate performane bottleneks in the memory subsystem. Our resultsshow that the AHB sheduler is always superior to the previously proposed methods.We also see that the sheduler plays a ritial role in balaning various bottleneksin the system.3.2.1 Evaluating Previous ApproahesWe ompare our AHB sheduler against a set of shedulers that use previouslyproposed ideas. To over the full design spae, we identify three main features ofmemory ontrollers: the approah to handle bank onits, the bank shedulingmethod, and the priorities for reads and writes.The �rst feature spei�es the sheduler's behavior when seleted ommandhas a bank onit, of whih two hoies have been proposed: 1) the sheduleran hold the oniting ommand in the reorder queues until the bank onit isresolved, or 2) the sheduler an transmit the ommand to the CAQ.The seond feature, the bank sheduling method, provides a method ofsheduling ommands to banks. We onsider three approahes: in-order, LRU,and round-robin. The �rst, in-order, implements the simple FIFO poliy used bymost general purpose memory ontrollers today. If implemented in a Power5+ sys-tem, this sheduler would transmit memory ommands from the reorder queues tothe CAQ in the order in whih they were reeived from the proessors. In termsof implementation ost, in-order sheduling is the simplest method among all threesheduling approahes. The seond sheduling approah, LRU, gives priority to30

ommands with bank numbers that were least reently sheduled. If there is morethan one suh ommands, the sheduler will swith to the in-order approah andpik the oldest ommand. To obtain maximum advantage from the LRU method,we assume true-LRU, whih may be unreasonably ostly to implement. Finally, theround-robin sheduling tehnique tries to utilize banks equally by imposing a stritround-robin aess to the banks. To guarantee forward progress, we implement amodi�ed version of round-robin. In our implementation, if the reorder queues haveno ommand to satisfy the bank sequene but they do have other ommands, theround-robin sheduler piks a ommand that is losest to the optimal sequene. Aswith the LRU approah, if there are multiple ommands to the bank, the sheduleruses an in-order poliy and selets the oldest suh ommand.The third design feature desribes how ommands are seleted from Readand Write reorder queues. We evaluate two approahes: 1) every read or writeommand has equal priority, and 2) reads have higher priority over writes. Webelieve, in general, that giving higher priority to reads will improve performane.To prevent starvation of writes, we evaluate Rixner et al.'s tehniques in whihwrites are given higher priority if either of the following onditions exists: i) thereis a write ommand that waited too long, or ii) the write reorder queue is aboutto beome full. For both of these onditions the memory ontroller needs thresholdvalues. Determining these thresholds is not straightforward and may be appliationdependent.For our studies, we emphasize these three features as follows. Sine bankonit osts are high, our implementations use the �rst design feature to reduethe number of andidate ommands in the reorder queues. Then, from eah of thereorder queues, the sheduler identi�es one ommand that satis�es the bank shedul-ing approah. Finally, the read/write priorities are used to selet the ommand.Sine we identify three bank sheduling methods, two priority approahes,31

and two hoies bank onits, we evaluate a total of twelve points in the designspae. In the next subsetion, we ompare the performane of these twelve pointsin the design spae and selet the baseline to ompare with our AHB sheduler.We an now desribe our AHB sheduler in relation to these three designfeatures. The AHB sheduler holds the ommands in the reorder queues if thereis a bank onit. Our sheduler then uses the adaptive history-based tehniquedesribed in Setion 3.1 to selet the most appropriate ommand from among theremaining ommands in the reorder queues. In other words, our adaptive history-based approah is used to handle rank and port onits, but not bank onits.Our method also ombines the sheduling with and read/write priorities, so thatit eliminates the need to determine thresholds for priority seletion. In short, theAHB sheduler uses a single new mehanism to implement the �rst and the thirddesign features and it uses a simple mehanism for deiding how to deal with bankonits.In our implementation of the shedulers, we augment the previous propos-als to make them suitable for the Power5+ memory ontroller. To determine therepresentative shedulers, we ondut experiments on one SMT proessor using theStream benhmarks.Table 3.1 illustrates that out of the three riteria, bank hold poliy has thegreatest, up to 46%, e�et on performane. We observe that any method that holdsommands with bank onits is better than its ounterpart that doesn't hold theommands. Among the six approahes that holds for bank onits, rd/wr priorityseems more important than the bank sheduling method. Atually, e�et of banksheduling poliy is as high as 45% among the methods, LRU being the best, thatdon't hold banks. However, performane gains from holding banks obviate the needfor a ompliated bank sheduling method. In terms of implementation omplexity,�fo bank sheduling is the simplest approah. Therefore, we determine \hold, �fo,32

bank hold, sheduler, rd/wr prio. daxpy opy sale vsum triad �ll sum geom.meandon't hold, �fo, equal prio. 1.987 3.142 2.131 2.001 2.005 2.265 0.851 1.938(in-order)don't hold, �fo, read prio. 1.260 2.164 1.474 1.542 1.561 2.121 0.650 1.448don't hold, lru, equal prio. 0.895 1.557 1.072 1.060 1.061 1.783 0.527 1.067don't hold, lru, read prio. 0.856 1.467 1.006 1.003 1.004 1.825 0.864 1.105don't hold, round-robin,eq. prio. 1.118 1.812 1.242 1.244 1.246 2.007 0.555 1.233don't hold, round-robin,read prio. 1.119 1.776 1.211 1.213 1.219 2.018 0.555 1.219hold, �fo, equal prio. 0.866 1.475 1.014 1.028 1.032 1.798 0.515 1.035hold, �fo, read prio. 0.825 1.487 1.020 0.978 0.977 1.775 0.517 1.014(memoryless)hold, lru, equal prio. 0.855 1.507 1.038 1.017 1.017 1.782 0.560 1.047hold, lru, read prio. 0.846 1.463 0.999 0.982 0.980 1.800 0.515 1.014hold, round-robin, equal prio. 0.808 1.463 1.001 0.956 0.957 1.786 0.569 1.014hold, round-robin, read prio. 0.824 1.478 1.013 0.973 0.969 1.783 0.521 1.011(best)Table 3.1: Performane (in CPI) of the Previous Sheduling Approahes for theStream Benhmarks.read priority" approah, whih we allmemoryless, as the �rst baseline for our study.Note that in our previous work [28, 29℄, we used the term memoryless for \hold,�fo, equal priority" method, whih is a slightly inferior method.In addition to the memoryless method, we also selet \don't hold, �fo, equalpriority" approah, i.e. in-order, as the seond approah to ompare with our AHBsheduler. We hoose in-order sheduler as the seond baseline, beause most urrentproessors implement this approah due to its simple implementation ost.3.2.2 Tuning the AHB ShedulerThe AHB sheduler has three parameters, namely history length, epoh length, andthe weighting of the two optimization riteria. In this subsetion we tune theseparameters using daxpy benhmark and assuming there are two ative threads onone proessor.History Length. We ompare four AHB shedulers whose history lengths rangebetween 1 and 4. Table 3.2(a) shows that a history length of 2 is superior to history33

(a) E�ets of History LengthHistory Length CPI1 0.7432 0.6963 0.6844 0.684(b) E�ets of Epoh LengthEpoh Length CPI100 0.712500 0.7031000 0.6945000 0.69610000 0.696() E�ets of Ratio for Optimization CriteriaWeight of Expeted Lateny (%) CPI0 0.71310 0.70820 0.71130 0.71240 0.70050 0.70460 0.69770 0.69680 0.69990 0.703100 0.709Table 3.2: Tuning of the AHB Sheduler.length of 1 by 6.4%. However, using longer history lengths longer than 2 improvesperformane by only 1.8%. Therefore, onsidering the implementation ost, allexperiments in this study use an AHB sheduler with a history length of 2.Epoh Length. We vary epoh length from 100 to 10,000 proessor yles. Ta-ble 3.2(b) illustrates that any length over 1,000 yles gives essentially the sameperformane. We hoose 10,000 proessor yles as the epoh length in our study.Ratio for Optimization Criteria. The AHB sheduler optimizes for two ri-teria, namely the expeted lateny and the ommand pattern. As we desribe inSetion 3.1, our approah ombines two riteria probabilistially by giving weights34

to eah riterion. Table 3.2() shows that we obtain the best performane when weassign the expeted lateny a weight of 70% and the ommand pattern a weight of30%.3.2.3 Benhmark ResultsWe now present simulation results for the AHB, in-order, and memoryless shedulersusing the Stream, NAS, and ommerial benhmarks. For the Stream and NASbenhmarks, we simulate one or two threads on one proessor. For the ommerialbenhmarks, we simulate one or two threads on single or dual ore systems.We �rst ompare the single thread performane of the three shedulers forthe Stream benhmarks (see Table 3.3). The geometri means of the performanebene�t of the AHB sheduler over the in-order and the memoryless shedulers are45.5% and 11.3% respetively. For two threads on a proessor, adaptive history-based sheduling improves exeution time by an average of 55.6% over the in-ordersheduler and 16.0% over the memoryless sheduler.Our seond set of results are for the NAS benhmarks, whih provide amore omprehensive evaluation of overall performane. Table 3.4 shows that for thesingle thread experiments, the average improvement of our approah over the in-order method is 16.8%, and the average improvement over the memoryless methodis 5.8%. In the SMT experiments, we use two threads of the same appliation, andthe AHB sheduler improves performane by 25.6% and 9.7% over the in-order andmemoryless shedulers, respetively.Finally, in Table 3.5, we present the results for the ommerial benhmarksuite running on single and dual ore systems, with one or two threads ative on eahproessor, resulting in four di�erent on�gurations. For the single threaded ase ona single proessor, the AHB sheduler has, on the average, a 12.6% performaneadvantage over the in-order sheduler and a 2.9% advantage over the memoryless35

gain over gain overBenhmark in-order memoryless AHB in-order memoryless(%) (%)One Thread on One Proessordaxpy 1.933 0.785 0.712 63.2 9.3opy 3.576 1.578 1.312 63.3 16.9sale 2.467 1.082 0.932 62.2 13.9vsum 2.083 1.008 0.877 57.9 13.0triad 2.088 1.007 0.884 57.7 12.2�ll 2.321 1.696 1.547 33.3 8.8sum 0.854 0.793 0.730 14.5 7.9Two Threads on One Proessordaxpy 1.987 0.825 0.696 68.2 16.4opy 3.142 1.487 1.212 64.5 19.4sale 2.131 1.020 0.833 64.0 19.3vsum 2.001 0.978 0.837 61.1 15.1triad 2.005 0.977 0.838 61.1 14.9�ll 2.265 1.775 1.518 33.0 14.5sum 0.851 0.517 0.447 47.5 13.6Table 3.3: Comparison of CPI's of the AHB sheduler to the in-order and memory-less shedulers for the Stream benhmarks. gain over gain overBenhmark in-order memoryless AHB in-order memoryless(%) (%)One Thread on One Proessorbt 0.960 0.883 0.838 12.7 5.1g 1.841 1.712 1.582 14.1 7.6ep 2.465 2.219 2.118 14.0 4.6ft 2.743 2.277 2.074 24.4 8.9is 2.370 1.990 1.861 21.5 6.5lu 2.455 2.013 1.872 23.7 7.0mg 1.327 1.155 1.088 18.0 5.8sp 1.502 1.380 1.335 11.1 3.3Two Threads on One Proessorbt 1.005 0.781 0.721 28.3 7.7g 1.806 1.532 1.365 24.4 10.9ep 2.151 1.971 1.798 16.4 8.8ft 2.655 2.027 1.780 33.0 12.2is 2.145 1.616 1.440 32.9 10.9lu 2.012 1.732 1.561 22.4 9.9mg 1.108 0.930 0.819 26.1 11.9sp 1.365 1.086 1.012 25.9 6.8Table 3.4: Comparison of CPI's of the AHB sheduler to the in-order and memory-less shedulers for the NAS benhmarks.36

gain over gain overBenhmark in-order memoryless AHB in-order memoryless(%) (%)One Thread on One Proessortp 15.458 14.222 13.798 10.7 3.0pw2 15.366 14.092 13.738 10.6 2.5trade2 15.728 14.326 14.052 10.7 1.9sap 10.268 8.542 8.112 21.0 2.9Two Threads on One Proessortp 11.572 9.304 8.890 23.2 4.4pw2 11.274 8.746 8.396 25.5 4.0trade2 11.152 8.726 8.380 24.9 4.0sap 8.406 5.506 5.206 38.1 5.4One Thread on Eah of the Two Proessorstp 10.576 7.913 7.518 28.9 5.0pw2 10.611 7.760 7.335 30.9 5.5trade2 10.431 7.749 7.291 30.1 5.9sap 7.896 4.780 4.494 43.1 6.0Two Threads on Eah of the Two Proessorstp 9.733 5.401 5.037 48.2 6.7pw2 9.744 5.153 4.773 51.0 7.4trade2 9.593 5.100 4.766 50.3 6.5sap 7.367 3.483 3.151 57.2 9.5Table 3.5: Comparison of CPI's of the AHB sheduler to the in-order and memory-less shedulers for the ommerial benhmarks.sheduler. As the total number of threads inreases to two, we observe that the AHBsheduler's advantage inreases to 27.4% and 4.4% on a single ore system, and to32.8% and 5.6% on a dual ore system. For two threads running on eah of twoproessors, the gain from the AHB sheduler is 51.6% over the in-order shedulerand 7.5% over the memoryless sheduler.In summary, our experiments with the Stream, NAS, and ommerial benh-marks indiate that the AHB sheduler is superior to the in-order and memorylessshedulers. We also see that the bene�t of our approah inreases as the total num-ber of threads in the system inreases, beause additional threads inrease pressureon the single memory ontroller. 37

3.2.4 Understanding the ResultsWe now look inside the memory system to gain a better understanding of our results.To study a broader set of hardware on�gurations, we use a set of 14 mirobenh-marks, ranging from 4 Read streams and 0 Write streams, to 0 Read streams and4 Write streams. Figure 3.3 shows that for these mirobenhmarks, the adaptivehistory-based method improves performane by 20-70% ompared to in-order shed-uler and by 17-20% ompared to memoryless sheduler.
4r

0w

2r
0w

1r
0w

8r
1w

4r
1w

3r
1w

2r
1w

3r
2w

1r
1w

1r
2w

1r
4w

0r
1w

0r
2w

0r
4w

Microbenchmarks

0

10

20

30

40

50

60

70

80

90

100

Pe
rf

or
m

an
ce

 B
en

ef
it

(%
)

compared to in-order
compared to memoryless

Figure 3.3: Performane omparison on our mirobenhmarks.
1 2 3 4 5 6 7 8 9 10 11 12

Number of Active Memory Commands

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

N
um

be
r

of
 O

cc
ur

en
ce

s memoryless scheduler
AHB scheduler

Figure 3.4: Utilization of the DRAM for the daxpy kernel.The most diret measure of the quality of a memory ontroller is its impaton memory system utilization. Figure 3.4 shows a histogram of the number of38

operations that are ative in the memory system on eah yle. We see that whenompared against the memoryless sheduler, our sheduler inreases the averageutilization from 8 to 9 operations per yle. The x-axis goes to 12 beause thePower5+'s DRAM allows 12 memory ommands to be ative at one.
-50

-40

-30

-20

-10

0

10

20

30

40

50
D

if
fe

re
nc

e
in

 R
et

ry
 R

at
es

 (
%

)

4r
0w

2r
0w

1r
0w

8r
1w

4r
1w

3r
1w

2r
1w

3r
2w

1r
1w

1r
2w

1r
4w

0r
1w

0r
2w

0r
4w

MicrobenchmarksFigure 3.5: Comparison of retry rates.Memory system utilization is also important when evaluating our results,beause it is easier for a sheduler to improve the performane of a saturated system.We measure the utilization of the ommand bus that onnets the memory ontrollerto the DRAM, and we �nd that the utilization was about 65% for the Streambenhmarks and about 13%, on average, for the NAS benhmarks. We onludethat the memory system was not saturated for our workloads.Bottleneks in the System. To better understand why our solution improvesDRAM utilization, we now examine various potential bottleneks within the memoryontroller.The �rst potential bottlenek ours when the reorder queues are full. In thisase, the memory ontroller must rejet memory operations, and the CPU must retrythe memory operations at a later time. The retry rate does not orrelate exatlyto performane, beause a retry may our when the proessor is idle waiting fora memory request. Nevertheless, a large number of retries hints that the memory39

system is unable to keep up with the proessor's memory demands. Figure 3.5shows that the adaptive history-based method always redues the retry rate whenompared to the in-order method, but it sometimes inreases the retry rate omparedto the memoryless method.
-50

-40

-30

-20

-10

0

10

20

30

40

50
D

if
fe

re
nc

e
in

 B
an

k
C

on
fl

ic
ts

 (
%

)

4r
0w

2r
0w

1r
0w

8r
1w

4r
1w

3r
1w

2r
1w

3r
2w

1r
1w

1r
2w

1r
4w

0r
1w

0r
2w

0r
4w

MicrobenchmarksFigure 3.6: Comparison of the number of bank onits in the reorder queues.A seond bottlenek ours when no operation in the reorder queues anbe issued beause of DRAM onits with previously sheduled ommands. Thisbottlenek is a good indiator of sheduler performane, beause a large number ofsuh ases suggests that the sheduler has done a poor job of sheduling memoryoperations. Figure 3.6 ompares the total number of suh bloked ommands forour method and for the memoryless method. This graph only onsiders ases wherethe reorder queues are the bottlenek, i.e., all operations in the reorder queuesare bloked even though the CAQ has empty slots. We see that exept for fourmirobenhmarks, our method substantially redues the number of suh blokedoperations.A third bottlenek ours when the reorder queues are empty, starving thesheduler of work. Even when the reorder queues are not empty, low oupanyin the reorder queues is bad beause it redues the sheduler's ability to makegood sheduling deisions. In the extreme ase, where the reorder queues hold40

4r
0w

2r
0w

1r
0w

8r
1w

4r
1w

3r
1w

2r
1w

3r
2w

1r
1w

1r
2w

1r
4w

0r
1w

0r
2w

0r
4w

Microbenchmarks

0

10

20

30

40

50

60

70

80

90

100

D
if

fe
re

nc
e

in
 E

m
pt

y
R

eo
rd

er
 Q

ue
ue

s
(%

)

Figure 3.7: Redution in the ourrenes of empty reorder queues, whih is a measureof the oupany of the reorder queues.no more than a single operation, the sheduler has no ability to reorder memoryoperations and instead simply forwards the single available operation to the CAQ.Figure 3.7 shows that our method signi�antly redues the ourrenes of emptyreorder queues, indiating higher oupany of these queues.The �nal bottlenek ours when the CAQ is full, foring the sheduler toremain idle. Figure 3.8 shows that the adaptive history-based sheduler tremen-dously inreases this bottlenek. The bakpressure reated by this bottlenek leadsto higher oupany in the reorder queues, whih is advantageous beause it givesthe sheduler a larger sheduling window.
-100

-50

0

50

100

150

200

250

300

D
if

fe
re

nc
e

in
 F

ul
l C

A
Q

 R
at

e
(%

)

4r
0w

2r
0w

1r
0w

8r
1w

4r
1w

3r
1w

2r
1w

3r
2w

1r
1w

1r
2w

1r
4w

0r
1w

0r
2w

0r
4w

MicrobenchmarksFigure 3.8: Inreases in the ourrenes where the CAQ is the bottlenek.41

To test this theory, we ondut an experiment in whih we inrease the size ofthe CAQ. We �nd that as the CAQ length inreases, the CAQ bottlenek dereases,the reorder queue oupany falls, and the overall performane dereases.In summary, our solution improves bandwidth by moving bottleneks fromoutside the memory ontroller, where the sheduler annot help, to inside the mem-ory ontroller. More spei�ally, the bottleneks tend to appear at the end of thepipeline|at the CAQ|where there is no more ability to reorder memory om-mands. By shifting the bottlenek, our solution tends to inrease the oupany ofthe reorder queues, whih gives the sheduler a larger number of memory operationsto hoose from. The result is a smaller number of DRAM onits and inreasedbandwidth.
4r

0w

2r
0w

1r
0w

8r
1w

4r
1w

3r
1w

2r
1w

3r
2w

1r
1w

1r
2w

1r
4w

0r
1w

0r
2w

0r
4w

Microbenchmarks

0

10

20

30

40

50

60

70

80

90

100

R
ed

uc
tio

n
in

 S
ta

nd
ar

d
D

ev
ia

tio
ns

 (
%

)

Figure 3.9: Redution in standard deviations for 16-di�erent address o�sets.E�ets of Data Alignment. Another bene�t of improved memory shedulingis a redued sensitivity to data alignment. With a poor sheduler, data alignmentan ause signi�ant performane di�erenes. The largest e�et is seen where adata struture �ts on one ahe line when aligned fortuitously but straddles twoahe lines when aligned di�erently. In suh ases, the bad alignment results intwie the number of memory ommands. If a sheduler an improve bandwidth by42

reordering ommands, it an mitigate the di�erene between the well-aligned andpoorly-aligned ases. Figure 3.9 ompares the standard deviations of the adaptivehistory-based and memoryless shedulers when data are aligned on 16 di�erent ad-dress o�sets. We see that the adaptive history-based solution redues the sensitivityto alignment.3.3 Sensitivity AnalysisThe previous setion analyzed the performane of the AHB sheduler in the ontextof the IBM Power5+. This setion explores the broader utility of our sheduler byanalyzing its performane in the ontext of various derivatives of the Power5+.There are three goals of this setion. First, we would like to analyze thesensitivity and robustness of the AHB sheduler to various miro-arhitetural fea-tures. We will show that the AHB sheduler yields performane that is robust arossa variety of miro-arhitetural parameters. We will also see that the other shed-ulers annot ahieve the performane of the AHB approah even if given additionalhardware resoures. Seond, we identify optimal values for parameters related tothe memory sheduler. We show that arefully determining memory system param-eters has signi�ant performane impliations. And �nally, we want to evaluate ourapproah for possible future arhitetural trends.In the following subsetions, we �rst investigate the performane e�ets ofvarying the parameters of the memory ontroller. Then, we analyze the e�ets ofvarious DRAM parameters. And lastly, to explore the appliability of our approahin possible future systems, we ompare the shedulers for systems with di�erentproessor frequenies and di�erent data prefething options.We evaluate our sheduler with single and multiple-threads, and we makeomparisons to the memoryless sheduler. We use daxpy benhmark in our exper-iments, beause daxpy ours very frequently in sienti� workloads, and arhite-43

tural parameters are onsidered diÆult to tune for this benhmark.3.3.1 Memory Controller ParametersThere are numerous memory ontroller design features that a�et performane. Inthis subsetion, we ompare the AHB and the memoryless sheduling methods byvarying memory ontroller features. Sine the design spae is large, we identify threeimportant parameters to vary: the CAQ length, the reorder queue lengths, and theduration to blok a ommand in the reorder queues when there is a bank onit.We believe that these features are the most important parameters with respet toperformane.CAQ Length. The Central Arbiter Queue resides between the memory shedulerand DRAM. At eah yle, the sheduler selets an appropriate ommand from thereorder queues and feeds it to the CAQ. Sine the CAQ ats as a bu�er between thesheduler and DRAM, the length of this queue is ritial to performane. Here, weexamine the performane e�ets of the CAQ length. For various on�gurations andshedulers, we �rst determine the optimal length for the queue. We then analyzethe sensitivity of the sheduling approahes to the hanges in this length. Ourexperiments show that the AHB sheduler is superior to the memoryless shedulerfor all CAQ lengths that we study.The CAQ length may degrade performane if it is either too short or toolong. If the queue is too short, it will tend to overow frequently and lead to fullreorder queues, whih will ause the memory ontroller to rejet memory ommandsfrom the proessor and degrade overall performane. We an redue the ourreneof CAQ overows by inreasing the CAQ length, but a long CAQ has its owndisadvantages. First, it onsumes more hardware resoures, as the Power5+ memoryontroller's hardware budget is dominated by the reorder queues and CAQ. Seond,as explained in Setion 3.2.4, a long CAQ an redue bakpressure on the reorder44

queues, giving the sheduler a smaller e�etive sheduling window, whih leads tosuboptimal sheduling deisions. Therefore, the CAQ ats as a regulator for therate of ommands to be seleted from the reorder queues, and there is a deliatebalane between the CAQ length and performane.We ondut experiments in whih we vary the CAQ length from 2 to 16.In Figure 3.10, we show the e�et of the CAQ length for both Single-Threaded(ST) and SMT environments. For the ST daxpy, the AHB sheduler gets the bestperformane for a queue length of 4. As the queue length inreases beyond 4, thereis a slight performane degradation. For the SMT ase, a queue length of 3 givesthe best performane for the AHB method. Similar to the ST ase, as the CAQlength inreases beyond the optimal value, we observe performane degradation.But unlike the ST ase, the performane degradation is not small. For example,performane is 1.7% lower for the queue length of 4 ompared to the length of 3.This performane di�erene goes up to 4.4% when the queue has 16 slots.

2 3 4 5 6 8 16

CAQ Length

0.65

0.75

0.85

0.95

1.05

C
PI

memoryless ST
AHB ST
memoryless SMT
AHB SMT

Figure 3.10: ST and SMT results for the memoryless and the AHB with varyinglengths of the CAQ.Figure 3.10 also shows that for the memoryless sheduler, longer CAQs al-ways yield better performane, most likely beause the memoryless sheduler has no45

way to exploit larger sheduling windows. For example in the ST ase, the perfor-mane of the memoryless sheduler improves by 7.1% as the CAQ length inreasesfrom 3 to 16. However, even with this queue length, our approah is still supe-rior over the memoryless sheduler. In the SMT experiments with the memorylesssheduler, we �nd that the performane gain from inreasing the queue size to 16 ismuh smaller ompared to the ST ase.In summary, the memoryless method improves as the CAQ gets longer, butit annot ahieve the performane of the AHB sheduler even if given a muh longerCAQ. We also onlude that seleting the optimal queue length has signi�ant per-formane e�ets.Reorder Queue Lengths. As we show in Figure 2.1, the Power5+ has two re-order queues inside the memory ontroller: one for reads and one for writes. In theurrent design of the Power5+, eah of these queues have equal length of 8. Here,we analyze the e�et of the reorder queue lengths on the sheduling approahes.The length of the reorder queus a�ets performane in two ways. First,retries our when the reorder queues are full, so shorter reorder queues inreasethe number of retries and potentially derease overall performane. Seond, if thereorder queues are short, the sheduler will have limited optimization apability.In the extreme ase, onsider a reorder queue with just one slot. The shedulerwill have no hoie but selet the ommand from that slot. We, therefore, expetthat inreasing the size of the reorder queues will improve the performane of anysheduling approah.We perform simulations that vary the reorder queue lengths from 4 to 16. Forsimpliity, we always keep the lengths of the two queues the same. In Figure 3.11,we present the e�ets of the reorder queue lengths on performane for both the AHBand the memoryless shedulers. For the single threaded experiments, as we shortenthe queue sizes from the Power5+'s urrent value of 8 to 4, the AHB sheduler loses46

28.8% of its performane and memoryless sheduler loses 25.3%. The same redutionin the reorder queue lengths for the SMT experiments degrades performane 27.3%and 19.9% for the AHB and memoryless shedulers, respetively. On the other hand,for both of the sheduling approahes, when we inrease the reorder queue lengthsbeyond the urrent value of 8, we obtain only very small performane improvements.

4 6 8 12 16

Reorder Queue Lengths

0.65

0.75

0.85

0.95

1.05

C
PI

memoryless ST
AHB ST
memoryless SMT
AHB SMT

Figure 3.11: ST and SMT results for memoryless and AHB with various reorderqueue lengths.We onlude that for all the reorder queue sizes, the performane of the AHBapproah is better than the memoryless method. As we expet, the advantage of theAHB method over the memoryless method inreases as the queues beome longer.We also observe that the urrent queue lengths are optimal for the Power5+. Weannot obtain any signi�ant performane gains with longer queues regardless of thesheduling approah or the number of threads.Wait Times for Commands with Bank Conits. In this setion, we analyzethe interation between the sheduler and the bloking duration for ommands withbank onits. We �nd that the AHB is less sensitive to this parameter and isalways better than the memoryless sheduler regardless of the wait time.Bank onits prohibit the entrane of new ommands to DRAM. Sine the47

CAQ is a FIFO queue, if the ommand in front of the CAQ onits with a ommandin DRAM, all the ommands in the CAQ are bloked until the onit is leared.To prevent this, the Power5+ holds ommands in the reorder queues when theyhave bank onits. Even with an empty CAQ, a ommand in the reorder queueshas to travel some distane before it is issued to DRAM. This distane is about 32proessor yles in the urrent implementation. To avoid this 32 yle delay, thePower5+ transmits ommands to the CAQ some number of yles before the bankonit is expeted to be resolved.This wait time in the reorder queues is important to performane. If the waittime is too short, ommands with bank onits will be sheduled early, yielding twopossible e�ets: First, the CAQ may ontain multiple ommands to the same bank,and when one of these ommands goes to DRAM, the others will be bloked formany yles. Seond, if the ommand is sheduled too early, the shedule may missthe opportunity to make a better sheduling deision when additional ommandsmight beome available in the reorder queues.To investigate the e�ets of various wait times, we ondut experiments forthe AHB and the memoryless shedulers with ST and SMT. As we see in Figure 3.12,the AHB sheduler is muh less sensitive to the wait time. For the AHB sheduler,95 proessor yles is the optimal wait time for both ST and SMT experiments. If aommand waits until the bank onit is leared, this will degrade performane by1.8% for ST and 3.5% for SMT. For the memoryless approah, 125 and 110 ylesare the optimal wait times for ST and SMT, respetively. The memoryless methodwith SMT has a 1.2% performane advantage when it uses 110 yle wait time ratherthan 125 yles.In summary, we observe that the sheduler should be able to selet a om-mand from the reorder queues earlier than the bank onit is leared. We also �ndthat for the ST ase, the AHB approah is less sensitive to this parameter. For the48

75 80 85 90 95 100 105 110 115 120 125

Hold Time for Bank Conflicts

0.65

0.75

0.85

0.95

1.05

C
PI

memoryless ST
AHB ST
memoryless SMT
AHB SMT

Figure 3.12: ST and SMT results for the memoryless and the AHB with varyingwait times for bank onits.SMT, both sheduling approahes show similar sensitivity. For all the wait timesthat we study, the AHB sheduler has better performane than the memorylesssheduler.3.3.2 DRAM ParametersIn this setion we vary DRAM system parameters. In partiular, we evaluate theperformane of the AHB and the memoryless methods by varying the memory ad-dress and data bus widths, the maximum number of ommands that an be ativein DRAM, and the number of banks available in a rank. We �nd that eah of thesethree parameters signi�antly a�ets performane.Address and Data Bus Widths. Memory bus width signi�antly a�ets a mem-ory system's bandwidth, so we explore the e�et of using both narrower and widermemory buses for the Power5+. The Power5+ memory ontroller is onneted tomemory hips via an address bus and a data bus. In the urrent implementation,the address bus is 32 bits wide. The data bus has 24 bits: 16 bits for Reads and 8bits for Writes. 49

In Figure 3.13 the x-axis represents the relative ratio of the bus widths tothe urrent values of the Power5+. For example, 0.5 represents a system with buseshalf the width of the urrent system. We �nd that reduing bus widths by 50%signi�antly degrades performane (20.9-26.6%) for both the AHB and memorylessshedulers. We also observe that inreasing bus widths beyond the urrent valuesof the Power5+ has little e�et on performane. For all the bus widths we study,the AHB's performane is higher than the memoryless.

0.5x 1x 2x

Address and Data Bus Widths

0.65

0.75

0.85

0.95

1.05

C
PI

memoryless ST
AHB ST
memoryless SMT
AHB SMT

Figure 3.13: ST and SMT results for memoryless and AHB, varying memory addressand data bus widths.Maximum Number of Commands in DRAM. In the systems we examine,the DRAM is organized into 16 banks, so there an be a maximum of 16 onurrentommands in DRAM. However, the Power5+ designers hoose to trak at most 12ommands at any time. To explore the bene�t of traking more than 12 ommands,we vary the number of ommands traked. In Figure 3.14, we show results forboth ST and SMT workloads. We �nd that inreasing beyond 12 the number ofommands to trak in DRAM does not inrease performane. However, reduing itsvalue by 4 redues daxpy performane up to 7.9%.50

8 12 16

Maximum Number of Commands in DRAM

0.65

0.75

0.85

0.95

1.05

C
PI

memoryless ST
AHB ST
memoryless SMT
AHB SMT

Figure 3.14: ST and SMT results for memoryless and AHB, varying the maximumnumber of DRAM ommands.Number of Banks in a Rank. Future memory systems are likely to provideinreased parallelism in the form of a larger number of banks per rank. Figure 3.15shows how performane is a�eted by hanging the number of banks. Inreasing thebanks per rank from two to four improves performane in both the single threadedand the SMT experiments. The performane gain is 20.8%-21.7% and 18.1%-26.6%for the AHB and memoryless shedulers, respetively. On the other hand, furtherinreasing the number of banks to eight does not improve the performane of thememoryless sheduler, and the performane gain for the AHB sheduler is between1.9% and 4.6% for the single threaded and SMT experiments. In summary, ourexperiments indiate that the advantage of the AHB sheduler over the memorylessapproah inreases as the number of banks in a rank inreases, i.e., as the memorysystem admits more parallelism.3.3.3 System ParametersProessor Frequeny. In addition to memory ontroller and DRAM parameters,we also explore the impat of higher lok rates for the proessor. While inreases in51

2 4 8

Number of Banks in a Rank

0.65

0.75

0.85

0.95

1.05

C
PI

memoryless ST
AHB ST
memoryless SMT
AHB SMT

Figure 3.15: ST and SMT results for the memoryless and the AHB with varyingnumber of banks in a rank.lok rate have slowed, proessor frequeny ontinues to inrease. In Figure 3.16, wepresent the di�erenes between the AHB and the memoryless shedulers for systemswith 1.5, 2, 3, and 4 times the proessor frequeny of the urrent Power5+ systems.As the ratio of the proessor frequeny to the DRAM frequeny grows, we �nd thatadvantage of the AHB sheduler over the memoryless method also inreases. Forexample, for the ST ase, with the urrent proessor frequeny, the AHB sheduleris superior to the memoryless sheduler by 9.5%, but the advantage grows to 15.6%when the proessor frequeny doubles. Similarly, for the SMT ase, AHB method'sadvantage inreases from 15.5% to 22.0% with 2x proessor frequeny. We onludethat as the ratio of the proessor/memory speeds inreases, the signi�ane of ourapproah will also inrease beause the importane of memory bandwidth grows.Data Prefething. We also investigate the e�ets of data prefething on thesheduling approahes. We see that if we turn o� the prefeth unit, the adap-tive history-based method's bene�t over the other two approahes is signi�antlydiminished beause the lower memory traÆ redues pressure on the memory on-troller. For example, for daxpy in the SMT ase, the performane bene�t of the52

1x 1.5x 2x 3x 4x

Processor Frequency

0.75

0.85

0.95

(A
H

B
 C

PI
)

/ (
m

em
or

yl
es

s
C

PI
) ST

SMT

Figure 3.16: ST and SMT results for memoryless and AHB, with 1.5x, 2x, 3x, and4x proessor frequeny.AHB sheduler over the memoryless sheduler is redued from 16.4% to 7.3% whenthe hardware prefething unit is turned o�.3.4 Hardware CostsTo evaluate the ost of our solution, we need to onsider the ost in terms of tran-sistors and power. The hardware ost of the memory ontroller is dominated bythe reorder queues, whih dwarf the amount of ombinational logi required to im-plement our adaptive history-based arbiter. To quantify these osts, we use theimplementation of the Power5+ to provide detailed estimates of transistor ounts.We �nd that the memory ontroller onsumes 1.58% of the Power5+'s total transis-tors. The size of one memoryless arbiter is in turn 1.19% of the memory ontroller.Our adaptive history-based arbiter inreases the size of the memory ontroller by2.38%, whih inreases the overall hip's transistor ount by 0.038%. Given the tinyost in terms of transistors, we are on�dent that our solution has only negligiblee�ets on power. 53

3.5 SummaryIn this hapter, we have shown that memory aess sheduling, whih has tradi-tionally been important primarily for stream-oriented proessors, is beoming in-reasingly important for general-purpose proessors, as many fators ontribute toinreased memory bandwidth demands. To address this problem, we have intro-dued a new sheduler that inorporates several tehniques. We use the ommandhistory|in onjuntion with a ost model|to selet ommands that will have lowlateny. We also use the ommand history to shedule ommands that math someexpeted ommand pattern, as this tends to avoid bottleneks within the reorderqueues. Both of these tehniques an be implemented using FSM's, but beause thegoals of the two tehniques may onit, we probabilistially ombine these FSM'sto produe a single history-based sheduler that partially satis�es both goals. Fi-nally, beause we annot know the atual ommand-pattern a priori, we implementthree history-based shedulers|eah tailored to a di�erent ommand pattern|andwe dynamially selet from among these three shedulers based on the observedratio of Reads and Writes.To plae our work in historial ontext, we have identi�ed three dimensionsthat desribe previous work in avoiding bank onits, and we have explored thisspae to produe a single state-of-the-art solution that we refer to as the memorylesssheduler. We use this memoryless sheduler as a baseline to ompare against.In the ontext of the IBM Power5+, we have found that a history length oftwo is surprisingly e�etive. Thus, while our solution might appear to be omplex,it is atually quite inexpensive, inreasing the Power5+'s transistor ount by only0.038%. We evaluate the performane advantage of our tehnique using three benh-mark suites. For SMT workloads onsisting of the Stream benhmarks, our shedulerimproves IPC by 55.6% over in-order sheduling and 16.0% over memoryless shedul-ing. For the NAS benhmarks, again with SMT workloads, the improvements are54

25.6% over in-order sheduling and 9.7% over memoryless sheduling. For a set ofommerial SMT workloads, the improvements are 51.6% over in-order shedulingand 7.5% over memoryless sheduling.To explain our results, we have looked inside the memory system to pro-vide insights about how our solution hanges the various bottleneks within thesystem. We �nd that an internal bottlenek at the CAQ is useful beause it givesthe sheduler more operations to hoose from when sheduling operations. We havealso explored the e�ets of varying parameters of the proessor, the DRAM and thememory ontroller itself. We �nd that as memory traÆ inreases, the bene�ts ofthe AHB sheduler inrease, even for multi-threaded workloads. We �nd that oursolution is more robust than memoryless sheduling in the sense that our solutionis less sensitive to hanges in design parameters. We also �nd that the AHB shed-uler is typially superior to the memoryless sheduler even when the latter is givenadditional hardware resoures.

55

Chapter 4
Improving Memory Lateny ofIrregular Appliations

Numerous hardware solutions have been proposed to hide long memory latenies.Early prefething tehniques [34, 65, 55, 2, 19℄ foused on exploiting streaming work-loads. While regular forms of spatial loality are easy to predit, it has traditionallybeen diÆult to exploit irregular patterns of spatial loality and even more diÆultto exploit low amounts of spatial loality.Reently, a lass of aggressive prefething tehniques has arisen from thenotion of a Spatial Loality Detetion Table [32℄. These tehniques trak aesses toregions of memory so that spatially orrelated data an be prefethed together [32,39, 9, 44, 67℄. The hief advantage of these tehniques is their ability to exploitirregular forms of spatial loality. Their hief disadvantage is their reliane on largetables that oupy hip area and onsume power.We propose a new solution, whih uses a simple tehnique to augment thee�etiveness of stream prefethers. Our tehnique is based on two observations.First, memory intensive workloads with low amounts of spatial loality are likely tostill ontain many very short \streams," if \stream" an be de�ned to be as short56

as two onseutive ahe lines. Seond, stream prefethers ould e�etively prefeththese short streams if they only knew when to be aggressive.To understand this seond point, reall that stream prefethers look for a-esses to k onseutive ahe lines, at whih point the k+1st ahe line is prefethed;prefething ontinues until a useless prefeth is deteted. Thus, the value of k de-termines the prefether's aggressiveness, and this value is typially �xed at designtime. Even with a small value of k, stream-based prefethers do not fare well onshort streams beause they stop after a useless prefeth. For example, on a workloadin whih every stream is of length 2, a k = 1 poliy would suessfully prefeth theseond ahe line of eah stream, but eah suessful prefeth would be followed bya useless prefeth, so 50% of its prefethes would be useless.Our solution, Adaptive Stream Detetion, guides the aggressiveness of theprefeth poliy based on the workload's observed amount of spatial loality, as mea-sured by a Stream Length Histogram (SLH). An SLH is a dynamially omputedhistogram that attributes eah memory aess to a partiular stream length. For ex-ample, if the SLH indiates that 70% of the memory requests were parts of streamsof length 2 and that 30% of the memory requests were parts of streams of length 1,then an e�etive strategy would always prefeth the seond ahe line of a streambut never the third line. Thus, Adaptive Stream Detetion an predit when tostop prefething without inurring a useless prefeth. To adapt to hanges in phasebehavior, new Stream Length Histograms are omputed periodially.Adaptive Stream Detetion provides two bene�ts. (1) It extends the notion ofa stream to inlude streams as short as two ahe lines. Thus, while it is inherentlya stream-based approah, it provides bene�ts for workloads, suh as ommerialappliations, that are not traditionally viewed as stream-based. (2) Beause it isstream-based, it has low hardware osts, using small tables that have low statipower leakage. 57

This hapter desribes how Adaptive Stream Detetion an be implementedin the memory ontroller. In this ontext, we introdue a seond idea, AdaptiveSheduling, that adjusts the priority of prefethed ommands based on the measuredfrequeny of onits that prefethed ommands have aused. This adaptivity isuseful beause any �xed priority may be exessively onservative for some workloads.In this hapter we make the following ontributions:� We introdue Adaptive Stream Detetion, a probabilisti prefething tehniquethat adjusts the aggressiveness of stream prefething based on Stream LengthHistograms, whih are inexpensive to gather. This tehnique addresses thequestion of what to prefeth.� We use the idea of Adaptive Stream Detetion to design a prefether thatresides in the memory ontroller and prefethes from DRAM into a smallPrefeth Bu�er. This prefether uses Adaptive Sheduling to modulate therelative priority of prefeth ommands to regular ommands. We show thata prefeth bu�er that holds 16 ahe lines is e�etive. We also see thatthis memory-side prefether (MS) omplements the IBM Power5+'s existingstream prefether (PS), whih performs proessor-side prefething.� We evaluate Adaptive Stream Detetion using the SPEC2006 oating pointsuite, the NAS benhmarks, and a set of �ve ommerial benhmarks. Forsingle threaded workloads, when we ompare our tehnique to a strippeddown Power5+ with no prefething (NP), we improve the performane of theSPEC2006fp, NAS, and ommerial benhmarks by 14.6%, 11.7%, and 9.3%,respetively. When MS is ombined with PS, forming PMS, its improvementsover NP are 32.7%, 24.2%, and 15.1%, respetively. The performane improve-ments for the ommerial benhmarks are noteworthy beause these benh-marks exhibit low amounts of spatial loality. We get similar results for SMT58

workloads.� We evaluate the energy and power impat of our approah. For our threebenhmark suites, we �nd that DRAM power onsumption inreases by 2.7%,1.6%, and 2.8%, respetively, while DRAM energy onsumption dereases by9.8%, 7.9%, and 8.2%, respetively. For the four SPEC2006fp benhmarksthat have low memory bandwidth requirements, the DRAM power impatis negligible: DRAM power inreases by an average of 0.12%, while energyonsumption dereases by 0.47%.� We evaluate Adaptive Sheduling and show that it improves upon a set ofonservative �xed-priority poliies by about 2.9%.In the next setions we desribe our solution; we present empirial evaluationof our approah; and �nally we summarize and provide onluding remarks.4.1 Memory Prefething Using Adaptive Stream De-tetionThis setion desribes our new prefether [30℄, whih resides in the memory on-troller. This prefether addresses two major questions: (1) How an we redue thenumber of unneessary prefeth requests? (2) How an we redue the opportu-nity ost of prefethes? Adaptive Stream Detetion addresses the �rst issue, andAdaptive Sheduling addresses the seond. To provide ontext, we �rst explain thebasi idea behind Adaptive Stream Detetion. After desribing the mathematialdetails of how SLH's are used, we disuss implementation issues, and present theorganization of our prefether. Finally, we present details of Adaptive Sheduling.
59

4.1.1 Adaptive Stream DetetionAdaptive Stream Detetion uses Stream Length Histograms, SLH, to apture spa-tial loality and guide prefeth deisions. For example, Figure 4.1 shows an SLHfor one epoh of the GemsFDTD benhmark from the SPEC2006 suite. In an SLH,the height of the bar at loation m represents the perentage of streams that havelength m. Depending on the deteted stream length of the urrent Read request,the prefether heks the SLH and determines how many, if any, sequential ahelines to prefeth.In the example SLH of Figure 4.1, we see that 21.8% of all streams are oflength 1, 43.7% of all stream are of length 2, et. The rightmost bar indiates that1.2% of all streams are length 16 or more. Given this information, when a Readrequest, Rn, arrives and is the �rst element of a new stream, a prefeth requestshould be issued beause Rn is more likely to be the �rst element of a stream oflength 2 or longer (78.2% probability) than to be part of a stream of length 1(21.8%). On the other hand, if a Read request, Rn, is the seond element of astream, a prefeth should not be issued beause there is a 43.7% probability thatRn is the seond element of a stream of length 2, whih is greater than the 34.5%likelihood that it is the seond element of a longer stream. With similar reasoning,prefethes should be issued for any Read request whose urrent stream length is 3 orgreater than 6. This example shows that the use of the SLH allows a prefether tomake rather sophistiated prefething deisions based on the length of an individualstream.The prefether an also use the SLH to deide whether to generate multipleprefethes|although we do not evaluate this idea. For example, when Rn is partof a stream of length 1, the prefether deides whether to generate two onseutiveprefethes by adding the probabilities of the �rst two bars and omparing the sumwith the rest of the histogram. If the sum of the �rst two bars is less than the sum60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Stream Length

0

10

20

30

40

50

Fr
eq

ue
nc

y
(%

)

Figure 4.1: Stream Length Histogram (SLH) for an arbitrary epoh of theGemsFDTD benhmark.of the other bars, and if the prefether has already deided to prefeth one line, itgenerates a prefeth for the seond line as well.Beause memory aess behavior typially varies over time, our solution peri-odially reates an SLH after every e Read requests, where e is known as an epoh.Thus, in every epoh, our method onstruts a new SLH for use in the next epoh.Figure 4.2 shows how epohs an vary widely over time. To keep trak of inreasingor dereasing streams, we need one SLH for eah diretion.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Stream Length

0
10
20
30
40
50
60
70
80
90

100

Fr
eq

ue
nc

y
(%

)

For all epochs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Stream Length

For an arbitrary epoch

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Stream Length

For another arbitrary epoch

Figure 4.2: Stream Length Histograms (SLH) for the GemsFDTD benhmark fromthe SPEC2006fp suite show that the SLH's vary widely at di�erent points in time.Here the epoh length is 2000 reads.
61

4.1.2 Using the SLH to Detet LoalityOur probabilisti approah to prefething makes deisions by omparing the likeli-hood that a Read request will be the last element of a stream against the likelihoodthat it will be part of a longer stream. In this subsetion, we derive inequalities thatguide these prefeth deisions. Our disussion also establishes the transition fromthe SLH onept to its implementation that we present later in Setion 4.1.4.De�nitions. To desribe our method, we de�ne two funtions, lht() and P (),whih an be used to ompute an SLH, as follows:lht(i): the number of streams of length i or longer, where 1 � i � fs and fs is themaximum stream length that our method uses. For any i > fs, lht(i) = 0.P (i; j): the sum of probabilities that a Read is part of any stream of length k, wherei � k � j and 1 � i; j � fs. We an de�ne P (i; j) in terms of lht() as follows:P (i; j) = (lht(i)� lht(j + 1))=lht(1) (4.1)The value of the ith bar of an SLH equals P (i; i).Prefeth Deision. To determine whether to issue a prefeth, we hek whetherthe following ondition is satis�ed for a Read request, Rn, that is the ith element ofa stream: P (i; i) < P (i+ 1; fs) (4.2)This inequality states that the probability that the most reent Read request, Rn,is the last element of a stream of length i is smaller than it being the ith element ofa stream of length longer than i. We an simplify the inequality (4.2) as follows:62

P (i; i) < P (i+ 1; fs) (4.3)� lht(i) � lht(i+ 1)lht(1) < lht(i+ 1)� lht(fs+ 1)lht(1) (4.4)� lht(i) < 2� lht(i+ 1) (4.5)Our tehnique uses the inequality (4.5) to make next line prefeth deisions. Weprovide, without proof, a generalized version of (4.5) to prefeth k onseutive linesafter Rn: lht(i) < 2� lht(i+ k) (4.6)4.1.3 Prefether DesignThe organization of our prefether is shown in Figure 4.3, where the gray boxesrepresent our additions to the memory ontroller. Read ommands enter the memoryontroller and are sent to both the original memory ontroller and to the StreamFilter. The Stream Filter keeps trak of Read streams and generates the SLH.This information from the Stream Filter is then fed to the Prefeth Generator,whih deides whether a prefeth ommand should be issued, and if so, plaes theprefeth ommand in the Low Priority Queue (LPQ), where the Final Sheduleran onsider it, along with other ommands in the LPQ and CAQ, when seletingommands to issue to DRAM. Any prefethed data are then stored in the PrefethBu�er.The Prefeth Bu�er is heked twie. It is �rst heked before Read om-mands are plaed in the CAQ, so that Read ommands an be satis�ed by thePrefeth Bu�er, in whih ase the lateny of going to DRAM is saved and the Readommand is squashed. The Prefeth Bu�er is heked again when the Final Shed-63

uler selets a Read ommand from the CAQ to send to memory; this hek is usefulbeause the desired data may have arrived in the Prefeth Bu�er while the Readommand was resident in the CAQ.
original
Power5+
memory
controller

update check status

check status

from processors

Reads Reads/Writes

prefetched data

Final Scheduler

Conflict,
Queue
Status

DRAM

Stream
Filter

Centralized
Arbiter
Queue
(CAQ)

Low

Read/Write
Reorder
Queues

Scheduler

MEMORY
CONTROLLER

Queue
Priority

Prefetch
Buffer

(LPQ)

Prefetch
Generator

Figure 4.3: Overview of our prefether.Stream Filter. To maintain information about Read streams, the Stream Filteruses one slot to trak eah Read stream. Eah slot maintains (1) the last addressaessed for this stream, (2) the length of the stream, (3) the stream's diretion,and (4) the stream's lifetime, whih indiates when the stream should be evited.These slots are used as follows:� If the Read, Rn, is not part of a stream and if there is a vaant slot in thePrefeth Filter, the last aess �eld is set to the address of the Read request,the length �eld is initialized to 1, the lifetime is initialized to a predeterminedvalue, and the diretion is set to Positive.� If Rn is not part of a stream and there is no available slot, no prefeth will begenerated after Rn, but the SLH struture is updated as if a stream of length64

1 had been deteted.� If Rn is the most reent element of a previously deteted stream, the streamlength is inremented by 1, the last aess is set to the address of Rn, and thelifetime of the stream is inremented by a predetermined value.� The diretion of the stream is set to Negative if the length of the previousstream is 1 and the address of Rn is smaller than the last address of thestream.� At every proessor yle, the lifetime �elds are deremented by one. A streamis evited from a slot when its lifetime expires. At this point, the SLH stru-ture is updated using the length value in the Stream Filter.� At the end of eah epoh, all streams are evited from the Stream Filter.Prefeth Bu�er. The Prefeth Bu�er holds data that are fethed from memoryby the memory-side prefether. We assume that this bu�er is a set assoiative ahewith an LRU replaement poliy. When there is a write request to an address in thePrefeth Bu�er, we invalidate the entry in the bu�er. We also invalidate the entryif a regular Read request mathes the address, beause in suh ases the data willlikely be moved to the L1 or L2 ahe, so it is unlikely to be useful in the PrefethBu�er again.4.1.4 Implementation of Adaptive Stream DetetionWe now present details for implementing Adaptive Stream Detetion. For simpli-ity, we restrit our explanation to streams with inreasing addresses only, and weonly disuss prefething for one ahe line. It is straightforward to generalize thisapproah to streams with dereasing addresses and multiple line prefething.65

Rather than implement the SLH expliitly, we onstrut the informationin the SLH using two tables of length fs. These Likelihood Tables, LHTurr andLHTnext, orrespond to the lht() funtion disussed previously. A given epoh usesand updates information from LHTurr and gathers information for the start of thenext epoh in LHTnext. LHTnext is updated using the information from the StreamFilter. When an entry of length k in the Stream Filter is invalidated, LHTnext[i℄is inremented by 1, for all i, where 1 � i � k. At the end of an epoh, LHTnextis modi�ed using the remaining valid entries in the Stream Filter; the ontents ofLHTnext are moved to LHTurr; and LHTnext is re-initialized. Eah entry of thetables is a log2(m) bit ounter, where m is the maximum epoh length.LHTurr is used to make prefeth deisions for the urrent epoh. Thistable has one omparator for eah pair of onseutive table entries, i.e., LHTurr[i℄and LHTurr[i+1℄, for 1 � i < fs. At the beginning of an epoh, the ontents ofLHTurr are used to onstrut the SLH. As the epoh progresses, this informationis modi�ed using the observed stream lengths of the urrent epoh. When an entryof length k in the Stream Filter is invalidated, the value of LHTurr[i℄ is derementedby 1, for all i, where 1 � i � k.When the Stream Filter observes that a Read request is part of a streamof length k, prefeth requests are generated using the output of the omparisonof LHTurr[k℄ and LHTurr[k+1℄, as in inequality (4.5). Instead of multiplyingLHTurr[k+1℄ by 2, for any k, the omparator for the (LHTurr[k℄, LHTurr[k+1℄)pair takes the left shifted value of LHTurr[k+1℄ as input.4.1.5 Adaptive ShedulingClearly, speulative prefeth ommands should be given lower priority than regularommands. But beause memory systems are beoming inreasingly omplex, andbeause the Final Sheduler must make deisions whose e�ets may not be seen66

until the future, it is not obvious what poliy provides the best performane. Forexample, a onservative poliy that always gives prefeth ommands lower prioritythan regular ommands may unneessarily blok prefeth ommands behind regularommands that annot issue due to onits in the memory system. Thus, ratherthan ditate a partiular poliy at design time, Adaptive Sheduling uses feedbak todynamially selet from one of �ve poliies in order of dereasing onservativeness:Only issue a ommand from the LPQ (1) if the CAQ is empty and the ReorderQueues are empty, (2) if the CAQ is empty and the Reorder queues have no issuableommands, (3) if the CAQ is empty, (4) if the CAQ has at most 1 entry and theLPQ is full, (5) if the �rst LPQ entry has an earlier timestamp than the �rst CAQentry. To hoose from among these poliies, the memory ontroller traks the num-ber of times that a regular ommand in the Reorder Queues annot proeed to theCAQ beause it onits in the memory system with a previously issued prefethommand. As the ourrenes of these onits grows (or shrinks), the poliy be-omes more (or less) onservative. The poliy is adjusted using the same epohsize that is used to ompute Stream Length Histograms. Thus, this approah de-termines the priority of prefeth ommands based on a measure of memory systemperformane, rather than on some instantaneous property suh as oupany of aqueue.4.2 Experimental ResultsWe evaluate Adaptive Stream Detetion along several dimensions. We present over-all performane and power results for all three benhmark suites. We then use asubset of the benhmarks to illustrate additional points, hoosing the two best-aseand the two worst-ase benhmarks|in terms of PMS performane improvement|from the SPEC and ommerial benhmarks.67

4.2.1 Hardware CostsWe evaluate a prefether that is on�gured as follows: Eah thread has a StreamFilter with 8 slots and LHTnext and LHTurr tables that eah hold 16 entries.Beause streams are traked in both the positive and negative diretions, LHTnextand LHTurr eah require 32 ounters per thread. In addition to these per-threadresoures, the prefether has one 16 entry Prefeth Bu�er (2KB) and an LPQ withthe same number of entries|3|as the CAQ. The urrent Power5+ memory on-troller oupies about 1.61% of the entire hip area, with the dominant portion ofthe memory ontroller being ontrol logi. Our extensions to the memory ontrollerinrease the area of the memory ontroller by about 6.08%, resulting in a 0.098%inrease in the total hip area.4.2.2 Benhmark ResultsWe now ompare simulation results for four on�gurations: no-prefething (NP),proessor-side prefething only (PS), memory-side prefething only (MS), and proessor-and memory-side prefething together (PMS). In PMS, only the memory-side prefetheruses Adaptive Stream Detetion. In the following graphs, we present three di�erentomparisons: (1) PMS vs. NP (2) MS vs. NP, and (3) PMS vs. PS.

bw
av

es

ga
m

es
s

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
A

D
M

le
sl

ie
3d

na
m

d

de
al

II

so
pl

ex

po
vr

ay

ca
lc

ul
ix

G
em

sF
D

T
D

to
nt

o

lb
m

w
rf

sp
hi

nx
3

A
ve

ra
ge

0

10

20

30

40

50

60

70

80

Pe
rf

or
m

an
ce

 G
ai

n
(%

)

PMS vs NP
MS vs NP
PMS vs PS

Figure 4.4: Performane improvements for the SPEC2006fp Benhmarks.68

bt cg ep ft is lu m
g sp

A
ve

ra
ge

0

10

20

30

40

50

Pe
rf

or
m

an
ce

 G
ai

n
(%

)

PMS vs NP
MS vs NP
PMS vs PS

Figure 4.5: Performane improvements for the NAS Benhmarks.We see that the PMS on�guration performs best, and the bene�ts frommemory-side and proessor-side prefething are largely omplementary but not om-pletely orthogonal.For the SPEC2006fp benhmarks (Figure 4.4), we �nd that the performanebene�t of PMS over NP is between 0-68.6%, with an average of 32.7%. MS improvesperformane over NP by an average of 14.6%, and PMS improves over PS by anaverage of 10.2%. For the NAS benhmarks (Figure 4.5), the PMS approah seesan average improvement of 24.2% over NP and 8.1% over PS. For the ommerialbenhmarks (Figure 4.6), the PMS approah sees an average improvement of 15.1%over NP and 8.4% over PS.SMT Results. We have repeated the above experiments on a system that uses twoSMT threads on the same proessor. For these experiments, we leave the PrefethBu�er size (16 ahe lines) unhanged, but we double the size of the Stream Filterand the number of LHT tables, so that eah thread an trak its own set of streams.We �nd that SMT performane improvements are about the same as the single-threaded results. For example, PMS improves performane over PS by 10.7%, 9.2%,and 7.5%, respetively, for the SPEC2006fp, NAS, and ommerial benhmarks. Theimprovements for PMS over NP are 28.5%, 20.4%, and 11.1%, respetively.69

tp
cc

tr
ad

e2

cp
w

2

sa
p

no
te

sb
en

ch

A
ve

ra
ge

0

5

10

15

20

Pe
rf

or
m

an
ce

 G
ai

n
(%

)

PMS vs NP
MS vs NP
PMS vs PS

Figure 4.6: Performane improvements for the ommerial benhmarks.We �nd it ritial to repliate the loality identi�ation hardware|in ourase the Stream Filter|for eah thread. For our solution, this hardware is small,as opposed to many other solutions [44, 9, 67℄ for whih large tables would have tobe repliated.
bw

av
es

ga
m

es
s

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
A

D
M

le
sl

ie
3d

na
m

d

de
al

II

so
pl

ex

po
vr

ay

ca
lc

ul
ix

G
em

sF
D

T
D

to
nt

o

lb
m

w
rf

sp
hi

nx
3

A
ve

ra
ge

0

5

10

15

20

25

(%
)

Power Increase
Energy Reduction

Figure 4.7: DRAM Power and Energy omparison for the SPEC2006fp benhmarks.Power and Energy E�ets. In Figures 4.7, 4.8, and 4.9, we ompare PMSto PS in terms of DRAM power usage and energy onsumption. We �nd thatPMS inreases power onsumption, on the average, by 2.7%, 1.6%, and 2.8% forSPEC2006fp, NAS, and ommerial benhmarks, respetively. For the same benh-70

bt cg ep ft is lu m
g sp

A
ve

ra
ge

0

5

10

15

20

25

 (
%

)

Power Increase
Energy Reduction

Figure 4.8: DRAM Power and Energy omparison for the NAS benhmarks.
tp

cc

tr
ad

e2

cp
w

2

sa
p

no
te

sb
en

ch

A
ve

ra
ge

0

5

10

15

20

25

(%
)

Power Increase
Energy Reduction

Figure 4.9: DRAM Power and Energy omparison for the ommerial benhmarks.
71

marks, PMS redues energy onsumption by 9.8%, 7.9%, and 8.2%. For the fourbenhmarks that are not memory intensive|gamess, namd, povray, and alulix|the power inrease is negligible. Again, for SMT workloads, the DRAM power andenergy results are similar to the single threaded ase.Other Power Costs. Of ourse, the implementation of the prefether itself alsoonsumes power. We do not have benhmark-spei� analyses of this power us-age, but an analysis of the Power5+ hip and an area-based estimation of the MSprefether provides the following �gures. The memory ontroller on the Power5+onsumes about 1% of the hip's power. The MS prefether inreases the powerof the memory ontroller by approximately 6%, whih is 0.06% of the hip's totalpower. As a referene, the Power5+ hip typially onsumes roughly four times thepower as the DRAM hips for our workloads.By ontrast, if we were to add a 64KB table for deteting spatial loality,as suggested by other approahes, we would add four suh tables|one for eahthread|for the Power5+. We believe that eah 64KB table would onsume upto 25% of the power of a 64KB L1 I-ahe (Loads onstitute roughly 25% of allinstrutions), whih for the Power5+ is about 0.6% of the hip's power. To supportfour suh tables would inrease the hip's ative power by about 2.4%. Moreover,as leakage power beomes more important to future systems, the power e�ets oflarge tables will beome more signi�ant.4.2.3 Detailed ResultsImportane of Adaptive Stream Detetion and Adaptive Sheduling.Figure 4.10 shows that both Adaptive Stream Detetion (ASD) and Adaptive Shedul-ing ontribute to performane gain. In this �gure, the �rst bars in eah luster repre-sent normalized exeution times for our PMS approah. The next �ve bars omparethe PMS against the �ve sheduling poliies that we disussed in Setion 4.1.5. We72

see that the Adaptive Sheduling improves performane upon these �xed poliiesbetween 2.3% and 3.6%. We onlude that the impat of Adaptive Stream Detetionis muh more signi�ant than that of Adaptive Sheduling.
bw

av
es

m
ilc

G
em

sF
D

T
D

to
nt

o

tp
cc

tr
ad

e2 sa
p

no
te

sb
en

ch

0.50

0.75

1.00

1.25

1.50

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

ASD + Adaptive Scheduling (best)
ASD + scheduling method 1 (most conservative)
ASD + scheduling method 2
ASD + scheduling method 3
ASD + scheduling method 4
ASD + scheduling method 5 (least conservative)
no ASD + next-line prefetcher + adaptive scheduling
no ASD + P5-style prefetcher + adaptive scheduling

Figure 4.10: Impat of Adaptive Stream Detetion and Adaptive Sheduling.Figure 4.10 also provides a head-to-head omparison of Adaptive StreamDetetion against both next-line prefething (seond bar from the right) and thePower5+'s proessor-side prefether (rightmost bar) when all are implemented in thememory ontroller. We see that Adaptive Stream Detetion provides performanethat is 8.4% better than the next-line prefether. Somewhat surprisingly, in thisontext the Power5-style prefether yields worse performane than the next-lineprefether.Figure 4.11 shows that a signi�ant portion of streams are of length �veor shorter. These short streams are where Adaptive Stream Detetion sees themost bene�t. A next-line prefether generates useless prefethes for all streams oflength one, and we see that the perentage of suh streams is quite high for thesebenhmarks. There is also a signi�ant number of streams of length 2-5, whihis where a Power5-style stream-based prefether sees the worst performane: For73

these streams the useless prefeth that it issues before deteting the end of a streamrepresents a non-trivial fration of the total prefethes. Finally, observe that eventhe four ommerial benhmarks, whih have poor spatial loality, have a signi�antperentage of streams of length 2-5: roughly 37% for tp-, 49% for trade2, 40% forsap, and 62% for notesbenh. These perentages help explain why Adaptive StreamDetetion is bene�ial even for workloads with low spatial loality.
bw

av
es

m
ilc

G
em

sF
D

T
D

to
nt

o

tp
cc

tr
ad

e2 sa
p

no
te

sb
en

ch

0

10

20

30

40

50

60

70

80

90

100

(%
)

stream length 1
stream length 2
stream length 3
stream length 4
stream length 5

Figure 4.11: Stream Length Histograms of eight benhmarks. Streams of lengthsbetween 1 and 5 onstitute 78{96% of all streams.Prefeth EÆieny. Figure 4.12 presents three measures of the e�etiveness ofAdaptive Stream Detetion: (1) the perent of useful prefethes, (2) the prefeth ov-erage, that is, the perent of Read ommands (inluding proessor-side prefethes)that get its data from the Prefeth Bu�er, and (3) the perentage of the regular mem-ory ommands|both Reads and Writes|that are delayed beause of memory-sideprefethes. These values pertain only to prefethes generated by the memory-sideprefether, not the proessor-side prefether. We see that the perentage of usefulprefethes is between 82% and 91%. The overage is between 19% and 34%, andonly 1-3% of regular ommands are delayed by the memory-side prefeth ommands.
74

bw
av

es

m
ilc

G
em

sF
D

T
D

to
nt

o

tp
cc

tr
ad

e2 sa
p

no
te

sb
en

ch

0
10
20
30
40
50
60
70
80
90

100
110
120

(%
)

useful prefetches
coverage
delayed regular commands

Figure 4.12: E�etiveness of our prefething approah.Sensitivity to Prefeth Bu�er and Stream Filter Size. Figures 4.13 and4.14 show, for our PMS approah, the performane e�et of the size of the PrefethBu�er and Stream Filter. In our simulations, we use a on�guration with a 16-blokprefeth bu�er and an 8-entry stream �lter. We �nd that inreasing the size of thePrefeth Bu�er or Stream Filter beyond this on�guration improves performanebut with diminishing returns.

bw
av

es

m
ilc

G
em

sF
D

T
D

to
nt

o

tp
cc

tr
ad

e2 sa
p

no
te

sb
en

ch

0.5

1.0

1.5

Pe
rf

or
m

an
ce

 8 blocks
16 blocks
32 blocks
1024 blocks

Figure 4.13: Sensitivity of PMS to prefeth bu�er size.
75

bw
av

es

m
ilc

G
em

sF
D

T
D

to
nt

o

tp
cc

tr
ad

e2 sa
p

no
te

sb
en

ch

0.5

1.0

1.5

Pe
rf

or
m

an
ce

4 entry
8 entry
16 entry
64 entry

Figure 4.14: Sensitivity of PMS to stream �lter size.Further Improvement Opportunities for Lateny Hiding. Figure 4.15 om-pares our prefething approah to a perfet memory-side prefether. We assume thatthe perfet prefether an predit what to prefeth and when to issue prefeth re-quests suh that x% of all Read requests �nd their data in the prefeth bu�er, andno memory ommands are delayed beause of the prefeth requests. We analyze therelationship between our ASD prefether and the perfet prefether by varying xbetween 0% and 100%, where x=100% represents the ideal memory-side prefether.In Figure 4.15, we see that for all benhmarks, the performane improve-ment of the ASD prefether is below the perfet prefether urve and it is far fromthe ideal prefether. In other words, although our prefething approah improvesperformane signi�antly, it does not eliminate the memory lateny problem om-pletely. For example, for the GemsFDTD benhmark, the ASD prefether has aoverage of 32.4% and improves performane by 10.2%. However, for the samebenhmark, the ideal memory-side prefether improves performane by 38.9%. TheASD prefether ahieves, on average, 21.3%, 24.6%, and 18.7% of the overage, and17.4%, 20.9%, and 14.1% of the performane improvement of the ideal prefetherfor the SPEC2006fp, NAS, and ommerial benhmarks, respetively.There are three possible ways to make the performane of our prefething76

0 20 40 60 80 100
1

1.1

1.2

1.3

1.4

bwaves
P

er
fo

rm
an

ce

0 20 40 60 80 100
1

1.2

1.4

1.6

1.8

milc

0 20 40 60 80 100
1

1.1

1.2

1.3

1.4

1.5

1.6

GemsFDTD

P
er

fo
rm

an
ce

0 20 40 60 80 100
1

1.1

1.2

1.3

1.4

tonto

0 20 40 60 80 100
1

1.1

1.2

1.3

tpcc

P
er

fo
rm

an
ce

0 20 40 60 80 100
1

1.05

1.1

1.15

1.2

1.25

1.3

trade2

0 20 40 60 80 100
1

1.1

1.2

1.3

1.4

1.5

1.6

sap

Coverage (%)

P
er

fo
rm

an
ce

0 20 40 60 80 100
1

1.05

1.1

1.15

1.2

1.25
notesbench

Coverage (%)Figure 4.15: Performane e�ets of overage rate. Solid line represents the perfetprefether, \+" represents our ASD prefether, dotted line is for the maximumoverage that a memory-side prefether an ahieve without prefething the �rstelements of streams, and 100% overage orresponds to the ideal prefether.77

method loser to the ideal prefether. First, we an try to inrease available memorybandwidth and/or to improve the Adaptive Sheduling tehnique further, so thatside e�ets of prefeth requests over regular memory ommands are diminished. Re-duing side e�ets moves the performane point (\+" sign) of our prefether, inFigure 4.15, upwards. Seond, to move the performane point to the right, that isto inrease overage, we an attempt to improve (inluding apaity inreases forthe stream �lter and prefeth bu�er) the Adaptive Stream Detetion method. Theurrent ASD approah does not prefeth �rst elements of streams. Therefore, forthe benhmarks in Figure 4.15, the maximum overage we an get (dotted vertialline) is the perentage of the non-�rst elements of streams, whih is between 25.7%and 49.4% of whih we ahieve 18.9-34.5%. Note that to obtain the maximum pos-sible performane (top point of the dotted line), a prefething mehanism needs tobe supported by inreased memory bandwidth. Otherwise, overage may inreaseat the expense of inreased bandwidth requirements, whih may or may not resultimproved performane. Finally, the third option to improve performane is to de-velop hardware and/or software tehniques to prefeth the �rst elements of streams.Beause, any overage rate to the right of the dotted line in Figure 4.15 requiresprefething of the �rst elements of streams, whih onstitute a signi�ant portion(50.6-74.5%) of all Read requests.Our fous in this dissertation has been to hide the lateny between the mem-ory ontroller and DRAM. Reduing lateny inside the proessor is beyond the sopeof this study, and we leave it as a future work.Aurately Construting Frequeny Histograms. The suess of AdaptiveStream Detetion depends on the auray of the omputed Stream Length His-tograms, whih are omputed using the Stream Filter. Beause the Stream Filtershave �nite size, the omputed SLH is atually an approximation of a ompleteSLH. We have found that this approximation of the SLH losely mathes the78

atual SLH, as shown in Figure 4.16, whih is a sample epoh in the GemsFDTDbenhmark.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Stream Length

0

10

20

30

40

50

Fr
eq

ue
nc

y
(%

)

actual
our approximation

Figure 4.16: Auray of alulating Stream Length Histograms.Interation with the Memory Sheduler. The impat of a prefether an besensitive to the hoie of memory sheduler that is used. For the results presentedin this hapter, we use the Adaptive History-Based memory sheduler (AHB), butto investigate the interation between memory sheduling algorithms and our newprefething tehnique, we also study two less sophistiated memory shedulers, in-order and memoryless, whih provide redued DRAM bandwidth ompared to theAHB sheduler. When a simple in-order sheduler is used, the performane gain ofour prefether is redued by about 5%. For the better memoryless sheduler, theperformane gain of our prefether is redued by about 1%. These results indiatethat the bene�t of our prefething approah inreases as other bottleneks in thememory subsystem are redued.We also �nd that our adaptive history-based memory sheduling approahand the new prefething method that we have introdued omplements eah other.When ompared with a system where neither of these two improvements exist, i.e.with memoryless sheduling and without any memory-side prefething, ombinedimplementation of our two tehniques improves performane of the SPEC2006fp,79

NAS, and the ommerial benhmarks by 14.3%, 13.7%, and 11.2%, respetively.4.3 SummaryWe have introdued a new stream-based prefething tehnique that is e�etive forstreams of any length, inluding extremely short streams. The key idea is to moni-tor the amount of spatial loality in a program's exeution to adjust the aggressive-ness of a basi stream prefether. By apturing suh spatial loality in a StreamLength Histogram, our prefether an probabilistially deide when to start and stopprefething based on the reently observed behavior. A seondary ontribution isthe notion of Adaptive Sheduling, whih adapts the aggressiveness of the prefetherbased on the observed number of onits between prefeth ommands and regularommands. Previous tehniques [43℄ have monitored spei� aspets of the memorysystem, but we show that suh �xed poliies an be overly onservative.Using extremely aurate simulators for a modern miroproessor and itsmemory system, we have shown that Adaptive Stream Detetion and AdaptiveSheduling provide signi�ant performane improvements, even for ommerial work-loads that have low spatial loality. This solution also has low DRAM powerosts and modestly improves DRAM energy onsumption. If implemented in thePower5+, our solution inreases the area of the hip by less than 0.1%. Comparedto other prefething strategies, the hardware ost of our approah is minimal. More-over, beause its spatial loality detetion omponent is small, the ost advantageof Adaptive Stream Detetion improves|relative to other approahes that requirelarge tables|as the number of hardware threads inreases.
80

Chapter 5
DRAM Power Optimizations

In the previous two hapters we developed tehniques with small modi�ations tothe memory ontroller to improve memory bandwidth and memory lateny. Beausepower is now a �rst order onern, and beause DRAM an onsume up to 45% ofa system's power [42℄, it's natural to ask whether memory ontrollers an improvepower utilization, as well. In partiular, there are two possible goals with respetto power: (1) maximize performane for a given power threshold; (2) ahieve goodenergy eÆieny. This seond goal is important for large servers where energyeÆieny translates into lower energy bills. This seond goal is diÆult beauseit requires us to onsider the tradeo�s between power redution and performaneredution. In this hapter, we present and evaluate new tehniques for managingboth aspets of DRAM power. We assume that the DRAM supports a power-downommand, whih puts a portion of the DRAM into a low-power mode, whih anbe found on today's DRAM's.A basi mehanism for reduing power is to put memory devies into a low-power mode when they are idle. Unfortunately, the overuse of this mehanisman limit performane, as there are assoiated entrane and exit latenies for apartiular low power mode. An intelligent memory sheduler would seem to be a81

natural partner with these low power modes, but the sheduling goal of low powerand good performane are at odds. For good performane, the sheduler typiallyselets ommands that avoid hardware onits, essentially spreading the ommandsaross many physial memory devies. However, to redue power onsumption, thesheduler would like to luster ommands to a subset of the physial devies, allowingone or more of them to be put into low-power mode.In this hapter we study three aspets of the solution spae. First, we studythe bene�t of powering-down portions of the DRAM when they beome idle andpowering them bak up on demand. Seond, we study the impat of modifyingthe memory sheduler so that it issues ommands in response to the state of theDRAM, that is, with ognizane of the powered-down ranks. This modi�ed memorysheduler is a natural extension of our previously studied adaptive history-based(AHB) memory sheduler. Finally, given a power budget, we develop a throttlingmethod to aurately estimate the length of time during whih ommands shouldbe bloked in the reorder queues, allowing DRAM ranks to be powered-down.This hapter makes the following ontributions:1. We present a power-down mehanism for the memory ontroller in the ontextof server-lass memory systems.2. We present simple modi�ations to the previously desribed adaptive history-based shedulers. These modi�ations optimize for power by lustering om-mands to the same rank to reate rank loality, thereby inreasing the periodsduring whih other ranks an be powered down.3. We evaluate our new Power-Aware AHB sheduler, along with three previ-ously proposed memory shedulers. Our detailed simulators provide resultsfor performane and energy eÆieny, as well as for power onsumption. Wesee that for the daxpy kernel, our new Power-Aware AHB sheduler redues82

DRAM power by 42.6% and improves performane by 53.5% when omparedwith a standard FIFO sheduler with no power-down mehanism. We �ndthat our Power-Aware AHB improves the energy eÆieny of the Stream andNAS benhmarks by a fator of 5. The simpliity and suess of our modi-�ations argue that the adaptive history-based sheduler provides a powerfulframework for all aspets of memory sheduling.4. We present a throttling approah that atively redues DRAM power by blok-ing memory ommands. The goal of this method is to estimate the throttlingdelay suh that DRAM power onsumption falls below a predetermined powerbudget and show that performane degradation is as small as possible.In the next setions we desribe our new solutions regarding DRAM poweronsumption, we present experimental results, and �nally we onlude and summa-rize our work.5.1 Power- and Performane-Aware Memory ControllersThis setion desribes our new approah to memory ontroller design, whih makesthe memory ontroller both power-aware and performane-aware. We present threeadditions to urrent memory ontrollers: a power-down unit to shedule rank power-down signals, an augmented form of adaptive history-based shedulers that inludespower riteria, and a throttling mehanism to manage power requirements.5.1.1 Power-Down Unit in the Memory ControllerThe IBM Power5+ memory ontroller uses a ommand bus to transmit memoryommands to DRAM. Every ommand on this bus has a ommand type and anaddress. We propose a new type of power-down ommand, in whih the rank to bepowered down is enoded in the address bits.83

In the power-down unit of the memory ontroller, we maintain two extraomponents for eah rank: a rank-lowpower bit and a ounter. The rank-lowpowerbit is set when the rank is in low power mode. The ounter maintains the numberof yles remaining until the rank beomes idle. Eah time a regular ommand (aRead or a Write) is sent to any bank of a powered-down rank, the rank's ounter isinitialized to the maximum of the urrent value and the lateny of the new ommand.The overuse of power-down ommands an degrade performane in two ways.First, power-down ommands onsume ommand bus bandwidth. Seond, there willbe unneessary swithes between low and high power modes in DRAM, whih willwaste two DRAM yles. Finally, in most modern DRAM hips, when a rank enterslow power mode, it has to stay in that mode for a ertain number of yles. Thus,powering down a rank prematurely an inrease the lateny for memory ommandswaiting for the powered-down rank.We now present a protool to deide when to send a power-down ommand toDRAM. At every yle, the power-down unit heks rank ounters, rank-lowpowerbits, and the ommands waiting in the CAQ. A power-down ommand is sent toa rank that meets the following onditions: (1) The rank ounter is zero, whihindiates that the rank is idle. (2) The rank-lowpower bit is zero, beause otherwisea new power-down ommand for the rank will be redundant and will unneessarilyoupy the ommand bus. (3) There is no ommand for the rank waiting in theCAQ; this ondition avoids powering down a rank if a Read or Write to that rankis imminent. (4) The ommand at the front of the CAQ annot be issued in thisyle. To redue performane degradation, we give priority to regular ommandsover power-down ommands.The memory ontroller an send only one power-down ommand at any yle,so at eah yle, the power-down unit heks for the above onditions starting at arandom rank number. Randomization eliminates any bias in ases where more than84

one rank satis�es the power-down onditions.5.1.2 Power-Aware Adaptive History-Based ShedulersWe now desribe how the adaptive history-based memory shedulers an be adaptedto inlude power information. As we desribed in Chapter 3, a history-based shed-uler uses the history of reently sheduled memory ommands when seleting thenext memory ommand. In partiular, sheduling goals are enoded in �nite statemahines. Previously, two sheduling goals were onsidered to improve performane:(1) minimize the lateny of the sheduled ommand, and (2) math some desiredbalane of Reads and Writes. By sheduling ommands to math an expeted ratioof Reads and Writes, the sheduler avoids bottleneks that arise from uneven Readand Write reorder queues.We modify these AHB shedulers by adding power savings as a new goal. Wedo this by reating a state mahine where power usage is the �rst optimization goal,whih we desribe below. Beause both performane and power goals are important,we probabilistially ombine the three FSM's to produe a sheduler that enodes allgoals. The result is a history-based sheduler that is optimized for both performaneand power, but for one partiular mix of Read/Writes. To aommodate a widevariety of Read/Write mixes, we use adaptivity in the same sense as the originaladaptive history-based sheduler, namely, our adaptive sheduler observes the reentommand pattern and periodially hooses the most appropriate of three history-based shedulers.Optimizing for PowerOur Power-Aware History-Based sheduler uses power as the �rst optimization ri-terion. The basi idea is to group ommands for the same rank as losely as possiblein the CAQ. This will redue the number of power-down operations while providing85

the same amount of power savings. In the state mahine for the sheduler, we de�nethe priorities for eah possible ommand in the reorder queues as follows: The setof ommands to the same rank with the last ommand sent to the CAQ has thehighest priority, the set of ommands to the same rank with the seond from thelast ommand has the seond priority, and so on. Sine there may be more than oneommand in eah of these sets, our approah breaks ties using performane as theseond riterion. Algorithm 4 depits this proess.Algorithm 4 power sheduler(n)// n is the history string size1: for all ommand sequenes of size n do2:3: for eah possible next ommand do4: Calulate priority with respet to power.5: end for6: Sort possible ommands with respet to priorities.7: for ommands with equal priority in terms of power do8: Use expeted lateny to make deisions.9: end for10: Sort possible ommands with respet to expeted lateny.11: for ommands with equal power priority and expeted lateny do12: Use Read/Write ratios to make deisions.13: end for14:15: for eah possible next ommand do16: Output the next state in the FSM.17: end for18: end forCombining State Mahines ProbabilistiallyAs with the original AHB sheduler, we probabilistially ombine our multiple op-timization goals to form a single history-base sheduler. Algorithm 5 weights eahriterion and produes a probabilisti deision. At runtime, a random number isperiodially generated to determine the rules for state transitions as follows:86

Algorithm 5 probabilisti sheduler1: if random number < threshold1 then2: ommand pattern sheduler3: else4: if random number < threshold2 then5: expeted lateny sheduler6: else7: power sheduler8: end if9: end ifThe algorithm basially interleaves three state mahines into one, periodiallyswithing among the three in a probabilisti manner, where the threshold values aresystem-dependent and are determined experimentally.5.2 Evaluation of the Power-Down MehanismTo evaluate the e�ets of the power-down mehanism that we have introdued, we�rst present detailed results for the daxpy kernel. Then, for the Stream and NASBenhmarks, we ompare our Power-Aware AHB approah to the in-order, memo-ryless, and AHB shedulers. To measure performane, we use simulated exeutiontime as our metri. To measure power, we use Watts as our metri. Finally, tomeasure eÆieny, we use 1/Joules.5.2.1 DAXPY ResultsFigure 5.1 shows how three previously studied memory shedulers|in-order, mem-oryless, and adaptive history-based|ompare in terms of power (left graph) andperformane (right graph). We see that the more sophistiated shedulers providebetter performane but at the expense of higher average power onsumption.Figure 5.2 ompares the power and performane of these three shedulerswhen ombined with our Power-Down mehanism. These results are all normalized87

0.0

0.5

1.0

1.5
N

or
m

al
iz

ed
 A

ve
ra

ge
 P

ow
er

in-order
memoryless
AHB

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

in-order
memoryless
AHB

Figure 5.1: Left: Power onsumption of Inorder, Memoryless, and Adaptive History-Based shedulers (without the Power-Down mehanism). Right: Performane ofthese three shedulers.

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 A
ve

ra
ge

 P
ow

er

in-order
memoryless
AHB
Power-Aware AHB

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

in-order
memoryless
AHB
Power-Aware AHB

Figure 5.2: Left: Power onsumption of Inorder, Memoryless, and Adaptive History-Based shedulers with the Power-Down mehanism. Right: Performane of theseshedulers with the Power-Down mehanism.
88

0

1

2

3

4

5

6

N
or

m
al

iz
ed

 E
ff

ic
ie

nc
y

in-order
memoryless
AHB

0

1

2

3

4

5

6

N
or

m
al

iz
ed

 E
ff

ic
ie

nc
y

in-order
memoryless
AHB
Power-Aware AHB

Figure 5.3: EÆieny Comparison, Left: no Power-Down, Right: with Power-Down.with respet to the in-order sheduler without the Power-Down mehanism, so wean see that the Power-Down mehanism redues power onsumption by 40-60%.Comparing the right graphs of Figures 5.1 and 5.2, we see that the Power-Downmehanism has a small e�et on performane. Exeution time inreases by 2.5%for the in-order sheduler, by 2.1% for the memoryless sheduler, and 3.7% for theAHB sheduler.Figure 5.2 also shows results for our new Power-Aware AHB sheduler, whihwhen ompared with the AHB sheduler (with the Power-Down mehanism) de-grades performane by 1.6% and redues power by 10.8%.From these �gures, it is diÆult to understand how the shedulers ompare interms of energy eÆieny. Figure 5.3 shows these same results using energy eÆienyas a metri. We see that the AHB sheduler with the Power-Down mehanism is4.9 times more eÆient than the baseline in-order sheduler that does not use thePower-Down mehanism, and the Power-Aware AHB sheduler is an additional 9.4%more eÆient than the AHB sheduler.We onlude that, for daxpy, our power-aware adaptive history-based shed-uler redues power usage onsiderably and gives the best results in terms of eÆieny.89

co
py

sc
al

e

vs
um tr
ia

d

da
xp

y

fi
ll

su
m

A
ve

ra
ge

0.00

0.25

0.50

0.75

1.00

1.25

1.50

N
or

m
al

iz
ed

 A
ve

ra
ge

 P
ow

er

in-order + no power-down
memoryless + no power-down
AHB + no power-down
in-order + power-down
memoryless + power-down
AHB + power-down
Power-Aware AHB + power-down

Figure 5.4: Comparison of power onsumption for the Stream Benhmarks.5.2.2 Stream and NAS ResultsFigure 5.4 ompares the four shedulers with and without the Power-Down meha-nism. We see that the Power-Aware AHB gives the best power onsumption resultsin eah benhmark. On average the PA-AHB sheduler's power onsumption is 5%better than the baseline in-order sheduler, and it is 5% better ompared to theAHB sheduler. We ompare the eÆieny of the shedulers in Figure 5.5.The NAS benhmarks are not as memory intensive as the Stream benh-marks, so the original AHB sheduler does not provide as muh performane im-provement (5-16%). On the other hand, beause the memory system is less heavilyutilized, when the Power-Down mehanism is added to the AHB, we see substantialpower savings (Figure 5.6). As a result, our Power-Aware AHB sheduler signi�-antly improves eÆieny, as well (Figure 5.7).90

co
py

sc
al

e

vs
um tr
ia

d

da
xp

y

fi
ll

su
m

A
ve

ra
ge

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

N
or

m
al

iz
ed

 E
ff

ic
ie

nc
y

in-order + no power-down
memoryless + no power-down
AHB + no power-down
in-order + power-down
memoryless + power-down
AHB + power-down
Power-Aware AHB + power-down

Figure 5.5: EÆieny omparison for the Stream Benhmarks.5.3 Throttling MehanismThe power-down mehanism that we presented an redue power onsumption toertain degree, but for additional power savings, we now desribe a throttling meh-anism that bloks ommands to the DRAM.Our throttling approah bloks ommands for all ranks for some �xed periodof T yles. Other implementations ould power-down single ranks at a time, but wedo not explore this option here. Commands that are bloked annot proeed to theCAQ, so they aumulate in the reorder queues, reduing bandwidth between thememory ontroller and the DRAM. When ombined with our power-down meha-nism, this throttling allows a rank to be powered-down for almost T yles. If T issuÆiently long, the reorder queues beome �lled with ommands for the blokedrank, and the system stalls. Thus, by hanging the value of T, we an arbitrarily91

bt cg ep ft is lu m
g sp

A
ve

ra
ge

0.00

0.25

0.50

0.75

1.00

1.25

1.50

N
or

m
al

iz
ed

 A
ve

ra
ge

 P
ow

er

in-order + no power-down
memoryless + no power-down
AHB + no power-down
in-order + power-down
memoryless + power-down
AHB + power-down
Power-Aware AHB + power-down

Figure 5.6: Comparison of power onsumption for the NAS Benhmarks.lower our system's average power onsumption.5.3.1 Estimating the Throttling DelayTo redue DRAM power onsumption to a target level, aurate estimation of thethrottling delay, T, is ruial. An inaurate model for T an ause two problems:(1) if T is overestimated, power onsumption will be lower than the target, butat the same time performane will degrade more than it is neessary, (2) if T isunderestimated, power onsumption will be higher than the target. This seondproblem an be solved by hoosing a lower target for power when estimating T.However, this onservative approah also will degrade performane unneessarily.In this setion, we explain how we an aurately estimate the throttlingdelay that will redue DRAM power onsumption to a predetermined level, therebyausing as small a performane degradation as possible. Our method develops a92

bt cg ep ft is lu m
g sp

A
ve

ra
ge

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

N
or

m
al

iz
ed

 E
ff

ic
ie

nc
y

in-order + no power-down
memoryless + no power-down
AHB + no power-down
in-order + power-down
memoryless + power-down
AHB + power-down
Power-Aware AHB + power-down

Figure 5.7: EÆieny omparison for the NAS Benhmarks.regression model for estimating T and reords the model oeÆients in �rmware.The memory ontroller, depending on the memory ommand pattern and a powerbudget, uses the model oeÆients to alulate the throttling delay. We assume thatthe time period is suÆiently long for whih a alulated T be valid that the overheadof the alulation is negligible. Note that the model oeÆients vary dependingon the proessor frequeny and DRAM properties. Thus, if system on�gurationhanges, these oeÆients should be regenerated.To desribe and evaluate our model generation method, we �rst investigatethe relationship between power onsumption and throttling delay for various benh-marks. We then explain how to develop various models for throttling delay; wedisuss the metris used to statistially evaluate our models; and �nally, we presentthe omparison of the model results. 93

5.3.2 Relationship Between Power and Throttling DelayTo determine the interation between DRAM power onsumption and the throttlingdelay, we ondut experiments on the Stream benhmarks, whih represent a widevariety of memory aess patterns. For eah benhmark, we perform simulations byvarying T between 100 and 9,000 proessor yles for every 10,000 yle interval. Wealso investigate the e�et of data alignment by varying o�sets between data vetorsto generate 16 di�erent versions of eah benhmark. Figure 5.8 depits the results forthe benhmarks individually and also for all seven of them ombined. In this �gure,we observe that the relationship between power and T varies depending on both thebenhmark and the o�set between vetors in the same benhmark. For example, inthe �gure for all the benhmarks, we see that if the target power onsumption is 40Watts, depending on the benhmark and the o�set value, the appropriate value of Tvaries between about 500 and 5,000 yles. Thus, our experiments indiate that therelationship between power onsumption and T is non-linear and that using onlytarget power level to predit T will ause unneessary performane degradation.5.3.3 Models for Throttling DelaySine the relationship between power and T is not linear, instead of trying to �nd adiret relationship between these two variables, we determine other features that anbe used to relate them, and we use those features together with power to generatemodels for T. In Figure 5.8 we observe that the relationship between DRAM poweronsumption and T depends on the number of Reads, the number of Writes, andthe o�set between data streams.To predit T for a given power target P, our baseline model is T1=f1(P,a),where a is a onstant. This model laks information about the number of Reads,Writes, and the o�set between data streams. To examine a more detailed model, wereate T2=f2(P,R,W,a) whih inludes the number of Reads and Writes in addition94

0

20

40

60

80
copy

P
ow

er
 (

W
at

ts
)

0

20

40

60

80
scale

0

20

40

60

80
vsum

P
ow

er
 (

W
at

ts
)

0

20

40

60

80
triad

0

20

40

60

80
fill

P
ow

er
 (

W
at

ts
)

0

20

40

60

80
sum

0 2000 4000 6000 8000 10000
0

20

40

60

80
daxpy

P
ow

er
 (

W
at

ts
)

Throttle Duration, T (cycles)
0 2000 4000 6000 8000 10000

0

20

40

60

80
ALL

Throttle Duration, T (cycles)Figure 5.8: Relationship between DRAM power onsumption and the throttlingdelay, for the Stream benhmarks. 95

to power information. And �nally, we reate T3=f3(P,R,W,B,a), whih adds thenumber of bank onits, B, to the model T2. Our onjeture is that the numberof bank onits, together with the number of Reads and Writes, will be a goodrepresentation for the power e�ets of the o�set between data streams.To determine oeÆients for these models, we use our measurements for theStream benhmarks, and we perform linear regression.5.3.4 Regression ModelsWe now explain how linear regression an be used to develop models for throttlingdelay. We set up a system of equations where the known values are measured DRAMpower, throttling delay, number of Reads, Writes, and bank onits. The unknownsin the system are the model oeÆients. Solving this system gives us the values ofthe model oeÆients that we are looking for.The data used to determine unknown oeÆients in regression analysis willbe referred to as the training set, and the data used for testing the performane ofmodels is known as the test set. The best way to evaluate the performane of amodel is to use test sets that are independent from the training set.Linear regression models for the throttling delay an be de�ned asyi = �0 + �1�i1 + �2�i2 + :::+ �p�ip; i = 1; 2; :::; n: (5.1)where n is the number of elements in the training set, p is the number of oeÆ-ients less one (the degrees of freedom) in the model, and the yi's are the measuredthrottling delays. This equation an also be stated in matrix form as:y = �� (5.2)The elements of the � matrix are known. Eah olumn of this matrix (some-96

times alled basis funtions) represents one feature of the model. For example, forthe model we propose in (5.1) the �rst olumn represents the measured DRAMpower, the seond olumn the number of Reads, the third olumn the numberWrites,and the fourth olumn the number of bank onits. The values of y are the mea-sured throttling delays from our training set. To �nd the value of the � vetor, theoeÆients of our model, we use a least squares method, whih is de�ned as� = �+y (5.3)where �+ is the pseudo-inverse of � [6℄.The models we have disussed thus far are alled �rst-order regression mod-els, beause the exponent of eah �j is one. Alternatively we an de�ne seond-ordermodels whih inlude quadrati, �2j , and ross-produt, �j�k, terms. These modelsare alled omplete seond-order models. Higher order models may sometimes pro-vide better �t, but these might not generalize well. Thus, in our study we do notevaluate seond-order models.5.3.5 Statistial AnalysisTo assess the adequay of the models for T, we use oeÆient of determination,R2, whih is probably the most extensively used measure of goodness for regressionmodels. There are various de�nitions of R2, eah with its potential pitfalls [40℄. Weuse the following de�nition, as suggested by Mason et al. [47℄:R2 = nXi=1(yi � ŷi)2nXi=1(yi � �yi)2 (5.4)In assessing the model auray R2 is equal to unity when the model is asgood a preditor of the target data as the simple model ŷ = �y, and it equals to zero97

if the model predits the data values exatly [6℄. For lassi�ation problems an R2value of 0.01 is generally aeptable, while for regression problems we need smallervalues.5.3.6 Comparison of the Model ResultsThe R2 values for the test data set are 0.1659, 0.1344, and 0.0026 for the modelsT1, T2, and T3, respetively. Clearly, model T3 ahieves the best auray, andit is also the the only model that satis�es the <0.01 requirement for the R2. InFigure 5.9, we present the errors for prediting T for eah of the three models. Asthe R2 results suggest, we see that the model T3 predits T muh more auratelythan the other two models.More aurate estimation of the throttling delay results in more aurateestimation for DRAM power onsumption as well. In Figure 5.10, we show thepower e�ets of the three throttling delay models. This �gure suggests that whenwe use T3, power onsumption will in the range of +/- 3% of the target. However,for the other two models, the error range is about +/- 20%. The experimentsand regression results on�rm our onjeture that the number of bank onits,together with the number of Reads and Writes, reate a good representation forDRAM power.5.4 SummaryIn this hapter we have shown how memory ontrollers an be used to improve poweronsumption as well as performane. We have evaluated three tehniques. First,we show that a passive power-down mehanism that does not reorder memory om-mands an signi�antly redue power onsumption at the expense of a degradationof performane of less than 2.5%. This mehanism works well for all of the mem-ory shedulers that we studied. Seond, we introdue the Power-Aware Adaptive98

−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

E
rr

or
 in

 T
 (

cy
cl

es
)

Model uses Power

−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

E
rr

or
 in

 T
 (

cy
cl

es
)

Model uses Power, Reads, and Writes

−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

E
rr

or
 in

 T
 (

cy
cl

es
)

Model uses Power, Reads, Writes, and Bank Conflicts

Test casesFigure 5.9: Errors in prediting the throttling delay, T.99

−20

−10

0

10

20

Model uses Power

%
 e

rr
or

 in
 p

ow
er

 p
re

di
ct

io
n

−20

−10

0

10

20

Model uses Power, Reads, and Writes

%
 e

rr
or

 in
 p

ow
er

 p
re

di
ct

io
n

−20

−10

0

10

20

Model uses Power, Reads, Writes, and Bank Conflicts

Test cases

%
 e

rr
or

 in
 p

ow
er

 p
re

di
ct

io
n

Figure 5.10: Proximity to the target DRAM power.100

History-Based sheduler, a small modi�ation of the previously studied AdaptiveHistory-Based sheduler. This Power-Aware AHB sheduler improves the energyeÆieny of the Stream and NAS benhmarks by an average of 400% omparedto the in-order sheduler. The simple and e�etive hanges to the original AHBsheduler support the laim that the AHB sheduler is a powerful framework for avariety of sheduling onerns. Finally, we present a throttling mehanism, whihatively bloks ommands in the reorder queues and an further derease poweronsumption. This throttling mehanism might prove useful when memory systemsmust stay beneath some peak power threshold.

101

Chapter 6
Related Work

6.1 Methods to Improve BandwidthTo inrease sustained memory bandwidth, memory systems are organized as multiplebanks that an be aessed simultaneously. In banked memory systems, simultane-ous aess is ahieved by implementing some sort of interleaving [11℄. Interleavedmemory systems onsiderably improve bandwidth, but restritions on aesses tobanks, i.e. bank onits, prevent the system from attaining the maximum avail-able bandwidth. Elimination of bank onits has been extensively studied forseveral deades. There are basially two broad lasses of tehniques to avoid bankonits: stati approahes and dynami methods.6.1.1 Stati MethodsStati bank onit avoiding tehniques, suh as skewing [21, 13℄ or prime memorysystems [60, 58℄, attempt to arrange the order of memory ommands to minimizebank onits. Unfortunately, these stati methods are e�etive for reduing onlyintra-stream bank onits, i.e. onits aused by one stream. There are alsoompiler-based methods suh as data padding and loop transformations. For ex-102

ample, Moyer [53℄ presents a ompiler-based approah, in whih loops are unrolledand instrutions are reordered to improve memory loality. But Moyer's tehniqueapplies spei�ally to stream-oriented workloads in aheless systems.6.1.2 Dynami MethodsDynami onit avoiding tehniques have been proposed by various researh groups[7, 71, 57, 52, 51, 50, 49, 61℄ to alleviate both intra- and inter-stream bank onits.As an example, the Impulse memory system by Carter et al. [7℄ improves memoryperformane by dynamially remapping physial addresses, but it requires modi�-ations to the appliations and the operating system.There are also various heuristis that have been proposed to reorder memoryommands. Valero et al. [71, 57℄ desribe a memory reordering tehnique thatdynamially eliminates bank onits by enforing a strit round robin orderingof bank aesses. This ordering maximizes the average distane between any twoonseutive aesses to the same bank and thus redues the stalls due to bankonits. However, this tehnique onsiders only bank onits, and it an onlyeliminate bank onits if the requests are fairly uniformly distributed among banks.MKee et al. [52, 51, 50, 49℄ propose a memory subsystem, Stream MemoryController (SMC), to maximize bandwidth for streaming appliations. Their designinludes three main omponents: stream bu�ers, ahes and a memory ommandsheduler. The ompiler detets streams in the ode and generates non-aheablememory requests that bypass ahes at run time and go diretly to the streambu�ers, whih are essentially FIFO queues. The memory sheduler dynamiallyselets ommands from either the stream bu�ers or from the ahes. MKee et al.observe two issues in reordering ommands in SMC: seleting the memory bankto whih the next aess to shedule, and seleting the FIFO queue whih has aommand for that partiular bank. They examine and evaluate various dynami103

ordering heuristis, but they don't propose an algorithm. The bank seletion andFIFO seletion poliies that they evaluate are versions of a round robin sheduler.The memory ontroller onsiders eah stream bu�er in sequential fashion, streamingas muh data as possible to the urrent bu�er before going to the next bu�er. Thisapproah may redue onits among streams, but it does not reorder refereneswithin a single stream.Similar to stati approahes, the preeding dynami reordering studies arealso restrited to bank onits. Valero et al.'s and MKee et al.'s approahesan be omplementary to our approah in the sense that an AHB sheduler anuse these methods as another optimization riteria. For example, when there aremultiple ommands in the reorder queues to hoose from and when all the otheroptimization riteria are equal, an AHB sheduler an selet the ommand thatmathes a predetermined sequene rather than hoosing the oldest ommand.Rixner et al. [61℄ explore several heuristis for reordering aesses on theImagine stream proessor [38℄. Eah of these heuristis reorder memory operationsby onsidering the harateristis of modern DRAM systems and modern memoryontrollers. For example, one poliy gives row aesses priorities over olumn a-esses, and another gives olumn aesses priorities over row aesses. None of thesesimple poliies is shown to be best in all situations, and none of them uses theommand history when making deisions. Furthermore, these poliies are not easilyextended to more omplex memory systems with a large number of di�erent typesof hardware onstraints.6.2 Hardware Prefething for Irregular AppliationsOne line of hardware prefething researh has extended next-line prefething [65, 34℄by adding non-unit strides [55℄, by prediting strides [2, 19℄, and by supportingirregular strides using Markov preditors [33, 62℄. Nesbit and Smith [54℄ introdue104

the Global History Bu�er to improve prefeth e�etiveness and redue table sizes.None of these prefethers has suessfully exploited low amounts of spatial loality.Another line of researh fouses on deteting and exploiting spatial loalitywithout traking individual streams [32, 39, 44, 9℄. Instead, variations of the SpatialLoality Detetion Table, introdued by Johnson et al., trak aesses to individualregions of memory so that spatially orrelated data an be prefethed together. Aproblem with these approahes is the need for large tables to detet loality. Somogyiet al. [67℄ show how muh smaller tables an be used by orrelating spatial loalitywith the program ounter in addition to parts of the data address. As a result,Spatial Memory Streaming an use tables as small as 64KB. Moreover, Somogyiet al. show performane improvements for ommerial workloads, indiating thattheir tehnique an handle loality patterns that span large regions of memory.By ontrast, our approah annot prefeth as aggressively aross irregular loalitypatterns but instead attempts to use a muh smaller amount of hardware to prefeththe very small streams that likely make up these larger patterns.Sheduled Region Prefething (SRP) [43℄ prefethes large regions of memory,suh as 4KB at a time, and introdues mehanisms for reduing the opportunityost of prefethes. Prefethes to open banks are given priority, prefethed data arebrought into the LRU position of the L2 sets, and prefeth ommands are given lowpriority in the memory ontroller. In partiular, the SRP prioritizer reeives feed-bak from the memory system and issues prefeth ommands only if the hannelsare idle and there is no pending request from the L2 ahe. By ontrast, our methoduses feedbak from the memory system to selet from among �ve di�erent prioriti-zation poliies, where its most onservative poliy is roughly equivalent to the SRPprioritization poliy. Our sheduling tehnique an improve performane beausefor some workloads the most onservative poliy unneessarily inhibits prefethes.For example, there may be pending demand requests that will not onit with a105

prefeth ommand beause they target di�erent memory banks.One issue with SRP is the high memory bandwidth pressure that it inursbeause of its large regions. Wang et al. [73℄ solve this problem by using the ompilerto trigger the prefethes seletively. Our solution instead uses a modest amount ofhardware to prefeth at a muh �ner granularity.Others have studied memory-side prefething [1, 7, 75, 76, 66℄ and have shownthat memory-side prefething is largely orthogonal to proessor-side prefething [7,26℄. Unlike our approah, previous methods do not monitor the status of the memorysystem, so they an inrease latenies for regular memory aesses.6.3 DRAM Power OptimizationsPower onsumption of the memory subsystem has reently reeived onsiderableattention. Power optimization tehniques in DRAM an be lassi�ed in three ate-gories [4℄: hardware-based methods inside memory ontroller, ompiler or operatingsystem-direted tehniques, and hybrid approahes.6.3.1 Hardware-Based ApproahesDelaluz et al. [16℄ show, in the ontext of aheless systems with Rambus DRAM,that the power-down idea o�ers good power savings for in-order sheduling. Theirgoal is to try to math predited idle time with a low-power mode that has theappropriate lateny to resume ativity, however they do not evaluate this methodin systems with ahes. Fan et al. [18℄ extend this work to systems with 2-levelahes. Irani et al. [31℄ give a theoretial analysis of dynami power managementin memory ontrollers. All of these methods basially monitor usage of memorysetions and move to a di�erent power level if the usage exeeds a threshold level.Sine threshold values are system and appliation dependent, these algorithms arediÆult to tune. 106

Previous hardware-based approahes for power savings assume in-order shedul-ing of the memory ommands. We show that performane of memory system anbe improved dramatially if ommands are reordered [28, 29, 27℄. As reorderingimproves performane, it naturally redues the length of the gaps between memoryommands. Sine threshold-based preditive algorithms passively monitor memorytraÆ to deide when to power-down a memory setion, we expet that shorter gapswill make those algorithms less e�etive. In ontrast, our work takes an ative ap-proah and tries to reorder ommands to save power while preserving performane.6.3.2 Compiler- or Operating System-Based ApproahesCompiler-direted approahes aim to group memory aesses to the same memorysetions to inrease the size of idle periods. This goal is ahieved by loop trans-formations [37℄, data layout optimizations [36℄, instrution sheduling [74, 46, 56℄,or with ombinations of these methods [15℄. In aheless single proessor systems,ompile-time tehniques an help the memory ontroller make better preditions foridle periods of memory setions. However, in systems with multi-level ahes orwith shared memory ontrollers [69, 35℄, the role of the ompiler for power savingsis limited.Various studies have explored operating system support for power savings.Vahdat et al. [70℄ suggest inorporating energy eÆieny as a �rst order designriteria for operating systems. Lu et al. [45℄ propose shutting down unused systemomponents to save energy. By ontrolling the set of physial devies that arein ative use, the atual power onsumption for their aess an be ontrolled byputting inative devies into low-power mode. Zhou et al. [77℄ use this approahand hange the size of alloated memory for proesses by traking page miss ratevs. memory size urve.Other OS-based approahes rely on improving the plaement of data in phys-107

ial memory. Better page alloation poliies an also save energy. By alloating newpages to memory that is already in use, the number of ative memory devies an bekept to a minimum [41, 17℄. One performane optimization is to have the operatingsystem ativate memory used by a newly sheduled proess during a ontext swith,thus largely hiding the lateny of exiting low-power mode [17, 23℄. Intelligent pagemigration [14, 24℄, where data is moved from one memory devie to another to re-due the number of ative memory devies, has also been proposed. Reent workby Huang et al. [24℄ proposes an OS-based approah whih reshapes memory traÆat the page granularity. This property of their method is similar to our approah ofreordering memory ommands.Our sheduling methods and OS-based approahes may be omplementaryto eah other, beause our approah operates at a muh �ner granularity omparedto OS-based tehniques. However, with the use of large page sizes [35℄, OS-basedtehniques whih require data migration may degrade performane onsiderably.Of ourse, any approah that minimizes the number of ative memory deviesalso redues the available memory bandwidth. Aesses previously performed inparallel to di�erent memory devies may need to be performed serially to the samememory devie. Most previous work does not aurately model the performaneloss that stems from suh serialization. By ontrast, our detailed simulators allowus to model suh e�ets aurately.6.3.3 Hybrid ApproahesReent studies have shown the importane of addressing DRAM power onsumptionin large server systems [42, 5℄. Huang et al. propose a ooperative software-hardwareapproah that traks proess-spei� idle periods to exploit DDR's low-power modesfor ranks of DRAM devies [25℄. Felter et al. [20℄ jointly manage proessor andDRAM power by attempting to maximize system performane for a given total108

power budget, whih is partiularly useful when either the CPU or DRAM is signif-iantly less utilized than the other. Our approah is transparent to software, whihwe believe is ritial for suessful adoption.

109

Chapter 7
Conlusions and Future Work

In the last few deades, beause of inreasing memory latenies and inreasing band-width demands, memory systems have beome a major performane bottlenek foromputer systems. More reently, power onsumption of DRAM hips has also be-ome a �rst order onern. Previous proposals for improving lateny, bandwidth,or power aspets of memory systems have signi�antly inreased the omplexity ofproessors and/or memory organizations. Although proessor and memory systemshave been explored extensively, the interfae between them, the memory ontroller,had reeived relatively less attention. As proessors and memory systems beomeinreasingly omplex, it is natural to explore ways that the memory ontroller anbe made more sophistiated. Therefore, in this dissertation, we have onentratedon the memory ontroller, and we have proposed novel solutions to all three aspetsof memory systems. We have evaluated our tehniques in the ontext of the memoryontroller of a highly tuned modern proessor, the IBM Power5+. Our evaluationfor both tehnial and ommerial benhmarks in single-threaded and simultane-ous multi-threaded environments has shown that our tehniques for lateny hiding,bandwidth inrease, and power redution ahieve signi�ant improvements.This dissertation makes the following ontributions:110

� To inrease available bandwidth between the memory ontroller and DRAM,we have introdued a sheduling approah that inorporates several novel teh-niques. In this approah, we use the ommand history to selet ommands thatredue delays due to resoure onits. We use the ommand history also toshedule ommands that math some expeted ommand pattern. Beausethe goals of these two tehniques may onit, we probabilistially ombinethem in a single history-based sheduler that partially satis�es both goals.Finally, we implement three history-based shedulers|eah tailored to a dif-ferent ommand pattern|and we dynamially selet from among those basedon the observed ratio of Reads and Writes.Our new sheduling approah improves the performane of the Stream,NAS, and a set of ommerial benhmarks over a sheduler that does nothange the order of ommands by 55.6%, 25.6%, and 51.6%, respetively.When ompared to the best approah proposed so far, for the same benh-marks, our sheduler is better by 16.0%, 9.7%, and 7.5%, respetively.To explain our results, we have looked inside the memory system toprovide insights about how our solution hanges the various bottleneks withinthe system. We have found that our solution is more robust than previoussheduling approahes in the sense that our solution is less sensitive to hangesin design parameters. We have also found that the AHB sheduler is superiorto the previous shedulers even when the other shedulers are given additionalhardware resoures.� To hide memory lateny, we have introdued a new stream-based prefethingtehnique, Adaptive Stream Detetion, whih is e�etive for streams of anylength, inluding very short streams. By monitoring the amount of spatial lo-ality in a program's exeution in a Stream Length Histogram, our prefetheran probabilistially deide when to start and stop prefething based on the111

reently observed behavior. A seondary ontribution of our prefething ap-proah is the notion of Adaptive Sheduling, whih adapts the aggressivenessof the prefether based on the observed number of onits between prefethommands and regular ommands.We have shown that when implemented as a memory-side prefether,our prefething approah provides signi�ant performane improvements, evenfor ommerial workloads that have low spatial loality. When we ombineour sheduling and prefething methods, we obtain 14.3%, 13.7%, and 11.2%performane improvements for the SPEC2006fp, NAS, and the ommerialbenhmarks, respetively.� We have shown how memory ontrollers an be used to improve power on-sumption as well as performane. We have made three ontributions. First,we have presented details of how to implement a DRAM power-down meh-anism with as small a performane degradation as possible. Seond, we havemodi�ed our sheduling method to inlude power onsumption as a new rite-rion during sheduling. Finally, we have introdued a throttling mehanism,whih atively bloks ommands in the reorder queues. To aurately alu-late the duration of throttling for a given power budget, we have developed amethodology whih uses regression models based on the measurement data.In addition to providing substantial performane and power improvements, our teh-niques are superior to the previously proposed methods in terms of ost as well.For example, a version of our sheduling approah has been implemented in thePower5+, and it has inreased the transistor ount of the hip by only 0.02%. Simi-larly, we estimate that our prefething approah will inrease the transistor ount ofthe hip by approximately 0.12%, whih is muh less than the ost of the previouslyproposed methods. 112

This dissertation has shown that without inreasing the omplexity of neitherthe proessor nor the memory organization, all three aspets of memory systems anbe signi�antly improved with low-ost enhanements to the memory ontroller.Although we have evaluated our solutions in the ontext of the IBM Power5+,our solutions should apply to other modern general purpose proessors too. Beause,most modern systems use a ommon DRAM tehnology, therefore, the assumptionsthat our solutions make about DRAMs are true for other systems as well. In parti-ular, our solutions rely on the following assumptions: (1) omplex DRAM struturewith multiple units of sub-organization, and (2) existene of a power-down meha-nism in DRAM. Beause of inreasing bandwidth demands, we should expet moreparallelism in future DRAM organizations. And beause of inreasing importane ofpower onsumption, we should also expet DRAMs to ontinue having power-downmehanisms. Therefore, our solutions are likely to apply to future systems as well.The urrent trend in omputer arhiteture is to use simultaneous multi-threading and to design multi-proessor hips. This trend inreases the pressureon the memory system. Thus, memory ontrollers, and therefore our solutions, arelikely to beome more important in the future.There are two possible ways to extend this researh: (1) we an try to furtherimprove the tehniques that we have presented, and (2) we an implement ourtehniques in plaes other than the memory ontroller.Although our tehniques provide signi�ant improvements, they are far fromobtaining the performane of the ideal memory system, whih has zero latenyand in�nite bandwidth. Indeed, the ideal memory system will further improvethe performane of the SPEC2006fp, NAS, and ommerial benhmarks by 44.2%,37.6%, and 52.9%, respetively, over the ombined use of our lateny and bandwidthimprovement tehniques.We have shown that our memory sheduling approah ahieves more than113

95% of the bandwidth of a perfet sheduler. Therefore, there is not muh headroomto improve this method on the Power5+. However, for other systems, inorporatingbank onits into the sheduler an be onsidered at the expense of ostlier design.Despite our sheduling approah, the prefething method that we have introduedhas headroom for further improvements. A major improvement to our method mayour if the ompiler generates prefeth instrutions for streams of length one andour prefething tehnique gives speial attention to those prefethes. Modifyingahe replaement poliies may also a�et the ourrene of single element streams.Another improvement opportunity is to extend our prefething method by designingmultiple prefethers and seleting one by using ertain bits of the memory addressand/or program ounter. Also, in this dissertation, we have evaluated the implemen-tation of only single line prefething. As another improvement to our prefethingtehnique, implementation of multiple line prefething an be onsidered.Finally, in this dissertation, we have foused to improve the bandwidth andlateny between the memory ontroller and DRAM. However, similar onerns existin other parts of systems as well. A natural extension of our work is the appliationof our tehniques into the L2 ahe ontroller to improve bandwidth and latenyinside the hip.

114

Bibliography[1℄ T. Alexander and G. Kedem. Distributed prefeth-bu�er/ahe design for high-performane memory systems. In HPCA '96: Proeedings of the 2nd InternationalSymposium on High Performane Computer Arhiteture, pages 254{263. IEEE Com-puter Soiety, 1996.[2℄ J.-L. Baer and T.-F. Chen. E�etive hardware-based data prefething for high-performane proessors. IEEE Transations on Computers, 44(5):609{623, 1995.[3℄ D. Bailey, E. Barszz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi,S. Fineberg, P. Frederikson, T. Lasinski, R. Shreiber, H. Simon, V. Venkatakrish-nan, and S. Weeratunga. The NAS parallel benhmarks (94). Tehnial report, RNRTehnial Report RNR-94-007, Marh 1994.[4℄ L. Benini, A. Maii, and M. Ponino. Energy-aware design of embedded memories:A survey of tehnologies, arhitetures, and optimization tehniques. Transations onEmbedded Computing Systems, 2(1):5{32, 2003.[5℄ R. Bianhini and R. Rajamony. Power and energy management for server systems.Tehnial Report DCS-TR-528, Rutgers University, June 2003.[6℄ C. M. Bishop. Neural Networks for Pattern Reognition. Oxford University Press,1995.[7℄ J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brunvand, A. Davis, C.-C.Kuo, R. Kuramkote, M. Parker, L. Shaelike, and T. Tateyama. Impulse: Building asmarter memory ontroller. In HPCA' 99: Proeedings of the 5th International Sym-posium on High Performane Computer Arhiteture, pages 70{79. IEEE ComputerSoiety, 1999.[8℄ A. Charlesworth, N. Aneshansley, M. Haakmeester, D. Drogihen, G. Gilbert,115

R. Williams, and A. Phelps. The star�re SMP interonnet. In Proeedings of the1997 ACM/IEEE Conferene on Superomputing (CDROM), pages 1{20. ACM Press,1997.[9℄ C. F. Chen, S.-H. Yang, B. Falsa�, and A. Moshovos. Aurate and omplexity-e�etivespatial pattern predition. In HPCA '04: Proeedings of the 10th International Sym-posium on High Performane Computer Arhiteture, pages 276{287. IEEE ComputerSoiety, 2004.[10℄ J. Clabes, J. Friedrih, M. Sweet, J. DiLullo, S. Chu, D. Plass, J. Dawson, P. Muenh,L. Powell, M. Floyd, B. Sinharoy, M. Lee, M. Goulet, J. Wagoner, N. Shwartz, S. Run-yon, G. Gorman, P. Restle, R. Kalla, J. MGill, and S. Dodson. Design and implemen-tation of the Power5 miroproessor. In Proeedings of the 41st Annual Conferene onDesign Automation, pages 670{672, 2004.[11℄ H. G. Cragon. Memory Systems and Pipelined Proessors. Jones and Bartlett, 1996.[12℄ Z. Cvetanovi. Performane analysis of the Alpha 21364-based HP GS1280 multipro-essor. In ISCA' 03: Proeedings of the 30th Annual International Symposium onComputer Arhiteture, pages 218{229. ACM Press, 2003.[13℄ I. D. T. Harper and J. R. Jump. Performane evaluation of vetor aesses in parallelmemories using a skewed storage sheme. In ISCA '86: Proeedings of the 13th AnnualInternational Symposium on Computer Arhiteture, pages 324{328. IEEE ComputerSoiety, 1986.[14℄ V. Delaluz, M. Kandemir, and I. Kolu. Automati data migration for reduing energyonsumption in multi-bank memory systems. In DAC '02: Proeedings of the 39thConferene on Design Automation, pages 213{218. ACM Press, 2002.[15℄ V. Delaluz, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin. Energy-oriented ompileroptimizations for partitioned memory arhitetures. In CASES '00: Proeedings of the2000 International Conferene on Compilers, Arhiteture, and Synthesis for EmbeddedSystems, pages 138{147. ACM Press, 2000.[16℄ V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and M. Irwin.DRAM energy management using software and hardware direted power mode ontrol.In HPCA '01: Proeedings of the 7th International Symposium on High PerformaneComputer Arhiteture. IEEE Computer Soiety, 2001.116

[17℄ V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vijaykrishnan, and M. Irwin.Sheduler-based DRAM energy management. In DAC '02: Proeedings of the 39thConferene on Design Automation, pages 697{702. ACM Press, 2002.[18℄ X. Fan, C. Ellis, and A. Lebek. Memory ontroller poliies for DRAM power manage-ment. In ISLPED '01: Proeedings of the 2001 International Symposium on Low-PowerEletronis and Design, pages 129{134. ACM Press, 2001.[19℄ K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesi. Memory-system design onsider-ations for dynamially-sheduled proessors. In ISCA '97: Proeedings of the 24th An-nual International Symposium on Computer Arhiteture, pages 133{143. ACM Press,1997.[20℄ W. Felter, K. Rajamani, C. Rusu, and T. Keller. A performane-onserving approahfor reduing peak power onsumption in server systems. In ICS '05: Proeedings of the19th ACM International Conferene on Superomputing, pages 293{302. ACM Press,2005.[21℄ Q. S. Gao. The Chinese remainder theorem and the prime memory system. In ISCA'93: Proeedings of the 20th Annual International Symposium on Computer Arhite-ture, pages 337{340. ACM Press, 1993.[22℄ http://www.miron.om. Tehnial report.[23℄ H. Huang, P. Pillai, and K. G. Shin. Design and implementation of power-aware virtualmemory. In USENIX 2003 Annual Tehnial Conferene, 2003.[24℄ H. Huang, K. G. Shin, C. Lefurgy, and T. Keller. Improving energy eÆieny by makingDRAM less randomly aessed. In ISLPED '05: Proeedings of the 2005 InternationalSymposium on Low-Power Eletronis and Design, August 2005.[25℄ H. Huang, K. G. Shin, C. Lefurgy, K. Rajamani, T. Keller, E. V. Hensbergen, andF. Rawson. Cooperative software-hardware power management for main memory.In Proeedings of the Power-Aware Computer Systems: 4th International Workshop,pages 61{77, 2004.[26℄ C. Hughes and S. Adve. Memory-side prefething for linked data strutures. TehnialReport UIUCDCS-R-2001-2221, University of Illinois at Urbana-Champaign, 2001.[27℄ I. Hur. Method and system for reating and dynamially seleting an arbiter design in adata proessing system. US patent �led by International Business Mahines, September2004. 117

[28℄ I. Hur and C. Lin. Adaptive history-based memory shedulers. In Proeedings of the37th Annual ACM/IEEE International Symposium on Miroarhiteture, pages 343{354. IEEE Computer Soiety, Deember 2004 (Winner, Best Paper Award).[29℄ I. Hur and C. Lin. Adaptive history-based memory shedulers for modern proessors.IEEE Miro (Top Piks Issue), 26(1):22{29, 2006.[30℄ I. Hur and C. Lin. Memory prefething using adaptive stream detetion. In Proeedingsof the 39th Annual ACM/IEEE International Symposium on Miroarhiteture. IEEEComputer Soiety, Deember 2006.[31℄ S. Irani, S. Shukla, and R. Gupta. Online strategies for dynami power managementin systems with multiple power-saving states. Transations on Embedded ComputingSystems, 2(3):325{346, 2003.[32℄ T. L. Johnson, M. C. Merten, and W.-M. W. Hwu. Run-time spatial loality dete-tion and optimization. In Proeedings of the 30th Annual ACM/IEEE InternationalSymposium on Miroarhiteture, pages 57{64. IEEE Computer Soiety, 1997.[33℄ D. Joseph and D. Grunwald. Prefething using markov preditors. In ISCA '97:Proeedings of the 24th Annual International Symposium on Computer Arhiteture,pages 252{263. ACM Press, 1997.[34℄ N. P. Jouppi. Improving diret-mapped ahe performane by the addition of a smallfully-assoiative ahe and prefeth bu�ers. In ISCA '90: Proeedings of the 17th An-nual International Symposium on Computer Arhiteture, pages 364{373. ACM Press,1990.[35℄ R. Kalla, B. Sinharoy, and J. Tendler. IBM Power5 hip: A dual-ore multithreadedproessor. IEEE Miro, 24(2):40{47, 2004.[36℄ M. Kandemir. Impat of data transformations on memory bank loality. In DATE'04: Proeedings of the Conferene on Design, Automation and Test in Europe, page10506. IEEE Computer Soiety, 2004.[37℄ M. Kandemir, U. Sezer, and V. Delaluz. Improving memory energy using aess pat-tern lassi�ation. In ICCAD '01: Proeedings of the 2001 IEEE/ACM InternationalConferene on Computer-Aided Design, pages 201{206. IEEE Computer Soiety, 2001.[38℄ B. Khailany, W. J. Dally, U. J. Kapasi, P. Mattson, J. Namkoong, J. D. Owens,B. Towles, A. Chang, and S. Rixner. Imagine: Media proessing with streams. IEEEMiro, 21(2):35{46, 2001. 118

[39℄ S. Kumar and C. Wilkerson. Exploiting spatial loality in data ahes using spatialfootprints. In ISCA '98: Proeedings of the 25th Annual International Symposium onComputer Arhiteture, pages 357{368. IEEE Computer Soiety, 1998.[40℄ T. O. Kvalseth. Cautionary note about R2. The Amerian Statistiian, 39(4):279{285,November 1985.[41℄ A. R. Lebek, X. Fan, H. Zeng, and C. Ellis. Power aware page alloation. In ASPLOS-IX: Proeedings of the Ninth International Conferene on Arhitetural Support forProgramming Languages and Operating Systems, pages 105{116. ACM Press, 2000.[42℄ C. Lefurgy, K. Rajamani, F. L. Rawson III, W. Felter, M. Kistler, and T. W. Keller.Energy management for ommerial servers. IEEE Computer, 36(12):39{48, Deember2003.[43℄ W. F. Lin, S. K. Reinhardt, and D. Burger. Reduing DRAM latenies with an inte-grated memory hierarhy design. In HPCA '01: Proeedings of the 7th InternationalSymposium on High Performane Computer Arhiteture, pages 301{312. IEEE Com-puter Soiety, 2001.[44℄ W. F. Lin, S. K. Reinhardt, D. Burger, and T. R. Puzak. Filtering superuousprefethes using density vetors. In ICCD '01: Proeedings of the International Con-ferene on Computer Design: VLSI in Computers & Proessors, pages 124{132. IEEEComputer Soiety, 2001.[45℄ Y.-H. Lu, L. Benini, and G. D. Miheli. Operating-system direted power redution.In ISLPED '00: Proeedings of the 2000 International Symposium on Low-Power Ele-tronis and Design, pages 37{42. ACM Press, 2000.[46℄ C.-G. Lyuh and T. Kim. Memory aess sheduling and binding onsidering energyminimization in multi-bank memory systems. In DAC '04: Proeedings of the 41stAnnual Conferene on Design Automation, pages 81{86. ACM Press, 2004.[47℄ R. L. Mason, R. F. Gunst, and J. L. Hess. Statistial Design and Analysis of Experi-ments. John Wiley & Sons, 1989.[48℄ J. D. MCalpin. Stream: Sustainable memory bandwidth in high performane om-puters. Tehnial report, http://www.s.virginia.edu/stream/.[49℄ S. A. MKee. Hardware support for dynami aess ordering: Performane of somedesign options. Tehnial Report CS-93-08, University of Virginia, September 1993.119

[50℄ S. A. MKee. Maximizing Memory Bandwidth for Streamed Computations. PhD thesis,University of Virginia, May 1995.[51℄ S. A. MKee, R. H. Klenke, K. L. Wright, W. A. Wulf, M. H. Salinas, J. H. Aylor, andA. P. Batson. Smarter memory: Improving bandwidth for streamed referenes. IEEEComputer, pages 54{63, July 1998.[52℄ S. A. MKee, W. A. Wulf, J. H. Aylor, M. H. Salinas, R. H. Klenke, S. I. Hong,and D. A. B. Weikle. Dynami aess ordering for streamed omputations. IEEETransations on Computers, 49(11):1255{1271, 2000.[53℄ S. A. Moyer. Aess ordering and e�etive memory bandwidth. PhD thesis, Universityof Virginia, 1993.[54℄ K. J. Nesbit and J. E. Smith. Data ahe prefething using a global history bu�er.In HPCA '04: Proeedings of the 10th International Symposium on High PerformaneComputer Arhiteture, pages 96{105, 2004.[55℄ S. Palaharla and R. E. Kessler. Evaluating stream bu�ers as a seondary ahe re-plaement. In ISCA '94: Proeedings of the 21st Annual International Symposium onComputer Arhiteture, pages 24{33. IEEE Computer Soiety, 1994.[56℄ P. R. Panda and L. Chitturi. An energy-onsious algorithm for memory port alloa-tion. In ICCAD '02: Proeedings of the 2002 IEEE/ACM International Conferene onComputer-Aided Design, pages 572{576. ACM Press, 2002.[57℄ M. Peiron, M. Valero, E. Ayguade, and T. Lang. Vetor multiproessorswith arbitratedmemory aess. In ISCA '95: Proeedings of the 22nd Annual International Symposiumon Computer Arhiteture, pages 243{252. ACM Press, 1995.[58℄ R. Raghavan and J. P. Hayes. On randomly interleaved memories. In Proeedings ofthe 1990 ACM/IEEE Conferene on Superomputing, pages 49{58. IEEE ComputerSoiety, 1990.[59℄ K. Rajamani. Memsim users' guide, IBM researh report. Tehnial Report RC23431,Otober 2004.[60℄ B. R. Rau. Pseudo-randomly interleaved memory. In ISCA '91: Proeedings of the18th Annual International Symposium on Computer Arhiteture, pages 74{83. ACMPress, 1991.[61℄ S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory aess120

sheduling. In ISCA '00: Proeedings of the 27th Annual International Symposium onComputer Arhiteture, pages 128{138, June 2000.[62℄ S. Sair, T. Sherwood, and B. Calder. A deoupled preditor-direted stream prefethingarhiteture. IEEE Transations on Computers, 52(3):260{276, Marh 2003.[63℄ H. Shwetman. CSIM19: a powerful tool for building system models. In WSC '01:Proeedings of the 33nd Conferene on Winter Simulation, pages 250{255. IEEE Com-puter Soiety, 2001.[64℄ S. L. Sott. Synhronization and ommuniation in the T3E multiproessor. InASPLOS-VII: Proeedings of the Seventh International Conferene on ArhiteturalSupport for Programming Languages and Operating Systems, pages 26{36. ACM Press,1996.[65℄ A. Smith. Sequential program prefething in memory hierarhies. IEEE Transationson Computers, 11(12):7{12, Deember 1978.[66℄ Y. Solihin, J. Lee, and J. Torrellas. Using a user-level memory thread for orrelationprefething. In ISCA '02: Proeedings of the 29th Annual International Symposium onComputer Arhiteture, pages 171{182, 2002.[67℄ S. Somogyi, T. F. Wenish, A. Ailamaki, B. Falsa�, and A. Moshovos. Spatial memorystreaming. In ISCA '06: Proeedings of the 33th Annual International Symposium onComputer Arhiteture, pages 252{263. ACM Press, 2006.[68℄ Standard Performane Evaluation Corporation. SPEC CPU 2006,http://www.spe.org, August 2006.[69℄ J. M. Tendler, J. S. Dodson, J. S. F. Jr., H. Lee, and B. Sinharoy. Power4 systemmiroarhiteture. IBM Journal of Researh and Development, 46(1):5{26, 2002.[70℄ A. Vahdat, A. Lebek, and C. S. Ellis. Every joule is preious: the ase for revisit-ing operating system design for energy eÆieny. In EW 9: Proeedings of the 9thWorkshop on ACM SIGOPS European Workshop, pages 31{36. ACM Press, 2000.[71℄ M. Valero, T. Lang, J. M. Llaber, M. Peiron, E. Ayguade, and J. J. Navarra. Inreasingthe number of strides for onit-free vetor aess. In ISCA '92: Proeedings of the19th Annual International Symposium on Computer Arhiteture, pages 372{381. ACMPress, 1992.[72℄ R. Vudu, J. W. Demmel, K. A. Yelik, S. Kamil, R. Nishtala, and B. Lee. Performane121

optimizations and bounds for sparse matrix-vetor multiply. In Proeedings of the 2002ACM/IEEE Conferene on Superomputing, pages 1{35. IEEEComputer Soiety, 2002.[73℄ Z. Wang, D. Burger, K. S. MKinley, S. K. Reinhardt, and C. C. Weems. Guided regionprefething: a ooperative hardware/software approah. In ISCA '03: Proeedings ofthe 30th Annual International Symposium on Computer Arhiteture, pages 388{398.ACM Press, 2003.[74℄ Z. Wang and X. S. Hu. Power aware variable partitioning and instrution shedulingfor multiple memory banks. In DATE '04: Proeedings of the Conferene on Design,Automation and Test in Europe, page 10312. IEEE Computer Soiety, 2004.[75℄ C.-L. Yang and A. R. Lebek. Push vs. pull: data movement for linked data strutures.In ICS '00: Proeedings of the 14th International Conferene on Superomputing, pages176{186. ACM Press, 2000.[76℄ L. Zhang, Z. Fang, M. Parker, B. Mathew, L. Shaelike, J. Carter, W. Hsieh, andS. MKee. The Impulse memory ontroller. IEEE Transations on Computers,50(11):1117{1132, November 2001.[77℄ P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and S. Kumar. Dynamitraking of page miss ratio urve for memory management. In ASPLOS-XI: Proeed-ings of the 11th International Conferene on Arhitetural Support for ProgrammingLanguages and Operating Systems, pages 177{188. ACM Press, 2004.

122

Vita
Ibrahim Hur was born in Izmir, Turkey, on Marh 29, 1968, the son of Hamza Hurand Mu�de Hur. After reeiving his high shool diploma from Izmir Ataturk Lisesiin Izmir, he took the annual national university entrane examination, in whih hissore ranked him 40th among about one million students. He studied ComputerSiene and Engineering at Ege University, Izmir. After reeiving his Bahelor ofSiene degree in 1991, he worked as a systems analyst for two years in a projetfor NATO. In 1993, he reeived a sholarship from Turkish government for graduatestudies, and he ame to the United States. He ompleted the degree of Master ofSiene in Computer Siene at Southern Methodist University, Dallas, Texas, in1995, and he entered the Graduate Shool at The University of Texas at Austin. In1997, he joined the International Business Mahines Corporation. He is urrentlyemployed by the IBM Systems and Tehnology Group in Austin, where he works inthe areas of omputer arhiteture and performane analysis. During his graduatestudies, Ibrahim was supported by teahing and researh assistantships, and hereeived the IBM Ph.D. Fellowship in 2000 and 2001.
Permanent Address: 247 Sokak No.2/2 D.15, Bornova, Izmir, TurkeyThis dissertation was typeset with LATEX2"by the author.

123

