
Using Leases to Support Server-Driven Consistency
in Large-Scale Systems�

Jian Yin, Lorenzo Alvisi, Michael Dahlin, and Calvin Lin
Computer Sciences Department
University of Texas at Austin

Abstract

This paper introducesvolume leasesas a mechanism
for providing cache consistency for large-scale, geograph-
ically distributed networks. Volume leases are a variation
of leases, which were originally designed for distributed
file systems. Using trace-driven simulation, we compare
two new algorithms against four existing cache consis-
tency algorithms and show that our new algorithms provide
strong consistency while maintaining scalability and fault-
tolerance. For a trace-based workload of web accesses,
we find that volumes can reduce message traffic at servers
by 40% compared to a standard lease algorithm, and that
volumes can considerably reduce the peak load at servers
when popular objects are modified.

1 Introduction

As valuable information become increasingly avail-
able through wide area networks, users will seek to use it
in more elaborate ways. For example, although the HTTP
protocol was initially developed for disseminating slowly
changing scholarly and technical information, it is now of-
ten used to distribute quickly changing commercial ser-
vices and news updates. In the future, we expect appli-
cations that manipulate distributed data to extend beyond
human-driven browsers to include program-driven agents,
robots, and data miners that will place new demands on
the data-distribution infrastructure. These new applications
motivate the use of caching and cache consistency.

Cache consistency can be achieved through either
client-drivenprotocols, in which clients send messages to
servers to determine if cached objects are current, orserver-
drivenprotocols, in which servers notify clients when data
change. In either case, the challenge is to guarantee that a
client read always returns the result of the latest completed
write. Protocols that achieve this are said to be strongly
consistent.�This work was funded in part by a NSF CISE grant #CDA-9624082
and by gifts from Novell and Sun Microsystems.

Client-driven protocols force caches to make a difficult
choice. They must either poll the server on each access
to cached data or risk supplying incorrect data. The first
option, polling on each read, increases both the load on
the server and the latency of each request; both effects can
be significant in large scale systems because servers sup-
port many clients and polling latencies can be high. The
other option, periodic polling, relaxes consistency seman-
tics and allows caches to supply incorrect data. For ex-
ample, web browers account for weak consistency through
a human-based protocol in which users manually press a
“reload” button when they detect stale data. Weak consis-
tency semantics may be merely annoying to a human, but
they can cause parallel and distributed programs to com-
pute incorrect results, and they complicate building aggres-
sive caching or replication hierarchies because replication
is not transparent to the application.

Server-driven protocols introduce three challenges of
their own. First, strong consistency is difficult to maintain
in the face of network or process failures because before
modifying an object, a server using these protocols must
contact all clients that cache that object. If there are many
cached copies, it is likely that at least one client will be
unreachable, in which case the server cannot complete the
write without violating its consistency guarantees. Sec-
ond, a server may require a significant amount of memory
to track which clients cache which objects. Third, send-
ing cache invalidation messages may entail large bursts of
server activity when popular objects are modified.

In distributed file systems, the problems of server
driven protocols were addressed by using leases [5], which
specify a length of time during which servers notify clients
of modifications to cached data. After a lease’s timeout ex-
pires, clients must renew the lease by sending a message to
the server before they may access the cached object. Leases
maintain strong consistency while allowing servers to make
progress even if failures occur. If a server cannot contact
a client, the server delays the write until the unreachable
client’s lease expires, at which time it becomes the client’s
responsibility to contact the server. Furthermore, leases
free servers from notifying idle clients before modifying

an object; this reduces both the size of the server state and
the load sustained by the server when reads and writes are
bursty.

Although leases provide significant benefits for file
system workloads, there are reasons to believe that they
may be less effective in a wide area network (WAN). To
amortize the cost of renewing a lease across multiple reads,
a lease should be long enough that in the common case the
cache can be accessed without a renewal request. Unfor-
tunately, at least for browser workloads, repeated accesses
to an object are often spread over minutes or more. When
lease lengths are shorter than the time between reads, leases
reduce to client polling. On the other hand, longer lease
lengths reduce the three original advantages of leases.

In this paper, we show howvolume leasesrestore the
benefits of leases for WAN workloads. Volume leases com-
bine short leases on groups of files (volumes) with long
leases on individual files. Under the volume leases algo-
rithm, a client may access a cached object if it holds valid
leases on both the object and the object’s volume. This
combination provides the fault-tolerance of short leases be-
cause when clients become unreachable, a server may mod-
ify an object once the short volume lease expires. At the
same time, the cost of maintaining the leases is modest be-
cause volume leases amortize the cost of lease renewal over
a large number of objects.

This paper evaluates the performance of volume leases
using trace-based simulation. We examine two variations
of volume leases: volume leases, and volume leases with
delayed invalidations. In the latter algorithm, servers de-
fer sending object invalidation messages to clients whose
volume leases have expired. We compare these algo-
rithms with three traditional consistency algorithms: client
polling, server invalidations, and server invalidations with
leases. Our simulations demonstrate the benefits of vol-
ume leases. For example, volume leases with delayed
invalidations can ensure that clients never see stale data
and that servers never wait more than 100 seconds to per-
form a write, all while using about the same number of
messages as a standard invalidation protocol that can stall
server writes indefinitely. Compared to a standard object
lease algorithm that also bounds server write delays at 100
seconds, this volume algorithm reduces message traffic by
40%.

The rest of this paper is organized as follows. Sec-
tion 2 describes traditional algorithms for providing con-
sistency to cached data, and Section 3 describes our new
volume lease algorithms. Section 4 discusses our exper-
imental methodology, and Section 5 presents our experi-
mental results. After discussing related work in Section 6,
Section 7 summarizes our conclusions.

Variable Meaningt timeout for an objecttv timeout for a volumed time servers store state for inactive clientsR frequency objecto is readV # active objects per volumeCtot # clients with a copy of objectoCo # clients with lease on objectoCv # clients with lease on volumevCd # clients whose volume leases expired< d seconds ago.size(x) bytes of server state to supportx clients

Figure 1: Definition of parameters in Table 1

2 Traditional consistency algorithms

This section reviews four traditional cache consistency
algorithms. The first two—Poll Each ReadandPoll—rely
on client polling. The remaining algorithms—Callbackand
Lease—are based on server invalidation. In describing each
algorithm we refer to Table 1, which summarizes key char-
acteristics of each of the algorithms discussed in this paper,
including our two new algorithms. We also refer to Fig-
ure 1, which defines several parameters of the algorithms.

2.1 Poll each read

Poll Each Readis the simplest consistency algorithm.
Before accessing a cached object, a client asks the object’s
server if the object is valid. If so, the server responds affir-
matively; if not, the server sends the current version.

This algorithm is equivalent to always having clients
read data from the server with the optimization that un-
changed data is not resent. Thus, clients never see stale
data, and writes by the server always proceed immedi-
ately. If a network failure occurs, clients unable to contact a
server have no guarantees of the validity of cached objects.
To cope with network failures, clients take application-
dependent actions, such as signaling an error or returning
the cached data along with a warning that it may be stale.

The primary disadvantage of this algorithm is read per-
formance, as all reads are delayed by a roundtrip message
between the client and the server. In addition, these mes-
sages may impose significant load on the servers [8].

2.2 Poll

Poll is based onPoll Each Read, but it assumes that
cached objects remain valid for at least atimeoutperiod oft
seconds after a client validates the data. Hence, whent = 0
Poll is equivalentPoll Each Read. Choosing the appropri-
ate value oft presents a trade-off: On the one hand, long
timeouts improve performance by reducing the number of
reads that wait for validation. In particular, if a client ac-
cesses data at a rate ofR reads per second and the timeout

Reads Writes State
Expected stale time Worst stale time Read cost Write cost Ack wait delay Server state

(seconds) (seconds) (messages) (messages) (seconds) (bytes)

Poll Each Read 0 0 1 0 0 0
Poll t2 t min(1R�t ; 1) 0 0 0
Callback 0 0 0 Ctot 1 size(Ctot)
Lease 0 0 1R�t Co t size(Co)
Volume Leases 0 0 1Po2V (Rotv) + 1R�t Co min(t; tv) size(Co)
Vol. Delay Inval(t, tv , d) 0 0 1Po2V (Rotv) + 1R�t Cv min(t; tv) size(Cd)

Table 1: This table shows the cost of maintaining consistenc y for an object o using each of the algorithms. Columns
correspond to key figures of merit: the expected stale timeindicates how long a client expects to read stale data aftero is modified, assuming random reads, random updates, and fail ures. The worst stale timeindicates how long o can
be cached and stale assuming that (1) o was loaded immediately before it was modified and (2) a networ k failure
prevented the server from contacting the client caching o. The read costshows the expected fraction of cache reads
requiring a message to the server. The write costindicates how many messages the server expects to send to not ify
clients of a write. The acknowledgment wait delayindicates how long the server will wait to write if it cannot i nvalidate
a cache. The server statecolumn indicates how many clients the server expects to trac k for each object.

is long enough to span several reads, then only1R�t of the
client’s reads will require network messages (see Table 1).
On the other hand, long timeouts increase the likelihood
that caches will supply stale data to applications. Gwertz-
man and Seltzer [7] show that for web browser workloads,
even for a timeout of ten days, server load is significantly
higher than under theCallback algorithm described be-
low. The same study finds that an adaptive timeout scheme
works better than static timeouts, but that when the algo-
rithm’s parameters are set to make the adaptive timeout al-
gorithm impose the same server load asCallback, about 4%
of client reads receive stale data.

If servers can predict with certainty when objects will
be modified, thenPoll is ideal. In this case, servers can tell
clients to use cached copies of objects until the time of the
next modification. For this study, we do not assume that
servers have such information about the future.

2.3 Callback

In a Callbackalgorithm [8, 12], servers keep track of
which clients are caching which objects. Before modifying
an object, a server notifies the clients with copies of the ob-
ject and does not proceed with the modification until it has
received an acknowledgment from each client. As shown
in Table 1,Callback’s read cost is low because a client is
guaranteed that a cached object is valid until told otherwise.
However, the write cost is high because when an object is
modified the server invalidates the cached objects, which
may require up toCtot messages. Furthermore, if a client
has crashed or if a network partition separates a server from
a client, then a write may be delayed indefinitely.

2.4 Lease

To address the limitations ofCallback, Gray and
Cheriton proposedLease[5]. To read an object, a client
first acquires aleasefor it with an associated timeoutt.
The client may then read the cached copy until the lease
expires. When an object is modified, the object’s server
invalidates the cached objects of all clients whose leases
have not expired. To read the object after the lease expires,
a client first contacts the server to renew the lease.

Leaseallows servers to make progress while maintain-
ing strong consistency despite failures. If a client or net-
work failure prevents a server from invalidating a client’s
cache, the server need only wait until the lease expires be-
fore performing the write. By contrast,Callbackmay force
the write to wait indefinitely.

Leases also improve scalability of writes. Rather than
contacting all clients that have ever read an object, a server
need only contact recently active clients that hold leases
on that object. Leases can thus reduce the amount of state
that the server maintains to track clients, as well as the cost
of sending invalidation messages [10]. Servers may also
choose to invalidate caches by simply waiting for all out-
standing leases to expire rather than by sending messages
to a large number of clients; we do not explore this op-
tion in this study.Leasepresents a tradeoff similar to the
one offered byPoll. Long leases reduce the cost of reads
by amortizing each lease renewal overR � t reads. On the
other hand, short leases reduce the delay on writes when
failures occur.

As with polling, a client that is unable to contact a
server to renew a lease knows that it holds potentially stale
data. The client may then take application-specific actions,
such as signaling an error or returning the suspect data
along with a warning. However, unlikePoll, Leasenever
lets clients believe that stale objects are valid.

3 Volume leases

Traditional leases provide good performance when the
cost of renewing leases is amortized over many reads. Un-
fortunately, for many WAN workloads, reads of an object
may be spread over seconds or minutes, requiring long
leases in order to amortize the cost of renewals [7]. To
make leases practical for these workloads, our algorithms
use a combination ofobject leases, which are associated
with individual data objects, andvolume leases, which are
associated with a collection of related objects on the same
server. In our scheme a client reads data from its cache only
if both its object and volume leases for that data are valid,
and a server can modify data as soon as either lease has
expired. By making object leases long and volume short,
we overcome the limitations of traditional leases: long ob-
ject leases have low overhead, while short volume leases
allow servers to modify data without long delays. Fur-
thermore, if there is spatial locality within a volume, the
overhead of renewing short leases on volumes is amortized
across many objects. This section first describes theVol-
ume Leasesalgorithm and then examines a variation called
Volume Leases with Delayed Invalidations.

3.1 The basic algorithm

Figures 2, 3, and 4 show the data structures used by the
Volume Leasesalgorithm, the server side of the algorithm,
and the client side of the algorithm, respectively. The basic
algorithm is simple.

Reading Data. Clients read cached data only if they hold
valid object and volume leases on the corresponding ob-
jects. Expired leases are renewed by contacting the appro-
priate servers. When granting a lease for an objecto to a
client c, if o has been modified since the last timec held a
valid lease ono then the server piggybacks the current data
on the lease renewal.

Writing Data. Before modifying an object, a server
sends invalidation messages to all clients that hold valid
leases on the object. The server delays the write until it
receives acknowledgments from all clients, or until the vol-
ume or object leases expire. After modifying the object, the
server increments the object’s version number.

3.1.1 Handling unreachable clients

Client crashes or network partitions can make some clients
temporarily unreachable, which may cause problems. Con-
sider the case of an unreachable client whose volume lease
has expired but that still holds a valid lease on an object.
When the client becomes reachable and attempts to renew
its volume lease, the server must invalidate any modified

objects for which the client holds a valid object lease. Our
algorithm thus maintains at each server anUnreachableset
that records the clients that have not acknowledged, within
some timeout period, some of the server’s invalidation mes-
sages.

After receiving a read request or a lease renewal re-
quest from a client in its Unreachable set, a server removes
the client from its Unreachable set, renews the client’s vol-
ume lease, and notifies the client to renew its leases on any
currently cached objects belonging to that volume. The
client then responds by sending a list of objects along with
their version numbers, and the server replies with a mes-
sage that contains a vector of object identifiers. This mes-
sage (1) renews the leases of any objects not modified while
the client was unreachable and (2) invalidates the leases of
any objects whose version number changed while the client
was unreachable.

Data Structures
Volume A volume v has the following attributes

id = unique identifier
objects = set of objects in v
epoch = volume epoch number (incremented on server reboot)
expire = time by which all current leases on v will have expired
at = set ofhclient; expirei of valid leases on v
unreachable = set of clients whose volume leases have expired

and who may have missed object invalidation messages

Object An object o has the following attributes
id = unique identifier
data = the object’s data
version = version number
expire = time by which all current leases on o will have expired
at = set ofhclient; expirei of valid leases on o
volume = volume

Figure 2: Data Structures for Volume Lease algorithm.

3.1.2 Handling server failures

When a server fails we assume that the state used to main-
tain cache consistency is lost. In LAN systems, servers of-
ten reconstruct this state by polling their clients [12]. This
approach is impractical in a WAN, so our protocol allows
a server to incrementally construct a valid view of the ob-
ject lease state, while relying on volume lease expiration
to prevent clients from using leases that were granted by
a failed server. To recover from a crash, a server first in-
validates all volume leases by waiting for them to expire.
This invalidation can be done in two ways. A server can
save on stable storage the latest expiration time of any vol-
ume lease. Then, upon recovery, it reads this timestamp
and delays all writes until after this expiration time. Alter-
natively, the server can save on stable storage the duration
of the longest possible volume lease. Upon recovery, the
server then delays any writes until this duration has passed.

Since object lease information is lost when a server
crashes, the server effectively invalidates all object leases

Server writes object o
for all hclient; expirei 2 o:at

if expire > currentT ime ^ client 62 o:volume:unreachableTo contact To contact [client
send(INV ALIDATE; o:id) to all clients inTo contactTf min(o:volume:expire, o:expire)
if Tf < msgTimeoutTf msgTimeout
while (Tf � currentT ime) and (To contact 6= ;) do

receive(ACK INV ALIDATE, o:id) from c 2 To contactTo contact To contact� f c go:volume:unreachable o:volume:unreachable [fTo contactgo:at ;o:version o:version+ 1
write o

Server grants lease for object o with o:id = objId
receive(REQ OBJ LEASE; objId; version) from c
let o be the object such thato:id = objIdo:expire currentT ime+ objLeaseT imeouto:at o:at� fhclient; Xig // delete old leases for cliento:at o:at [fhclient; o:expireig
if (o:version > clientV ersion) then

send(OBJ LEASE; o:id; o:version; o:expire; o:data)
else if(o:version = clientV ersion) then

send(OBJ LEASE; o:id; o:version; o:expire)
Server grants lease for volume v with v:id = volId

receive(REQ VOL LEASE; volId; volEpoch) from c
let v be the volume such thatv:id = volId
if (c 2 v:unreachable) or (v:epoch > volEpoch) then

recoverUnreachableClient(c, v) // see below
if c 62 v:unreachablev:expire currentT ime + volumeLeaseT imeoutv:at v:at � fhclient; Xig // delete old leases for clientv:at v:at [fhclient; v:expireig

send(V OL LEASE; v:id; v:expire; v:epoch)
Server re-establishes contact with unreachable client c for volume v
recoverUnreachableClient(c, v)

send(MUST RENEW ALL;v:id) to c
receive(RENEW OBJ LEASES; volId; leaseSet) from c
for all hobjId; objV ersioni 2 leaseSet do

let o be the object such thato:id = objId
if (o:version > objV ersion) theninvalList invalList [fobjIdgo:at o:at� fhc;Xig // delete old leases for client
else o:expire currentT ime + objLeaseT imeoutrenewList renewList [ho:id; o:version; o:expireio:at o:at� fhc;Xig // delete old leases for cliento:at o:at [fhc; o:expireig

send(INV ALIDATE; invalList; RENEW; renewList)Tf = currentT ime+msgTimeout
while (Tf � currentT ime) and (c 2 v:unreachable)

receive (ACK INV ALIDATE) from cv:unreachable v:unreachable � fcg
Figure 3: The Volume Leases Protocol (Server Side).

Client reads object o
if validLease(o:volume) ^ validLease(o:id) then

read local copy ofo
if validLease(o:volume) ^ :validLease(o:id) then

request lease for objecto
read local copy ofo

if :validLease(o:volume) ^ validLease(o:id) then
request lease for volumev
read local copy ofo

if :validLease(o:volume) ^ :validLease(o:id) then
request lease for volumev and objecto
read local copy ofo

Client c requests lease for object ovnum max(o:version;�1)
send(REQ OBJ LEASE; o:id; vnum) to server
receive(OBJ LEASE; o:version; o:expire[; o:data]) from server

Client c requests lease for volume vepoch max(v:epoch;�1)
send(reqV olLease; v:id; epoch) to server
if receive(MUST RENEW ALL; v:id) from serverthenleaseSet ;

for all objectso for which ((o:volume = v) ^ (o:expires < currentT ime))leaseSet leaseSet [ho:id; o:versioni
send(RENEW OBJ LEASES; v:id; leaseSet) to server
receive (INV ALIDATE; invalList; RENEW; renewList) from server
for all objId 2 invalList

let o be the object for whicho:id = objIdo:expire = �1; deleteo:data; o:data NULL
for all hobjId; version; expirei 2 renewList

let o be the object for whicho:id = objId
assert(o:version = version)o:expire expire

send(ACK INV ALIDATE; v:id) to server
receive(V OL LEASE; v:id; v:expire; v:epoch) from server

Client receives object invalidation message for object o
receive(INV ALIDATE; objId) from server
let o be the object for whicho:id = objIdo:expire = �1; deleteo:data; o:data NULL
send(ACK INV ALIDATE; o:id) to server

validLease(lease l)
if l:expire > currentT ime

return TRUE
else

return FALSE

Figure 4: The Volume Leases Protocol (Client Side).

by treating all clients as if they were in the Unreachable
set. It does this by maintaining a volume epoch number
that is incremented with each reboot. Thus, all client re-
quests to renew a volume must also indicate the last epoch
number known to the client. If the epoch number is cur-
rent, then volume lease renewal proceeds normally. If the
epoch number is old, then the server treats the client as if
the client were in the volume’s Unreachable set.

It is also possible to store the cache consistency infor-
mation on stable storage [3, 6]. This approach reduces re-
covery time at the cost increased overhead on normal lease
renewals. We do not investigate this approach in this paper.

3.1.3 The cost of volume leases.

To analyzeVolume Leases, we assume that servers grant
leases of lengthtv on volumes and of lengtht on objects.
Typically, the volume lease is much shorter than the object
leases, but when a client accesses multiple objects from the
same volume in a short amount of time, the volume lease
is likely to be valid for all of these accesses. As the read
cost column of Table 1 indicates, the cost of a typical read,
measured in messages per read, is 1Po2V (Rotv) + 1R�t . The

first term reflects the fact that the volume lease must be
renewed everytv seconds but that the renewal is amortized
over all objects in the volume, assuming that objecto is
readRo times per second. The second term is the standard
cost of renewing an object lease. As theack wait delay
column indicates, if a client or network failure prevents a
server from contacting a client, a write to an object must
be delayed formin(t; tv), i.e., until either lease expires.
As thewrite costandserver statecolumns indicate, servers
track all clients that hold valid object leases and notify them
all when objects are modified. Finally, as thestale time
columns indicate,Volume Leasesnever supplies stale data
to clients.

3.2 Volume leases with delayed invalidations

The performance ofVolume Leasescan be improved
by recognizing that once a volume lease expires, a client
cannot use object leases from that volume without first con-
tacting the server. Thus, rather than invalidating object
leases immediately for clients whose volume leases have
expired, the server can send invalidation messages when
(and if) the client renews the volume lease. In particular,
the Volume Leases with Delayed Invalidationsalgorithm
modifiesVolume Leasesas follows. If the server modifies
an object for which a client holds a valid object lease but
an expired volume lease, the server moves the client to a
per-volumeInactive set, and the server appends any ob-
ject invalidations for inactive clients to a per-inactive-client
Pending Messagelist. When an inactive client renews a

volume, the server sends all pending messages to that client
and waits for the client’s acknowledgment before renew-
ing the volume. After a client has been inactive ford sec-
onds, the server moves the client from the Inactive set to the
Unreachable set and discards the client’s Pending Message
list. Thus,d limits the amount of state stored at the server.
Small values ford reduce server state but increase the cost
of re-establishing volume leases when unreachable clients
become reconnected.

As Table 1 indicates, when a write occurs, the server
must contact theCv clients that hold valid volume leases
rather than theCo clients that hold valid object leases. De-
layed invalidations provide three advantages overVolume
Leases. First, server writes can proceed faster because
many invalidation messages are delayed or omitted. Sec-
ond, the server can batch several object invalidation mes-
sages to a client into a single network message when the
client renews its volume lease, thereby reducing network
overhead. Third, if a client does not renew a volume for a
long period of time, the server can avoid sending the object
invalidation messages by moving the client to the Unreach-
able set and using the reconnection protocol if the client
ever returns.

4 Methodology

To examine the algorithms’ performance, we simu-
lated the algorithms discussed in Table 1 under a workload
based on web trace data.

4.1 Simulator

We simulate a set of servers that modify files and pro-
vide files to clients, and a set of clients that read files.
The simulator accepts timestamped read and modify events
from input files and updates the cache state. The simula-
tor records the size and number of messages sent by each
server and each client, as well as the size of the cache con-
sistency state maintained at each server.

We validated the simulator in two ways. First, we ob-
tained Gwertzman and Seltzer’s simulator [7] and one of
their traces, and compared our simulator’s results to theirs
for the algorithms that are common between the two stud-
ies. Second, we used our simulator to examine our al-
gorithms under simple synthetic workloads for which we
could analytically compute the expected results. In both
cases, our simulator’s results match the expected results.

Limitations of the simulator. Our simulator makes sev-
eral simplifying assumptions. First, it does not simulate
concurrency—it completely processes each trace event be-
fore processing the next one. This simplification allows us
to ignore details such as mutual exclusion on internal data

structures, race conditions, and deadlocks. Although this
could change the messages that are sent (if, for instance, a
file is read at about the same time it is written), we do not
believe that simulating these details would significantly af-
fect our performance results.

Second, we assume infinitely large caches. Thus,
clients experience no capacity cache misses, and we do not
simulate server disk accesses. Both of these effects reduce
potentially significant sources of work that are the same
across algorithms. Thus, our results will magnify the dif-
ferences among the algorithms. Infinite client caches might
also reduce an advantage of short leases and polling: a
server may send an invalidation to a client for an object the
client has already discarded. Short leases and client polling
may reduce these unnecessary messages.

Finally, we assume that the system maintains cache
consistency on entire files rather than on some finer gran-
ularity. We chose to examine whole-file consistency be-
cause this is currently the most common approach for WAN
workloads [1]. Fine-grained consistency may reduce the
amount of data traffic, but it also increases the number of
control messages required by the consistency algorithm.
Thus, fine-grained cache consistency would likely increase
the relative differences among the algorithms.

4.2 Workload

We use a workload based on traces of HTTP ac-
cesses at Boston University [4]. These traces span four
months during January 1995 through May 1995 and in-
clude all HTTP accesses by Mosaic browsers—including
local cache hits—for 33 SPARCstations.

Although these traces contain detailed information
about client reads, they do not indicate when files are mod-
ified. We therefore synthesize writes to the objects using
a simple model based on two studies of write patterns for
web pages. Bestavros [2] examined traces of the Boston
University web server, and Gwertzman and Seltzer [7] ex-
amined the write patterns of three university web servers.
Both studies concluded that few files change rapidly, and
that globally popular files are less likely to change than
other files. For example, Gwertzman and Seltzer’s study
found that 2%–23% of all files weremutable(each file had
a greater than 5% chance of changing on any given day)
and 0%–5% of the files werevery mutable(had greater than
20% chance of changing during a 24-hour period).

Based on these studies, our synthetic write workload
divides the files in the trace into four groups. We give the
10% most referenced files a low average number of ran-
dom writes per day (we use a Poisson distribution with an
expected number of writes per day of 0.005). We then ran-
domly place the remaining 90% of the files into three sets.
The first set, which includes 3% of all files in the trace, are

0

100000

200000

300000

400000

500000

600000

700000

1 10 100 1000 10000 100000 1e+06

Timeout (Seconds)

Volume(10,t)Delay Volume(10,t, ∝)

Callback

Volume(100,t)

Delay Volume(100,t,∝)

Client Poll(t) Object Lease(t)

N
um

be
r

of
 M

es
sa

ge
s

Figure 5: Number of messages vs. timeout length.

very mutableand have an expected number of writes per
day of 0.2. The second set, 10% of all files in the trace,
aremutableand have an expected number of writes per day
of 0.05. The remaining 77% of the files have an expected
number of writes per day of 0.02.

We simulate the 1000 most frequently accessed
servers; this subset of the servers accounts for more than
90% of all accesses in the trace. Our workload consists
of 1,034,077 reads of 68,665 different files plus 209,461
artificially generated writes to those files. The files in the
workload are grouped into 1000 volumes corresponding to
the 1000 servers. We leave more sophisticated grouping as
future work.

5 Simulation results

This section presents simulation results that compare
the volume algorithms with other consistency schemes. In
interpreting these results, remember that the trace workload
tracks the activities of a relatively small number of clients.
In reality, servers would be accessed by many other clients,
so the absolute values we report for server and network load
will are lower than the servers would actually experience.
Instead of focusing on the absolute numbers in these exper-
iments, we focus on the relative performance of the algo-
rithms under this workload.

5.1 Server/network load

Figure 5 shows the performance of the algorithms. The
x-axis, which uses a logarithmic scale, gives the timeout
length,t, in seconds, while the y-axis gives the numbers of
messages sent between the client and servers. ForVolume
Lease, t refers to the object lease timeout and not the vol-
ume lease timeout; we show different volume lease time-
outs with different lines. The line forCallback is flat be-
causeCallback invalidates all cached copies regardless oft. The Lease, and basicVolume Leaselines decline un-
til t reaches about 100,000 seconds and then rise slightly.

This shape comes from the competing influence of two fac-
tors. As t rises, the number of lease renewals by clients
declines, but the number of invalidations sent to clients
holding valid leases increases. For this workload, once a
client has held an object for 100,000 seconds, it is more
likely that the server will modify the object than that the
client will read it, so leases shorter than this reduce system
load.Delayed InvalidationandClient Poll algorithm send
strictly fewer messages ast increases becauseDelayed In-
validation avoids sending invalidations to clients that are
no longer accessing a volume even if the clients hold valid
object leases and becauseClient Poll never sends invalida-
tion messages. Note that for timeouts of 100,000 seconds,
Client Poll results in clients accessing stale data on about
1% of all reads, and for timeout values of 1,000,000 sec-
onds, the algorithm results in clients accessing stale copies
on about 5% of all reads.

The separation of theLease, Volume(10; t), and
Volume(100; t) lines shows the additional overhead of
maintaining volume leases. Shorter volume timeouts in-
crease this overhead.Leasecan be thought of as the limit-
ing case of infinite-length volume leases.

Although Volume Leasesimposes a significant over-
head compared toLeasesfor a given value oft, applica-
tions that care about fault tolerance can achieve better per-
formance withVolume Leasesthan without. For example,
the triangles in the figure highlight the best performance
achievable by a system that does not allow writes to be de-
layed for more than 10 seconds forLease, Volume(10; t),
andDelayed Invalidations(10; t,1). Volume(10, 100000)
sends 32% fewer messages thanLease(10), andDelayed
Invalidations(10, 107, 1) sends 39% fewer messages than
the basic object lease algorithm. Similarly, for applications
that can delay writes at most 100 seconds,Volume Lease
outperformsLeaseby 30% andDelayed Invalidationsout-
performs the lease algorithm by 40% as indicated by the
squares in the figure.

Although providing strong consistency is more expen-
sive than thePoll algorithm, the cost appears tolerable for
many applications. For example,Poll(100000)uses about
15% fewer messages thanDelayed Invalidations(100; 107,1), but it supplies stale data to clients on about 1% of all
reads. Even in the extreme case ofPoll(107) (in which
clients see stale data on over 35% of reads),Delayed In-
validationsuses less than twice as many messages as the
polling algorithm.

Although space limitations do not allow us to include
the graphs here, we also examined the network bytes sent
by these algorithms and the server CPU load imposed by
these algorithms. By both of these metrics, the difference
in cost of providing strong consistency compared toPoll
was smaller than by the metric of network messages. The
relative differences among the lease algorithms was also

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 10 100 1000 10000 100000 1e+06 1e+07

S
er

ve
r

S
ta

te
s

(B
yt

es
)

Timeout (Seconds)

Object Lease(t)
Volume(10,t)
Volume(100,t)
Delay Volume(10,t,∝)
Delay Volume(100,t,∝)

Delay Volume(10,t,10000)
Delay Volume(100,t,10000)

Callback

Figure 6: State at the most popular server vs. timeout.

0

20

40

60

80

100

120

140

160

180

200

1 10 100 1000 10000 100000 1e+06 1e+07

S
er

ve
r

S
ta

te
s

(B
yt

es
)

Timeout (Seconds)

Callback

Delay Volume(10,t,∝)
Delay Volume(100,t,∝)

Object Lease(t)
Volume(10,t)
Volume(100,t)

Delay Volume(10,t,10000)
Delay Volume(100,t,10000)

Figure 7: State at the 10 th most popular server vs. time-
out.

smaller for these metrics than for the network messages
metric for the same reasons.

5.2 Server state

Figures 6 and 7 show the amount of server memory
required to implement the algorithms. The first shows the
requirements at the trace’s most heavily loaded server, and
the second shows the demand at the trace’s tenth most heav-
ily loaded server. The x-axis shows the timeout in seconds
using a log scale. The y-axis is given in bytes and rep-
resents the average number of bytes of memory used by
the server to maintain consistency state. We charge the
servers 16 bytes to store an object or volume lease or call-
back record. For messages queued by the Delay algorithm,
we also charge 16 bytes.

For short timeouts, the lease algorithms use less mem-
ory than the callback algorithm because the lease algo-
rithms discard callbacks for inactive clients. Compared to
standard leases,Volume Leasesincrease the amount of state
needed at servers, but this increase is small because volume
leases are short, so servers generally maintain few active
volume leases. If theDelayalgorithm never moves clients
to the Unreachable set it may store messages destined for
inactive clients for a long time and use more memory than
the other algorithms. Conversely, ifDelay uses a shortd

1

10

100

1000

10000

100000

1e+06

1e+07

0 20 40 60 80 100

P
er

io
ds

 w
ith

 a
t L

ea
st

 th
at

 L
oa

d

Messages per 1 Second

Client Poll(10)
Object Lease(10)

Callback
Volume(10,1x10^7)

Delay Volume(10,1x10^7,∝)

Figure 8: Periods of heavy server load under default
workload for the most heavily loaded server.

1

10

100

1000

10000

100000

1e+06

1e+07

0 20 40 60 80 100

P
er

io
ds

 w
ith

 a
t L

ea
st

 th
at

 L
oa

d

Messages per 1 Second

Delay Volume(10,1x10^7,∝)

Client Poll(10)
Object Lease(10)

Callback
Volume(10,1x10^7)

Figure 9: Periods of heavy server load under “bursty
write” workload for the most heavily loaded server.

parameter so that it can move clients from the Inactive set
to the Unreachable set and discard their pending messages
and callbacks,Delaycan use less state than the other lease
or callback algorithms. Note that runningDelaywith short
discard times will increase server load and the number of
consistency messages. We have not yet quantified this ef-
fect because it will depend on implementation details of the
reconnection protocol.

5.3 Bursts of load

Figure 5.3 shows a cumulative histogram in which the
y value, shown in log scale, counts the number of 1-second
periods in which the load at the server was at least x mes-
sages sent or received per second. There are three groups
of lines. Client Poll andObject Leaseboth use short time-
outs, so when clients read groups of objects from a server,
these algorithms send groups of object renewal messages to
the server.CallbackandVolumeuse long object lease pe-
riods, so read traffic puts less load on the server, but writes
result in bursts of load when popular objects are modified.
For this workload, peak loads correspond to bursts of about
one message per client. Finally,Delay uses long object
leases to reduce bursts of read traffic from clients accessing

groups of objects, and it delays sending invalidation mes-
sages to reduce bursts of traffic when writes occur. This
combination reduces the peak load on the server for this
workload.

For the experiment described in the previous para-
graph,Client Poll andObject Leasehave periods of higher
load thanCallbackandVolumefor two reasons. First, the
system shows performance for a modest number of clients.
Larger numbers of clients would increase the peak inval-
idate load forCallback andVolume. For Client Poll and
Object Lease, increasing the number of clients would in-
crease peak server load less dramatically because read re-
quests from additional clients would be more spread out
in time. The second reason forCallbackandVolume’s ad-
vantage in this experiment is that clients in the trace read
data from servers in bursts, but writes to volumes are not
bursty in that a write to one object in a volume does not
make it more likely that another object from the same vol-
ume will soon be modified. Conversely, Figure 9 shows a
“bursty write” workload in which when one object is mod-
ified, we selectk other objects from the same volume to
modify at the same time. For this graph, we computek as a
random exponential variable with a mean of 10. This work-
load significantly increases the bursts of invalidation traffic
for VolumeandCallback.

6 Related work

Our study builds on efforts to assess the cost of strong
consistency in wide area networks. Gwertzman and Seltzer
[7] compare cache consistency approaches through simula-
tion, and conclude that protocols that provide weak consis-
tency are the most suitable to a Web-like environment. In
particular, they find that an adaptive version ofPoll(t) ex-
erts a lower server load than an invalidation protocol if the
polling algorithm is allowed to return stale data 4% of the
time. We arrive at different conclusions. In particular, we
observe that much of the apparent advantage of weak con-
sistency over strong consistency in terms of network traffic
comes from clients reading stale data [10]. Also, we use
volume leases to address many of the challenges to strong
consistency.

We also build on the work of Liu and Cao [10], who
use a prototype server invalidation system to evaluate the
overhead of maintaining consistency at the servers com-
pared to client polling. They also study ways to reduce
server state via per-object leases. As with our study,
their workload is based on a trace of read requests and
synthetically-generated write requests. Our work differs
primarily in our treatment of fault tolerance issues. In
particular, after a server recovers our algorithm uses vol-
ume timeouts to “notify” clients that they must contact the
server to renew leases; Liu and Cao’s algorithm requires the

server to send messages to all clients that might be caching
objects from the server. Also, our volume leases provide a
graceful way to handle network partitions; when a network
failure occurs, Liu and Cao’s algorithm must periodically
retransmit invalidation messages, and it does not guarantee
strong consistency in that case.

Cache consistency protocols have long been studied
for distributed file systems [8, 12, 13]. Several aspects of
Coda’s [9] consistency protocol are reflected in our algo-
rithms. In particular, our notion a volume is similar to that
used in Coda [11]. However, ours differsin two key re-
spects. First, Coda does not associate volumes with leases,
and relies instead on other methods to determine when
servers and clients become disconnected. The combination
of short volume leases and long object leases is one of our
main contributions. Second, because Coda was designed
for different workloads, its design trade-offs are different.
For example, because Coda expects clients to communicate
with a small number of servers and it regards disconnection
as a common occurrence, Coda aggressively attempts to set
up volume callbacks to all servers on each hoard walk (ev-
ery 10 minutes).

7 Conclusions

We have taken three cache consistency algorithms that
have been previously applied to file systems and quantita-
tively evaluated them in the context of Web workloads. In
particular, we compared a Poll algorithm with a timeout,
the Callback algorithm in which a server invalidates before
each write, and Gray and Cheriton’s Lease algorithm. The
Lease algorithm presents a tradeoff similar to the one of-
fered by the Poll algorithm. On the one hand, long leases
reduce the cost of reads by amortizing each lease renewal
over many reads. On the other hand, short leases reduce
the delay on writes when a failure occurs. To solve this
problem, we have introduced the Volume Lease, Volume
Lease with Delayed Invalidation, and Best Effort Lease al-
gorithms that allow servers to perform writes with minimal
delay, while minimizing the number of messages necessary
to maintain consistency. Our simulations confirm the ben-
efits of these algorithm.

Acknowledgments

We thank James Gwertzman and Margo Seltzer for
making their simulator available for us to use to validate
our simulator. We thank Carlos Cunha, Azer Bestavros and
Mark Crovella for making the BU web traces available to
us. And we thank the program committee and the anony-
mous reviewers for their valuable feedback.

References

[1] T. Berners-Lee, R. Fielding, and H. Frystyk Nielsen. Hyper-
text Transfer Protocol – HTTP/1.0. Internet Draft draft-ietf-
http-v10-spec-00, Internet Engineering Task Force, March
1995.

[2] A. Bestavros. Speculative Data Disseminatino and Service
to Reduce Server Load, Network Traffic, and Service Time
in Distributed Information Systems. InInternational Con-
ference on Data Engineering, March 1996.

[3] P. Chen, W. Ng, S. Chandra, C. Aycock, G. Rajamani,
and D. Lowell. The Rio File Cache: Surviving Operat-
ing System Crashes. InProceedings of the Seventh Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS-VII), Oc-
tober 1996.

[4] C. Cunha, A. Bestavros, and M. Crovella. Characteristics of
WWW Traces. Technical Report TR-95-010, Boston Uni-
versity Department of Computer Science, April 1995.

[5] C. Gray and D. Cheriton. Leases: An Efficient Fault-
Tolerant Mechanism for Distributed File Cache Consistency.
In Proceedings of the Twelfth ACM Symposium on Operat-
ing Systems Principles, pages 202–210, 1989.

[6] James N. Gray. Notes on data base operating systems. In
R. Bayer, R. M. Graham, and G. Seegmueller, editors,Oper-
ating Systems: An Advanced Course, pages 393–481. 1977.
Lecture Notes on Computer Science 60.

[7] J. Gwertzman and M. Seltzer. World-Wide Web Cache Con-
sistency. InProceedings of the 1996 USENIX Technical
Conference, January 1996.

[8] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale and Per-
formance in a Distributed File System.ACM Transactions
on Computer Systems, 6(1):51–81, February 1988.

[9] J. Kistler and M. Satyanarayanan. Disconnected Operation
in the Coda File System.ACM Transactions on Computer
Systems, 10(1):3–25, February 1992.

[10] C. Liu and P. Cao. Maintaining Strong Cache Consistencyin
the World-Wide Web. InProceedings of the Seventeenth In-
ternational Conference on Distributed Computing Systems,
May 1997.

[11] L. Mummert and M. Satyanarayanan. Large Granularity
Cache Coherence for Intermittent Connectivity. InProceed-
ings of the Summer 1994 USENIX Conference, June 1994.

[12] M. Nelson, B. Welch, and J. Ousterhout. Caching in the
Sprite Network File System.ACM Transactions on Com-
puter Systems, 6(1), February 1988.

[13] V. Srinivasan and J. Mogul. Spritely NFS: Experiments with
Cache Consistency Protocols. InProceedings of the Twelfth
ACM Symposium on Operating Systems Principles, pages
45–57, December 1989.

