1990 International Conference on Parallel Processing

A Comparison of Programming Models for Shared Memory
Multiprocessors*

Calvin Lin
Lawrence Snyder

University of Washington
Department of Computer Science and Engineering, FR-35
Seattle, WA 98195

Abstract

Shared memory machines can be programmed using any of several
models of parallel computation: The shared memory model compiles
directly, and the nonshared memory model can be implemented simply
by simulating message passing, In this paper preliminary evidence is
presented suggesting that the nonshared memory programming model
1s actually betler for shared memory machines than the shared memory
model. Possible explanations for this observation are offered. Locality
and granularity of parallelism. which are encouraged by the nonshared
memory model, seem to explain the reported results. To understand
these and other confounding features on the issue of “best program-
ming model for shared memory machines,” a broader study, involving
more researchers, programs, and machines is proposed.

1 Introduction

There currently exist a wide range of parallel programming languages
and parallel machines. Rather than evaluate a specific instance, the
goal of this paper is to identify broad principles applicable to a variety
of machines and languages. By inquiring into a particular question
concerning parallel programming, this paper seeks to motivate others
to join in conducting comparative experiments.

The question addressed here is: How do programs writien in the
shared memory and nonshared (distributed) memory models of parnliel
computation compare in performance on shared memory multiproces-
sors? This question may seem odd, but it is motivated by the goal of
portability. The reasoning proceeds as follows: (1) Parallel programs
for distributed memory parallel machines should probably be written
using the distributed memory model; the shared memory model is
precluded because it is difficult for compilers to hide the large laten-
cies of message passing. (2) On the other hand, distributed memory
programs should execute passably on shared memory machines since
message passing is easily emulated in shared memory at small cost.
If the suppositions are correct they would seem to suggest that pro-
grams written in distributed memory model languages are likely to be
more portable! than programs written in shared memory languages.
Though it appears difficult to test either antecedent thoroughly given
the present state of parallel computation technology, the second state-
ment does admit some analysis,

The results were unexpected. Rather than showing programs of
the two models to be essentially equivalent, with the nonshared mem-
ory versions being sightly inferior, as the “emulation” reasoning of
statement (2) would suggest, the pregrams written in the distributed
memory model were substantially faster. The possible reasons for this
will be considered below. but the intuition is that programs based on
the nonshared memory model exploit locality well and emphasize the

" This research was supported in part by AFOSR Grant 89-0282, in part by
ONR Contract NOOO14-89-1-1368.

! Portable here means runs well on a variety of architectures. The emphasis
on performance is critical, since presumably any reasonable parallel computer is
universal in the sense of computability, making it possible to host the programs,

11-163

more efficient large grain size - two features which are beneficial for

shared memory machines as well as nonshared memory machines.

The results presented are preliminary in a variety of ways, Only
two problems were solved on two machines, advanced compilation tech-
niques were not available to us, and several potential differences be-
tween the two models couldn’t even be tested on the available hard-
ware. Moreover. there is a possibility we have been biased in some way,
though we have tried to avoid i1t. Remedying ihese shortcomings will
require broad, objective empirical studies involving mary researchers.
It is in the spirit of proposing a community-unde challenge rather than
offering tidy conclusions that this paper 1s written.

The next section presents some background and explains our method-
ology. We then describe the sample programs, and in subsequent see-
tions describe and interpret the experiments, Concluding remarks are
presented at the end.

2 Background and Methodology

The general topic is to better understand the portability of parallel
programs by studying how a programming language’s memory model
interacts with the object machine. The specific question is to iden-
tify differences between the shared and distributed memory programs
executing on a shared memory machine. {We clarify the terminology
below.)

The first {nonexperimental) study of the interaction between pro-
gramming model and machine {14] focused principally on the pro-
gramming model for nonshared memory machines, but it supports
statements (1) and (2) of the introduction,

Baillie (3] assumed that the architecture dictates the choice of pro-
gramming model, i.e. a shared memory machine implies a shared
memory model, and a nonshared memory machine implies a nonshared
mermory model. LeBlanc {8] compared the shared and nonshared mem-
ory models by studying the implementation and performance of Gaus-
sian elimination programs on the Butterfly. LeBlanc concludes that
“the particular model of computation in use is less important than how
well it is matched to the application,” but also mentions that message
passing may “leave the programmer fewer opportunities to introduce
inefficiencies” and has the advantage of encouraging the programmer
to exploit data locality.

Agreed upon definitions for shared memory and distributed mem-
ory programming models do not exist, nor does the conceptual basis
needed to give fully precise definitions. The following explains our
understanding of the prevailing use of these terms. The primary dif-
ference between shared and distributed memory programming models
is the assumed memory reference time: Shared memory models do not
differentiate among memory reference times, implicitly making all ref-
erences unit-cost. Examples include the FORTRAN-based languages,
data flow and functional languages, etc. Nonshared memory models
distinguish between local references, which are unit-cost, and nonlocal
references, which have substantially larger reference times. Exam-

1990 International Conference on Parallel Processing

ples include CSP derivative languages, cube-specific languages, ete,
(Finer cost distinctions are also possible [2].) To be sure, many shared
mernory languages allow the programmer to declare data as “shared,”
“local,™ or belonging to some other storage class, but it is precisely be-
cause these declarations are not needed that shared memory languages
have become widely accepted as being easier to program.

Another feature that seems to distinguish the two models is the
use of explicit specification of parallelism. In distributed memory lan-
guages the parallel threads of control are usually given explicitly as
process declarations. The need to perform the nonlocal references
explicitly {with sends and receives) and the implication that these op-
erations are expensive, apparently encourage programmers to write
“coarse grain" processes that maximize Jocal computation, i.e. exploit
locality. Shared memory languages tend not to require explicit speci-
fication of parallelism, or if they do the undifferentiated memory costs
promote the use of fine grain threads to maximize concurrency. In
either case locality is not generally available and the only possibility
of finding it is through advanced compilation techniques. Again, dif-
ferences exist among shared models, but the requirement of explicitly
specifying parallelism will be taken as a property of nonshared memory
models.

Why would these characteristics be beneficial to a shared memory
machine?

First, exploiting lacality is useful once one observes that shared
memory machines do not have a flat RAM structure, but rather they
generally possess some type of memory hierarchy.? Local caches on
the processors, cluster memory as in the Cedar machine, split global
and local memory as on the Butterfly and the RP3 - all are examples
of structures that provide a performance improvement for local data.
Furthermore, knowing that data is used locally enables a compiler to
exploit these features.

Second, the coarser grain of distributed memory programs reduces
the overhead of process creation. management and multiplexing. Even
with hardware assistance these operations can be expensive, indepen-
dent of the machine’s memory structure. Although it is possible for
a compiler to create coarse grain computation from fine grain speci-
fications, it is likely to be more effective if provided explicitly by the
programmer.

Our methodology was to write shared and nonshared memory pro-
grams and then compare their performance in solving the same set
of problems on a shared memary machine. Qur shared memory lan-
guage was the C-based language available from the manufacturer. For
distributed memory programming we used Poker [13). Since this lan-
guage was not always available on the shared memory machines, we
wrote subroutines for operations such as “send” and “receive” and
then hand translated the program into a form acceptable to the C
compiler. Thus, bath languages employ the same “low level" compiler
facilities, e.g. code generation, register allocation, ete.

3 Setting

The problems to be solved are the Jacobi method and matrix mul-
tiplication. The machines are the BBN Butterfly and the Sequent
Symmetry.

The Jacobi method is an iterative technique to solve partial dif-
ferential equations (7] In our case we use the Jacobi method to solve
Laplace’s equation on a rectangle, where the rectangle is represented
as a 2D array of integers, V. The problem is gaverned by the equation

v v _
5t ayr T

1t is thia feature that motivates some architects to see shared and distributed
memory architeétures converging.

V(z.y) = 0 on the boundary.

The algorithm involves three steps (see Figure 1): imtialize the
matrix, V, repeatedly compute local averages for each element of V,
and return the results. Figure 2 shows how the local averages are
based on the 5 point stencil. Note that the algorithm is presented
here in a generic form. The way in which this algorithm is parallelized
will depend on the implementation.

(1) Allocate and initialize matrix V;

(2) repeat
for each point in V
Vipr[o,y) = DbetbadebifeabpliVieyt i Wilsg-1].

until convergence == true;

(3) print results;

Convergence test: |V [z, y]Vi[x,y)| < 6 for all V[z,yje V.

Figure 1: High Level Jacobi Algerithm

In our particular problem all data points are initialized to a con-
stant integer value. We also use constant boundary conditions

The matrix multiply problem is to find the product, C, of two
dense input matrices, A and B. In one experiment, we use the straight-
forward approach in which each element of C is computed as a dot
product of a row of A and a column of B. There is much room for
parallelism, as each dot product can be cuinputed independently, In
our programs, we spawn multiple tasks, and each task computes a dif-
ferent subset of the solution matrix. As input, we use dense matrices
with integer elements, The dimensions of A and B are 200x400 and
400x 300, respectively.

Our BBN Butterfly GP1000 has 32 nodes.® In addition to a Mo-
torola 68020 processor, each node has 4 Mbytes of local memary and
a processor node controller which interacts with an omega network
te make remote references when needed. Together, the 32 memory
modules, the process node controllers and the network form a single
shared memory which all processors may access. Local memory access
is about 5 times faster than remote access [9].

In contrast to the Butterfly, our Sequent Symmetry Model A has
20 Intel 80386 processors connected by a shared bus. Each processor
has 8 64K cache which holds both data and instructions. A modified
Illinois ownership scheme is used to maintain cache coherency [11).
The Symmetry currently has 32Mb of main memory.

Our programs were all written in C. For the Butterfly, the BBN
Uniform System [4] was used to provide task creation, synchronization,
and memory management routines, while on the Symmetry, these fa-
cilities were provided by the DYNLX operating system. The shared
memory programs were written from scratch, with the programming
model being that of a parallel machine with symmetric processors,

3We currently have only 24 nodes available, and only 19 available for general
purpose use.

NW; | N | NE;
5 R bigy = MtEAW S,
W [5: | SE;

Figure 2: Five Point Stencil for Computing Local Average

1I-164

1990 International Conference on Parallel

Processing

cheap task creation, and a single shared memory. The nonshared memr
ory programs used the Poker model [13], a distributed model in which
processes communicate by sending synchronous messages through well
defined ports. To support this model we used C to implement Poker-
style message passing routines for both the Butterfly and the Symme-
try.

4 Jacobi

Wwith either programming model there is much room for variation in
implementing a particular program. To see this, note that one can
simulate either of the two programming models with the other. For our
first Jacobi experiment on the Butterfly we chose to implement those
programs that require the least intellectual effort with respect to their
particular model, since these programs will best reflect the biases of the
respective programming models. We dub these two implementations
of least intellectual effort sml and nsm1 because they are of primary
imporiance in comparing the two models.

4,1 Description of smnl and nsml

We now describe sml and nsml in terms of N, the number of data
points, and P, the number of processors.

(1) constant tolerance = &:
global int delta = 0;

Allocate global current[] and global next|] matrices;
Initialize current]];

(2) repeat
spawn N tasks: jacobi(x.y);

Swap (current, next);
} until delta < tolerance;

(3) print results:

Jjacobi{x,y}
next{x,y] = (current{x+1.y]+current{x—1y]+
current[x,y-+1]+current{x,y~1])/4;
diff = Max (deita, |next{x,y] — current{x.y]|);

J* update delta */

lock deita;
if (delta < diff)
delta = diff;

unlock delta;

Figure 3: Algorithm for sm1

In sml two 2D arrays are allocated in shared memory. One array
holds the values for the current iteration. The other holds values
of the next iteration. To reduce memory contention these arrays are
allocated in a “scattered” fashion [4]: each row of the matrix is allo-
cated to a different memory module. After each point of the current
matrix is initialized, N tasks are spawned, one for each data point (see
Figure 3). Each task computes one local average, updates delta, and
terminates. We repeatedly spawn N tasks until the tolerance is met.

In nsml only P tasks are spawned, one per processor (see Fig-
ure 5). As in sml, we use two arrays, current and next. Unlike
sml, these arrays are logically distributed, sc each task owns square
submatrices of current and next.

Interior Points

Boundary Points

Non-Local Points

Local Submatrix m

JRUE

Non-local Comner Points

Figure 4: Local Submatrix

Note that in nsml each task operates on multiple data points,
but the local averages for the edges of the submatrix (the “Boundary
Points” in Figure 4) cannot be computed until their neighbor values
are sent from remote tasks. So the nsm1 algorithm requires an explicit
communication step before all local data points can be computed.
Once these are computed and the local maximum delta value has
been found, the P tasks form a logical tree to find the global maximum
value of delta, and then to broadcast this maximum value to all tasks.
Each task can then test for termination.

4,2 Discussion of sml and nsml

The results show nsml to be 23 times faster than sml for 16 pro-
cessors and 8 times faster for 4 processors (see Figure 6 and Tables
1 and 2). The inferior performance of sml compated to nsml is due
presumably to poor data locality. Our measurements show that the
cost of spawning additional tasks in sml is negligible. So we see that
while single point code and shared memory access to array elements
are each great programming conveniences, together they tend to result
in programs which make too many remote references.

4.3 Optimized Jacobi

Our next experiment involves smo and nsmo, so named because they
are optimized (‘o' for optimized) versions of sm1 and nsml. These
programs are interesting for two reasons. First, as will be discussed
below, the optimized shared memory program can confirm our expla-
nation of sml's poor performance. And second, the results may hint
at some inherent performance advantage of one model over the other
for the Butterfly.

4.3,1 Description of smo and nsmo

To avoid the inefficiencies of its predecessor, smo attempts to minimize
its number of remote teferences. Smo spawns P tasks, one for each
processor (see Figure 7). Like nsml, each task allocates a contiguous
portion of the 2D arrays, current and next. Although these arrays
are local to a particular processor, they are still in shared memory.
However, the arrays are no longer logically contiguous, so tasks must
have some way to access the remote elements of the matrices. To
do this, a directory at a globally known address holds the addresses
of each of the P submatrices. Once the address of a remote matrix
is known, it’s individual elements can be accessed as well. Because
interior points and exterior points are accessed differently, we actually
allocate an array large enough to kold the local submatrix and all of its
adjacent Non-local points (see Figure 4). This eliminates the need to
check for the boundary condition when computing the local aeighbor
averages.

II-165

1990 International Conference on Parallel Processing

The algorithm for nsmo is identical to that of naml. The dif-
ferences are that nsmo uses variable length messages, and that tasks
pass only one message for each edge instead of passing multiple small
messages, as was done in nsm1l. For large messages, the message pass-
ing routines use the Mach btransfer() procedure, which is optimized
for transferring large blocks of data. Notice that such a feature would
likely be part of a good implementation of Poker on the Butterfly and
probably wouldn’t require programmer intervention as in the smo im-
provements. Also note that for East-West neighbors additional work
is needed to bundle each vertical column of data into a contigucus
block of data which can be passed as a single message. In this case,
we're trading additional computation for more efficient interprocess
communication.

4.3.2 Discussion of smo and nsmo

The results of Table 1 and Table 2 show that smo is a vast improve-
ment over sm1, but is still slower than both nsm1 and nsmo. Nsmo
is 10.5% faster than it's predecessor (for N=1M and P=4) and about
21.5% faster than smo (for N=1M and P=4).

Note that in smo the array of data is now logically distributed
as well as physically distributed. We no longer have the convenient
location-independent array addressing of sm1 because non-local array
elements must be accessed indirectly through the directory. Thus, in
order to achteve comparable performance we have lost one of the major
advaniages of the shared memory model

In fact, the smo algorithm is very similar to the nonshared mem-
ory algorithm, the main difference being the way edge values are trans-
ferred, and the manner in which the maximum delta value is calcu-
lated. Finally, note that the differences between meml and nsmo are
small optimizations while the changes from sm1 to smo involve more
fundamental changes to the program.

4.4 Nine Point Jacobi

Having found the optimized nonshared memory program to be some-
what faster than its shared memory counterpart, it is natural to ask
how the 1wo models compare for a problem with different communi-
cation costs. One easy way to explore this question is to compare the
Jacobi method using the 9 point stencil. This variation of our earlier
problem increases the amount of interprocess communication, yet re-
quires little additional programming effort. Our programs using the 9
point stencil are named sm9 and nsm9.

4.4.1 Description of sm9 and nam9

Recall that in the 5 point stencil the value of a data point is computed
as the average of its North, East, West, and South neighbors. In
the 9 point stencil, a data point is the average of its eight neighbors:
North, NorthEast, East, SouthEast, South, SouthWest, West, and
NorthWest.

The sm9 program is derived from smo, with two differences: The
main computation loop becomes

" N+ E;+ Wi+ Si+ NE;+ SE; + SWi + NW;
i+l =
8

and the Corner Points of the local arrays (see Figure 4} must now be
filled with values from neighboring tasks. Likewise, nsm9 is a descen-
dant of nsmo, with the differences being four additional messages to
receive corner values, and the compute loop modified as shown above.

4.4.2 Discussion of sm9 and nsm9

The results show that while nsm9 still outperforms sm9, the discrep-
ancy is not as large as in the 5 point problem (see Tables 1 and 2).

This is no surptise. The 9 point problem favors the shared memery im-
plementation because each task must obtain data from four additional
processors. In the shared memoty case this is four more indirect mem-
ory references, while in the nonshared memory case each task passes
four additional messages. But these messages are short, so because
of the overhead of message passing, the additional communication is
more efficient in the shared memory case.

4.5 Jacobi by Rows

At one extreme, sm1l was programmed without regard tc locality. At
the other extreme, nem1 maximizes locality and minimizes communi-
cation by using square submatrices whenever possible. A compromise,
and a technique which is often found in parallel programs, is to allocate
local data in terms of rows, rather than in terms of square submatrices
(see Figure 9). Allocation by rows is typically easier to program than
allocation by square (or almost square) submatrices, but it essentially
increases the interprocess communication requirements of the result-
ing program. Our next experiment involves smr and nsmr, in which
data is allocated by rows,

4.5.1 Description of smr and nsmr

The smr program is a modification of smo. The program is un-
changed except for two details. Each task allocates a contiguous group
of rows to hold rectangular submatrices of current and next. And
secondly, there is only communication between North-Scuth neigh-
bors since East-West neighbors don’t exist. Similatly, nsmr differs
from nsmo in its data allocation and in its communication behavior.

4.5.2 Discussion of smr and nsmr

In the worst case, for P=16 processors, allocation by rows causes 2.5
times as much data to move between processors. In the best case (not
including P=1,2, or 3) allocation by rows causes 1.5 times as much
data to be moved. Surprisingly, smr and nsmr performed as well
as their predecessors, smo and nsmo (sce Tables I and 2). These
results can be explained: Although smr and nsmr require more data
movement, each process also has fewer neighbors and thus passes fewer
messages. For example, for P=16 a total of 30 messages are passed per
iteration, while smo and namo each pass 48 messages per iteration.
Saltz, Naik and Nicol [12] discuss in more detail the tradeoffs between
rows vs. squares for distributed memory machines.

4.6 Jacobi on the Symmetry

The shared memory programming model matches the Symmetry much
better than it does the Butterfly. We would expect data locality to
be less important on this shared bus machine. We ported sm and
nsm from the Butterfly, resulting in sm, and nsm,, respectively {the
subscript standing for “Symmetry”). The main difference between the
ported code and the original code was that on the Symmetry matrices
are always allocated in shared memory, i.e. we can only exploit data
locality implicitly by repeatedly accessing the same data because there
is no way to explicitly load the caches.

Surprisingly, we found that the nonshared memory was slightly
faster (see Tables 3 and 4). We conjecture that in the nonshared
memory program the overhead of message passing is offset by the use
of beopy() to load “external” data points; thus the caches are loaded
more efficiently in the nonshared memory program.

5 Matrix Multiply

For the matrix multiply problem we took existing shared memory im-
plementations from Harrison [5] and compared it to our own nonshared

II-166

1990 International Conference on Parallel Processing

memory inplementations written using the same high level algorithm.
The shared memory programs allocate matrices A, B, and C so that
they're “scattered” among the available processors. Then, a number
of tasks are spawned which compute the various dot products. Each
task computes a portion of a row of C, depending on a runtime pa-
rameter. For our comparison, we chose the value known to give best
results for the given program input[6).

‘T'hree shared memory implementations were used. The first pro-
gram, matrixSM1, references elements of all three matrices without
regard to physical location. The second program, matrixSM2, is an
optimized version of the first, in which tasks use block transfers to
cache the necessary rows and columns before they compute dot prod-
ucts. Finally, matrixSM3 is the best of Harrison's various programs.
[t is optimized to assign contiguous groups of rows of matrix A to the
same processor, to assign threads to where “their” data is, to have
tasks migrate to other portions of the matrix when they finish with
their own allotment, and to store the 2D matrix B as a single 1D array
in column-major order so that multiple columns of the matrix may be
transferred and cached with a single block transfer.

The nonshared memory version, matrixNSM, spawns one task
per processor. Each task owns some rows of A and C, and some
colurnns of B. For example, task 0 owns rows 0 to n of matrix A, and
it calculates and owns rows 0 to m of matrix C, where the value of m
depends on the number of processors and the dimensions of A. This
task also owns columns 0 to n of matnx B, so the upper left m x n
portion of C can be computed by fask 0 without communication. To
compute the remaining values for rows 0 to m this task must access
the remote columns of B. This is done by passing a series of messages.
The P rtasks form a logical ring. For the kth iteration through the
“shift” loop (see Figure 10), each task sends its columns of matrix B
to the task on the ring which 1s k£ tasks to the left, so that after P -1
iterations, each task has received each column of matrix B.

Figure 11 shows that the nonshared memory program is faster
than all but the best of the shared memory programs.* As with the
Jacobi programs. the results can be explained by examining data lo-
cality. The matrixSM1 program makes a large number of remote
data references. Because the rows of all arrays are scattered, on the
average, only -j;- of the matrix references are local, where P is the num-
ber of processors used in the computation. In contrast, the nonshared
memory program and the best shared memory program only reference
local values of matrix A and C, and each element of B is sent to any
given processor at most once. The matrixNSM2 program falls in be-
tween matrixSM1 and matrixNSM in terms of remote references,
as its references to A and C will sometimes (ﬁ};.k, on average) require
block transfers.

Offsetting the performance benefit of the nonshared memory model
is the fact that the source code for the shared memory programs are
tnuch shorter than the nonshared memory program and appear to have
been significantly easier to write,

5.1 Matrix Multiply on the Symmetry

To compare matrix multiply implementations on the Symmetry we
ported matrixNSM and matrixSM from the Butterfly. As with the
Jacobi programs, the ported programs can perform none of the data
scattering optimizations that were done on the Butterfly.

The shared memory program required some modifications: Whereas
the Butterfly’s Uniform System provides the means to spawn many
tasks cheaply, thread support is different on the Symmetry, so we use
a slightly different work queue model of computation. The unit of
work is still taskSize columns of the solution matrix, whete taskSize

“The matrix NSM program can be o,:timized in ways similar to matrixSM3.

is a runtime parameter. However, only P tasks are spawned which re-
peatedly obtain and perform a unit of work until the queue is empty.
For this problem the work queue is implemented as a counter, initially
0. Work is obtained by atomically adding taskSize to the integer.
Atemicity is guaranteed by protecting the work queue with a lock.
The work queue is exhausted when the value of the integer equals the
number of units of work to be performed.

Various values of taskSize were tested and the best (50) was cho-
sen. The choice of taskSize did not have a significant effect on perfor-
mance, The nonshared memory program exhibits better speedup (see
Figure 12). The nonshared memory program is more efficient in two
respects: (1) [t does not have the overhead of the work queue, and (2)
it has better locality of data since each thread operates on the same
data throughout the life of the program. The effects of (2) are difficult
to measure directly because we have no way to turn off the cache. The
effects of {1) can likely be reduced by using multiple queues.

5.2 Divide and Conquer Matrix Multiply

As an alternative to the naive matrix multiply approach we chose to
implement a divide and conquer algorithm. The basic idea is that the
product of Nx N matrices can be thought of as the sums of 8 & x &
matrix products (see Figure 13). We recursively apply this
reasoning until we have nothing left to multiply except scalars. This
divide and conquer algorithm makes better use of data locality than
the algorithm presented in the previous section.

The shared memory implementation is straightforward. We spawn
one task per recursive call. The recursion bottoms out when 2x2
matrices are multiplied.

The nonshared memory algorithm is conceptually identical but
the details are nontrivial. Nelson’s algorithm [10] spanws one task
per processor and decomposes the matrices in a manner analogous to
Strassen’s algorithm (1], to the point at which all processors have been
assigned two square submatrices, one per input matrix.® Nelson’s al-
gorithm uses a two-level approach. At one level the processes send
and receive matrices from neighbors: Communication proceeds as if
the processes were arranged as a hypercube. At another level a se-
quential algorithm is used to compute the product of mxm matrices,
where m = %’- and mxm is the size of the subarray imtially allocated
to each processor.

Table 5 shows the difference between the shared memory and non-
shared memory programs. Most of the difference in performance ap-
pears to be due to the increased overhead of thread creation in the
shared memory program.

6 Conclusion

We have presented solutions to lwo problems on two machines in an
effort to understand how the shared and distributed memory program-
ming models differ in performance. The results, though preliminary,
show substantial benefit for the distributed memory model over the
shared model. The observations seem to be explained by the exploita-
tion of loeality and the large granularity of the distributed memory
programs. Indeed, as the shared memory model programs were im-
proved, they acquired some of the same characteristics that the non-
shared memory programs exhibited. Clearly, more problems and more
machines must be considered before these results can be considered
conclusive.

There are important methodological issues that must be consid-
ered, too. The phenomena under study -~ memory models of parallel
computation — have not been rigorously defined; greater precision is

5Note that unlike Stragsen's algorithm, Nelson's algorithm does not reduce the
number of actual multiplications.

II-167

1990 Interpational Conference on Parallel Processing

needed. There are questions of when the observed differences are a re-
sult of programming differences and when they simply reflect dlffer?m
algorithms: the Jacob example appears to reflect only programming
differences, but the situation is less clear for matrix multiplication.
The problem is likely to get much more complex as the programs de.
These and other methodological issues are worthy of deeper consider-

ation.

Acknowledgements It is a pleasure to thank Hans Mandt, Stu
Stern. and the Advanced Systems Laboratory of Boeing Computing
Services for their help in providing access to a Butterfly multiprocessor.
We wish to thank Gail Harrison for a dozen “assists”" in varicus aspects
of this research.

References

(1] A. Aho, J. Hoperoft. and J. Ullman. The Design and Analysis of
Computer Algorithms, Addison-Wesley, (1974) pp 230-232.

[2! A. Aggarwal, A Chandra, and M. Snir. Hierarchical Memory with
Block Transfers, Proceedings 28th FOCS, IEEE, (1987) pp 204-216,

[3] C. Baillie. Comparing Shared and Distributed Memory Computers,
Parallel Computing vol 8, (1987) pp. 267-279.

[4] BBN. Programming in C with the Uniform System. (1986} pp.
11-30.

[5] G. Harrison and D. Notkin, Effective Portability, TR 89-09-08,
Department of Computer Science and Engineering, University of
Washington, (September 1989).

(6] G. Harrison. Personal communication, (1990).

(7] T. Holman. Processor Element Architecture for Non-shared Mem-
ory Parallel Computers, Ph.D. Thesis, Department of Computer
Science, University of Washington, (1988).

(8] T. LeBlanc, Shared Memory Versus Message-Passing in a Tightly-
Coupled Multiprocessor: A Case Study, Iniernational Conference
on Paralle! Processing, (1986) pp. 463-4686.

(8] T LeBlanc, M. Scott. and C. Brown, Large-Scale Parallel Pro-
gramming: Experience with the BBN Butterfly Parallel Processor.
Proceedings of the ACM/SIGPLAN PPEALS, (July 1988) pp. 161~
172,

(10] P. Nelson. Parallel Programming Paradigms, Ph.D, Thesis, De-
partment of Computer Science, University of Washington, (1987).

(11] T. Lovett and §. Thakkar. The Symmetry Multiprocessor System,
International Conference on Parallel Processing, (1988) pp. 303-310.

[12] 1.8altz, V. Naik, and D, Nicol. Reduction of the Effects of the
Communication Delays in Scientific Algorithms on Message Pass-
ing MIMD Architectures” SIAM J. Seci. Statist. Computing, vol 8,
number 1, (January 1987) s118-s134.

[13] L. Snyder. Paralle! Programming and the Poker Programming
Environment. Computer, (July 1984) pp. 27-36.

{14] L.Suyder. Type Architectures. Shared Memory, and the Corollary
of Modest Potential, Annual Review of Computer Science, (1986).

I1-168

Spawn P tasks:

task{i.j) executes:
init(i.j):
Jjacobi(i,j):
printResults(i,j);

init(i.j)
int diff. deita = 0
Allocate current; ;[] and next; ;[] matrices;
Initialize current; ;[)

Jacobi(ij)
repeat

/™ send and receive edge values */
send edge values to N, E, W, S neighbors;
receive edge values from N, E, W, S neighbers;

/* compute local averages */
for each element in next; j[]

nexty [x.y] = (eurrent; ;[x+1.yl+ current j{x~1.y]+
current; ;[x y+1]+ current; [x,y—1])/4;
diff = [next; j[xy] — current; ;[x.y]|;

if {delta < diff)
delta = diff;
}

/* find maximum delta */
if not leaf
receive delta from children:
if not root
send max(delta, children’s delta) to parent;

/* broadeast maximum delta */
if not root

receive deita from parent;
if not leaf

send delta to children;

Swap (current; ;. next; ;);
} until delta < tolerance:

Figure 5: Algorithm for nsm1

o -=-~-0 sml

OO nsml
550

500 B

B]
450 >
5 i

300

200
150

Execution Time (seconds)
g

50

s o i
1 3 5 709 11 13 15
Number of Processors

Figure 8: Jacobi on the Butterfly (N=1M)

1990 International Conference

on Parallel

Processing

constant tolerance = §;
global int delta = 0;

Spawn P tasks:
task{i) executes:

init{i.j):
jacobi(ij):
printResults{i,j);

nit(1.j)

int diff = 0;

Allocate current; ;{] and nexty ;[] matrices;

Initialize current; ;[].

Jjacobi(i j)

repeat

{

Acquire non-local values for current; ;[)

/* compute local averages */
for each (x.y) in next; ;{];

next; ;[x.y) = (current; j[x+1.y}+ current, j[x—1.y]+
current; ;[y-+1]+ current; j[x,y—1])/ 4
diff = Max (delta, |next; ;[x.y] — current; s[x.y]l):

}

/* update delta ®/

lock delta;

if (delta < diff)
delta = diff;

unlock delta;

Allocation by Square Submatrices

Allocation by Rows

Figure 9: Allocation By Row vs. Allecation by Square Submatrices

Spawn P tasks:

task{1.j) executes:
mit(i.j):
multiply(i.j):
printResults(i,j);

init(i.j)
int diff = 0:
Allocate rows of A; ;[];
Allacate columns of By ;[]:
Allocate columns of B,.[];
Allocate rows of C; ;[];
Initialize A;;[] using "bucket brigade”,

multiply(ij)
for each rowr in ﬁl,.,’[]

Swap (current; 5. next; ;)

} until delta < tolerance;

Figure T: Algorithm for smo

O -~~-0 smr
O nsmr

90

70

for each column ¢ in By 4[]
C; lr.c] = dot product {row r, column c);

/* form logical ring */
for {k=1; k<P; k++)
{ /* shift loop */
send columns of By j{] to taskged,
where RingPosition(task(i.j)) — RingPosition(taskse,() = k
receive columns of B,,.[] from task,,¢,
where RingPosition(task,,.) — RingPosition{task(i.j}) = k;

for each row rin A 4]
for each column ¢ in B,..[]
Cijlr. ¢'] = dot product(row r, column c};

50

a
i 3
"\ ™S
.
30 o
20 i ¢ W b

- |
1 3 5 1 9 1 13 15
Number of Processors

Execution Time (seconds)

Figure 8: Jacobi on the Butterfly (N=1M)

[I-169

Figure 10: Algorithm for matrixNSM

1990 International Conference

on Parallel Processing

o - - - -0 matrixSM1
Beeoane A matrixSM2
O—emmene) maTrixNSM
i ¢ matrixSM3
280 e
o]
M i
- 220
3 a0t
Rl
e \ 1% ‘
T Wirew ;
B 140 o -
=120 %, N
2 0f Mo
= T oy
g 80 p——"¢ =
8 &0 e S ® O
e . ‘?'” FARENE
50 R - S
ol i | Ll =
1 23 4567 8910111213141516

Number of Processors
Figure 11; Matrix Multiply on the Butterfly

S0 shated memory
< non shared memory

=
[
L=t

Execution Time (scconds)
2

50 p— S
i -.‘;“

N EERE R

Number of Processors

Figure 12: Matrix Multiply on the Symmetry

1456768 %10111213141516

AlxBl | AlxB2

Al A2 B1 B2 + +
% - A2xB3 | A2xB4
A3xB1 | A3xB2

A3 A4 B3 B4 + +
AdxB3 | AdxB4

Figure 13: Divide and Conquer Matrix Multiply

I1-170

Table 1
Jacobi on the Butterfly ~ 4 Processors
Time in seconds

Program | N = 256K | N = 1M
nsml 15 i
sml 128 512
nsmo 13 al
smo 16 85
nsm@ 22 83
smi 26 101
nsmr 13 30
smr 17 85

Table 2

Jacobi on the Butterfly - 16 Processors
Time in seconds

Program | N = 256K | N = IM
nsrl 4 15
sml 94 370
nsmo 4 14
smo 5 19
nsm9 B 24
s [27
nsmr 4 14
amr [19

Table 3

Jacobi on the Sequent ~ 4 Processors
Time in seconds

Program | N = 256K | N = 1M
5, 12.5 50.3
nsmmy, 10,2 40.8
nsml, 10.5 41.9

Table 4

Jacobi on the Sequent - 16 Processors
Time in seconds

Program | N = 256K | N = IM
S, 3.2 12.8
nsm, 2.8 10.3

nsml, 2.8 10.6
Table 5

Divide and Conquer Matrix Multiply on the Butterfly

16 Processors
Time in seconds

Program | 8 x 8 | 16 x 16 | 32 x 32 64 x 84
sm 0.46 0.82 3.86 | did not finish
nsm 0.59 0.56 0.80 1.15

