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Abstract—Temporal data prefetchers have the potential to
produce significant performance gains by prefetching irregular
data streams. Recent work has introduced a neural model
for temporal prefetching that outperforms practical table-based
temporal prefetchers, but the large storage and latency costs,
along with the inability to generalize to memory addresses outside
of the training dataset, prevent such a neural network from seeing
any practical use in hardware.

In this paper, we reformulate the temporal prefetching pre-
diction problem so that neural solutions to it are more amenable
for hardware deployment. Our key insight is that while temporal
prefetchers typically assume that each address can be followed
by any possible successor, there are empirically only a few
successors for each address. Utilizing this insight, we introduce
a new abstraction of memory addresses, and we show how this
abstraction enables the design of a much more efficient neural
prefetcher.

Our new prefetcher, Twilight, improves upon the previous
state-of-the-art neural prefetcher, Voyager, in multiple dimen-
sions: It reduces latency by 988×, shrinks storage by 10.8×,
achieves 4% more speedup on a mix of irregular SPEC 2006,
SPEC 2017, and GAP benchmarks, and is capable of predicting
new temporal correlations not present in the training data.
Twilight outperforms idealized versions of the non-neural tem-
poral prefetchers STMS by 12.2% and Domino by 8.5%. While
Twilight is still not practical, T-LITE, a slimmed-down version of
Twilight that can prefetch across different program runs, further
reduces latency and storage (1421× faster and 142× smaller than
Voyager), matches Voyager’s performance and outperforms the
practical non-neural Triage prefetcher by 5.9%.

I. INTRODUCTION

Data prefetchers are vital mechanisms for hiding the long
latencies of memory accesses. While most modern hardware
prefetchers identify strides or spatial footprints to target regular
or spatial access patterns, this paper focuses on temporal
prefetching, a type of irregular data prefetching that identifies
pairs of addresses that are temporally correlated. For instance,
if address X is often followed by address Y, then X and Y are
correlated, and a load of X can serve as a trigger to prefetch
Y. Since these correlations can be found between any two
addresses X and Y, temporal prefetchers can eliminate cache
misses from any arbitrary repeated memory access stream.

Recent work by Shi, et al. [41] shows that ML-based tempo-
ral prefetchers like Voyager provide significant headroom over
idealized versions of table-based temporal prefetchers, achiev-
ing an extra 13% speedup.1 Unfortunately, several limitations
prevent Voyager from being realized in practice.

1More compellingly, Shi, et al. show that on proprietary Google Search
and Ads workloads, Voyager sees accuracy and coverage far beyond what
non-neural prefetchers can obtain (73.9% vs 51.1%). Without access to these
proprietary workloads, we report results from publicly available workloads.
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Fig. 1: Overview of model inputs and outputs. Instead of
operating on data addresses directly like Voyager, Twilight’s
and T-LITE’s neural models utilize layers of indirection to
create an abstraction space that improves their practicality.

Excessive Model Size and Latency: Figure 1a shows that
Voyager takes as input and produces as output any address
in the address space. As a result, the neural model’s size and
prediction latency grow with the program’s memory footprint.
Across an irregular subset of the GAP, SPEC 2006, SPEC 2017
and Google server workloads, Voyager requires on average
81M FLOPs to make a prediction and 113.5 MB of storage.

Inability to Adapt or Generalize: Voyager was designed
as a limit study, and there is no clear path for it to be
trained in a realistic setting. On one hand, Voyager cannot
be trained online while the program runs because it requires
multiple passes over the training data and billions of FLOPS to
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learn each correlation. On the other hand, it cannot be trained
offline because it can only learn temporal correlations for data
addresses that it sees during training, which is problematic
because the virtual to physical address mapping changes on
every program execution, rendering Voyager’s offline learned
address correlations useless.

Unfortunately, these two issues are so significant that they
cannot be mitigated by standard machine learning techniques.
For example, distillation [22] and quantization [18] would
only shrink the model size by some small factor (up to
8× for quantization). Thus, if we are ever to see practical
deployment of a neural temporal prefetcher, we need to rethink
the prediction problem so that it is more amenable to a neural
solution. This paper does precisely that.

We observe that the root cause of these issues is the very
definition of temporal prefetching, which correlates addresses
with other addresses. This formulation results in huge storage
and computational costs, and it limits generalization since
Voyager cannot predict addresses outside of the training data.
Since addresses are the problem, we reformulate the temporal
prefetching prediction problem to avoid their use.

Our key observation, which we refer to as the Sparse
Connectivity Hypothesis, is that in practice each address is
only ever succeeded by a handful of other addresses. Armed
with this insight, we reformulate the problem: Instead of
predicting an address, the neural model predicts an ordinal
i, which corresponds to prefetching the ith most frequent
prefetch candidate. For example, suppose A is followed by
B 40% of the time and is followed by C 60% of the time.
If the model predicts i = 1, then the most frequent candidate,
C, is prefetched; and if the model predicts i = 2, then the
second most frequent candidate, B, is prefetched. We refer to
this new formulation as frequency-based candidate selection,
and we use it to create an abstraction layer that insulates our
new neural prefetcher, which we refer to as Twilight,2 from
the output address space (see Figure 1b).

Our new formulation plays a central role in the design of
a slimmed down version of Twilight, referred to as Twilight-
LITE or simply T-LITE, which moves us closer to a practical
neural temporal prefetcher. In particular, candidate selection
enables us to create an abstraction layer between T-LITE and
the input address space by grouping together addresses with
similar prefetching behavior (see Figure 1c). We find these
groups by using offline clustering to divide the address space
into a fixed set of behavioral clusters. Together, our two new
abstraction layers insulate T-LITE from interacting directly
with memory addresses, so T-LITE’s size and latency do not
grow with the program’s memory footprint, making T-LITE
small and fast enough to be in the realm of feasible hardware
deployment.

These two abstraction layers provide another advantage:
They allow T-LITE’s deployment to be staged. The neural
model is trained offline, while the mappings between the

2The name Twilight reflects the fact that it sits at the edge of the offline
and online divide just as twilight separates night and day.

address space and the new abstraction layers are learned
online. That is, at runtime, T-LITE tracks the set of addresses
that comprise the set of prefetch candidates and dynamically
assigns unseen addresses to behavioral clusters. As a result,
T-LITE better adapts across program phases and can prefetch
for subsequent runs across different program inputs.

This paper makes the following contributions:
• We reformulate the notion of temporal prefetching by

introducing two novel levels of indirection, namely,
frequency-based candidate selection and behavioral clus-
tering, which abstract the neural model’s outputs and
inputs, respectively.

• We present Twilight, a neural temporal prefetcher that
utilizes frequency-based candidate selection to provide
the following benefits over Voyager:

– 988× faster inference (82K FLOPs).
– 10.8× smaller neural model (10.5 MB).
– 4% higher IPC improvement over no prefetcher.
– Better generalization because its online component

dynamically tracks metadata for prediction. Whereas
Voyager loses 17% performance on unseen program
execution, Twilight loses just 6.6%.

• We present T-LITE, a slimmed down version of Twilight
that utilizes behavioral clustering to trade off perfor-
mance for significantly increased practicality.

– T-LITE matches Voyager’s performance while being
1421× faster (57K IOPs) and 142× smaller (0.8MB).

– T-LITE sees 5.9% more speedup than the practical
table-based Triage prefetcher, which stores up to 1
MB of metadata in the cache. By contrast, T-LITE
requires just 64 KB of metadata by baking in some
of the prefetching knowledge into the neural model.

– T-LITE’s staged deployment transfers the knowledge
learned in offline training across program phases and
program inputs. On GAP benchmarks that are run
on inputs from unseen domains, T-LITE outperforms
Triage by 16.6% and achieves 94% of the perfor-
mance of a T-LITE model fine-tuned on the unseen
inputs.

The remainder of this paper is organized as follows. We
place our work in the context of prior work in Section II. We
then describe our solution in Section III and our experimental
methodology in Section IV before presenting our evaluation of
Twilight in Section V and T-LITE in Section VI. We discuss
future work in Section VII and conclude in Section VIII.

II. RELATED WORK

Data prefetching [8], [9], [12], [25], [29], [31], [32], [34],
[38], [39], [43], [50], [52], [53] has been studied for decades,
but the use of machine learning is fairly recent, with almost
all work in this area [13], [21], [36], [45], [46], [55]–[60]
focusing on delta prefetching, which is suitable for programs
with good spatial locality. Peled, et al [36] explore neural
models for irregular data prefetching, but their solution has
poor predictability for irregular programs because it phrases
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the problem as delta prefetching. Voyager [41] is the only prior
solution that supports temporal prefetching.

We now discuss related work in more detail by first dis-
cussing ML-based spatial prefetching and then discussing both
non-neural and neural solutions for temporal prefetching. We
end by briefly discussing the use of profiling in data prefetch-
ing and other applications of ML for hardware prediction.

A. ML-Based Spatial Prefetching

Most work in ML prefetching focuses on using neural net-
works [13], [21], [36], [45], [46], [55]–[60] or reinforcement
learning (RL) [12], [35] to improve the prediction accuracy
and coverage of delta prefetchers. To make costly neural
networks more amenable for evaluation and deployment,
neural stride prefetchers have used (1) clustering to share
model weights across address regions [21] and across differ-
ent applications [46], [60], (2) compression by representing
deltas in binary format [36], [45], [46], [57], [60], (3) spatial
bitmask prediction [6], [55], [56], [58], [59], and (4) graph
specialization [55], [56]. Prefetchers based on RL [12], [35]
have significantly lower cost in exchange for lower predictive
power. However because these approaches can train online,
they recover this performance loss by adapting better to
changes in program behavior.

Our work is orthogonal to this prior work because it focuses
on temporal prefetching, which has a much larger problem
space than spatial prefetching; our new abstraction shrinks the
problem space, which in turn shrinks the neural model to be
closer in size to those for neural spatial prefetching.

B. Temporal Prefetching

The notion of temporal prefetching was introduced by
Joseph and Grunwald, who use a table to record multiple
successors for a given memory address [28]. Subsequent
work has followed two broad directions, with one focused on
performance and the other on practicality.

The first direction improves the performance of tempo-
ral prefetchers by devising more sophisticated prediction
mechanisms, such as spatio-temporal correlation [44], PC-
localization [25], and longer histories [8], [41]. The Voyager
neural prefetcher [41] uses a long history of data addresses to
significantly outperform prior art.

The second direction addresses the large metadata require-
ments of temporal prefetchers. Early solutions store the cor-
relation table off-chip and optimize the memory bandwidth
requirements and prefetch look-ahead distance for off-chip ta-
ble access [15], [42]. The Global History Buffer [33] amortizes
the cost of accessing off-chip metadata for long streams [50].
The ISB prefetcher [25] reformulates temporal prefetching
so that its metadata can be cached on-chip, and the MISB
prefetcher [53] shows that this off-chip metadata can be easily
prefetched to hide its off-chip access latency. Finally, the
Triage prefetcher [52] stores the most relevant metadata on-
chip by repurposing a portion of the last-level cache.

Twilight significantly reduces the high latency and storage
costs of prior neural temporal prefetchers. Furthermore, Twi-

light is more generalizable because it incorporates an online
component that enables it to adapt to unseen data addresses.

C. Neural Temporal Prefetching

Shi et al. [41] formulate temporal prefetching as a classifi-
cation task and show that temporal prefetching suffers from a
class explosion problem where the sheer number of classes—
252 possible cache lines in a 64-bit address space—would
make any neural solution untenable. Because the number of
unique pages encountered in their program traces is 1 − 2
orders of magnitude smaller than the number of unique cache
lines, Shi, et al. split cache line addresses into page and offset
pairs, enabling their Voyager model to be feasibly trained.

We observe that while the page-offset split enables offline
training over a small region of 250M instructions, the underly-
ing class explosion problem has not been solved. At best, this
split reduces the number of classes by 64×, so the number of
classes (246) remains impractically large.

For example, there are SPEC 2006 traces that Voyager was
not evaluated on with as many as 255K unique pages within
a 250M instruction span, which is approximately 3× larger
than the biggest footprint Voyager was evaluated on. Since
Voyager’s size and latency grow with the number of unique
pages, the neural model for this trace takes a week to make a
single pass over the data and is unable to exceed 1% validation
accuracy even after two months of training.

D. Profile-Driven Dynamic Prediction

T-LITE’s staged deployment might seem to resemble pre-
vious profile-driven prediction mechanisms, but profile-driven
prefetchers [26] use profiling to insert software prefetches into
the code, which adds instruction overhead and is difficult to
time correctly across different program runs. T-LITE’s use
of profiling is different—it uses offline training to augment
hardware prefetching. In particular, T-LITE has two stages:
(1) an offline stage that trains the neural model on profiled
memory traces, and (2) an online stage (that executes on
the hardware) in which T-LITE dynamically collects runtime
information that informs the offline trained model and enables
it to be reusable across program runs. A similar strategy has
been used in neural branch prediction [54].

E. ML for Other Hardware Prediction Tasks

Machine learning has been used for other hardware pre-
diction problems, such as cache replacement [30], [37], [40],
[48], branch prediction [47], [54], and level prediction [11],
but such work is largely orthogonal to ours.

III. OUR SOLUTION

This section presents our reformulation of the temporal
prefetching problem. We explain our two new abstraction lay-
ers, we provide an overview of Twilight’s neural architecture,
and we describe how it generates a prefetch address.
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Fig. 2: The top graph shows the percentage of cache lines that
could be prefetched when limited to the top-N most frequent
cache lines after a given trigger cache line. The bottom graph
shows similar results for pages. For N = 20, 93.2% of cache
lines / 92.7% of pages are contained within this set of the
top-N successors.

A. Problem Formulation

Temporal prefetching, also known as address correlation,
typically predicts the address that temporally follows a history
of addresses. Under this formulation, the size and computa-
tional cost of a neural prefetcher grow with the size of the
program’s memory footprint: For each unique address, the
neural model needs an embedding3 to represent that address
as input and an output neuron to predict that address as a
prefetch candidate.

1) The Sparse Connectivity Hypothesis: We observe that a
given cache line is typically followed by only a small set of
other cache lines. Figure 2a empirically supports this claim:
68% of the cache lines are followed by their most likely
successor, where a successor is defined as the address that
immediately follows a given history of accesses. 93.2% of
cache lines are followed by one of their top 20 successors,
and 98.5% of accesses are followed by one of their top 100.

2) Frequency-Based Candidate Selection: To insulate the
neural model from the huge output space of addresses, our
new formulation introduces the notion of frequency-based can-
didate selection: Based on the Sparse Connectivity Hypothesis,
we constrain the prefetcher to select from among the top-N
most likely successors. To account for the case where the

3An embedding is a learned representation commonly used to represent
categorical variables (such as words, addresses or in our case, pages or
behavioral clusters) as a numerical vector such that similar categories would
have similar embeddings.

ground truth address is not among these N candidates, we
add an (N +1)th option so that the prefetcher can learn when
not to prefetch.

With frequency-based candidate selection, the output of our
neural model is an ordinal value i—where i corresponds to the
ith most frequent successor, or N + 1 for no prefetching—
rather than the address itself. Thus, the output space of our
neural temporal prefetcher has constant size—just N+1 output
neurons—instead of growing with the memory footprint. In
Section V-D3, we show that the neural network is able to learn
a non-trivial distribution of successors, and we show that the
learned distribution is fairly close to the true distribution.

3) Page Granularity: Shi, et al. [41] find that the number
of unique cache lines grows far quicker than the number
of unique pages and would require an infeasible amount of
storage and compute, so decomposing data addresses into
their respective pages and offsets enables a significantly more
tractable neural model. In the context of frequency-based
candidate selection, we observe in Figure 2b that our Sparse
Connectivity Hypothesis extends to pages as well: A given
page will likewise be succeeded by a small set of pages.
Thus, similar to Voyager, Twilight decomposes the address
prediction problem into page prediction and offset prediction.
Because there are only a small fixed number of cache line
offsets (64), we only apply our new problem formulation
to Twilight’s page prediction and continue to predict offsets
directly.

B. Behavioral Clustering

To insulate the neural model from the huge input space
of addresses, our new formulation introduces the notion of
behavioral clustering, which groups together pages that have
similar prefetching behavior.

1) Graph Traversal Example: Under traditional address
correlation, A being followed by X and B being followed by
Y are unrelated correlations, but under candidate selection, A
and B would now be similar if both were followed by their jth

candidate in one context and their kth candidate in another.
To understand why such groupings might be useful, consider
the example shown in Figure 3, in which a graph program
performs BFS 70% of the time and DFS 30% of the time,
which leads to two clusters of nodes:

1) A,D,F where the next accessed node is the same for
both BFS and DFS

2) B,C,E where the next accessed node differs between
BFS and DFS

For cluster (1), our prefetcher would learn to always prefetch
the i = 1 node for all contexts. For cluster (2), the prefetcher
would learn to prefetch the i = 1 node for PCs that are
performing BFS and the i = 2 node for PCs that are
performing DFS. Armed with this insight, we can cluster pages
based on their prefetching behavior and then replace the input
history of pages with the corresponding history of clusters
without a significant reduction in prediction accuracy.
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Node Most Freq 2nd Most Freq Cluster
A B (100%) - 1
B C (70%) D (30%) 2
C D (70%) F (30%) 2
D E (100%) - 1
E F (70%) C (30%) 2
F G (100%) - 1

(b) Top-2 most frequent succeeding nodes for each node

Fig. 3: Graph traversal example where a program executes
BFS 70% of the time and DFS 30% of the time. Two clusters
of nodes arise: (A, D, F) and (B, C, E), where the former
prefetches the same address regardless of the traversal pattern
and the latter prefetches differently depending on the context.

2) Empirical Validation: To empirically evaluate the idea
that behavioral clusters are an effective substitute for pages,
we examine whether pages with “similar” prefetching behavior
produce similar predictions. Page embeddings implicitly cap-
ture prefetching behavior, so we examine Twilight’s trained
page embeddings to see whether similar embedding vectors
produce similar offset predictions. For a given sample trace,
we track the offset predictions for each page in a 64 × 64
matrix of the page’s offset transitions. Each entry (i, j) in a
page’s offset transition matrix corresponds to the number of
times that a cache line in that page with offset i is followed
by another cache line with offset j.

Figure 4 shows a t-SNE visualization [49] for omnetpp
where each point represents one of the page embeddings;
points that are close together have similar page embeddings.
The shape and color of each point is determined by a k-means
clustering of the offset transitions matrix of that point’s page.
The figure clearly shows that pages with similar embeddings
are often within the same cluster of offset transitions, empiri-
cally confirming that different pages will have similar predic-
tion behaviors under frequency-based candidate selection.

3) Clustering: We compute a set number of behavioral
clusters, which yields a fixed-sized page embedding table and
a fixed-sized neural model. Section VI-B1 shows empirically
that this clustering produces minimal performance loss.

With behavioral clustering, the training procedure for

Fig. 4: A t-SNE [49] visualization of a subset of Twilight’s
page embeddings for a SPEC 2006 omnetpp trace. The color
and the shape correspond to the clustering of the page’s offset
transitions, demonstrating that pages that are similar in the
embedding space produce similar offset predictions.

T-LITE occurs in two passes. First as in Voyager, the entire
neural model with per-page embeddings is trained offline.
Then, we cluster the learned page embeddings using k-means
and force pages in the same cluster to share an embedding,
which we initialize to the centroid. Finally, we fine-tune all of
the model weights including the embeddings by retraining on
the same training data under these constraints to recalibrate
the model to using behavioral clusters instead of pages.

C. Dynamic Metadata Collection

Our new problem formulation requires maintaining, for ev-
ery input history, the distribution of the N most frequent suc-
cessor pages (see Table 3b for an example distribution). Since
these distributions change throughout a program’s execution,
we dynamically track their metadata similar to how non-neural
temporal prefetchers [52], [53] track address correlations.
Namely, each metadata entry corresponds to an input history
and stores the frequencies for each of its successors. However,
naively tracking metadata for every history has exponential
cost: For a history of H prior pages, there could be O(PH)
distributions where P is the number of unique pages. To avoid
this exponential increase in metadata, we introduce the notion
of decoupled positional frequency or DPF.

We define DPF as the frequency distribution of successors
that occur several accesses ahead. More formally, let f(h, n)
denote the distribution of successors that are n accesses ahead
of the history h. Rather than tracking a per-history joint
distribution, f((X,Y, Z), 1), DPF decouples the history and
tracks f(X, 3), f(Y, 2) and f(Z, 1) separately which scales
better with O(P ×H) distributions. We can then approximate
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Fig. 5: T-LITE’s Neural Architecture. Neural components are dashed and abstraction layers are dotted. The dimensionality
of each component’s outputs is labeled above. See Table I for the value of each hyperparameter (H, N, etc). Twilight has a
similar organization but without the behavioral clustering, and it utilizes page embeddings instead of cluster embeddings.

Component Hyperparameters

Neural Model

• PC Embedding Dim [P] = 64
• Page/Cluster Embedding Dim [C] = 25
• # of Offset Experts [E] = 100
• History Length [H] = 3
• Max # PC Embeddings = 4096 (no max)

Abstraction
• # Candidates [N] = 4 (20)
• DPF History Length [D] = 1 (3)
• # Behavioral Clusters = 4096

Training

• Learning Rate / Decay = 0.001 / 0.5
• Batch Size = 256
• # Epochs = 500
• # Early Stopping Epochs = 50
• Optimizer = Adam

TABLE I: T-LITE Hyperparameters. Twilight-specific hyper-
parameters are parenthesized.

the true joint distribution by multiplying the individual DPFs:

f((X,Y, Z), 1) ≈ f(X, 3)× f(Y, 2)× f(Z, 1)

However, the weight of each access is not uniform in
practice—the most recent access is typically the best predictor
for prefetching. We feed in the raw DPF distributions to our
neural models which learn the best weights to assign to each
access. Section III-D shows an example of how DPF is used as
a model input and how it determines the prefetch candidates.

D. Model Overview

Figure 5 shows T-LITE’s (and Twilight’s) overall archi-
tecture and Table I contains its hyperparameters. As per
Section III-A, T-LITE predicts the prefetch offset directly and
an ordinal i that maps to a prefetch candidate page. T-LITE
decomposes the input address history into a page history and
an offset history and maps these incoming pages to behavioral
clusters as described in Section III-B. T-LITE also takes in the
raw DPF distributions as input, as described in Section III-C.

We utilize a mixture-of-experts [24] approach similar to
Voyager’s page-aware offset embeddings to generate our
context-aware offset embeddings that incorporate page and PC
information into the offset embeddings. Each raw offset em-
bedding is subdivided into multiple experts associated with the

different contexts in which the offset appears. The context—
the page and the PC—weights the information from each of
the experts via attention [7] and combines them into the final
context-aware offset embedding.

Conceptually, Voyager’s page-aware offset embedding rep-
resents a given cache line because it combines the page em-
bedding and the offset embedding. By contrast, since T-LITE’s
context-aware offset embedding additionally incorporates the
load PC, it further contextualizes this cache line embedding
to contain information about the access stream in which this
particular access occurred.

T-LITE utilizes a single fully connected layer for candidate
prediction (Candidate-FC) and another for offset prediction
(Offset-FC) for a much more compact and parallelizable
design than Voyager’s pair of LSTMs that require significant
serialized computation. Furthermore, Twilight’s page/cluster
embeddings (25D) are an order of magnitude smaller than
Voyager’s page embeddings (256D), and to constrain the size
of the PC embedding table, we limit the number of load PC
embeddings to the 4096 most occurring load PCs.

The candidate-page mapping table is stored implicitly in
the DPF metadata for a given page. Furthermore, we augment
each page’s DPF metadata entry to include a 12-bit integer
that maps that page to a behavioral cluster which obviates the
need for a dedicated page-cluster mapping table.

E. Model Inference

We now show an example of a T-LITE prediction using the
graph traversal example from Figure 3. Recall that f(A,n)
corresponds to the distribution of successors n accesses ahead
of A. For a given input history, (B,D,E), the most recent
access E determines the set of prefetch candidates: {F,C}.
We construct the DPF input vectors utilizing only those
candidates, and we then renormalize the resulting vectors:

f(B, 3) = [F : 0.0, C : 1.0]

f(D, 2) = [F : 0.7, C : 0.3]

f(E, 1) = [F : 0.7, C : 0.3]

Since D is not one of the prefetch candidates, the DPF
vector for f(B, 3) normalizes the frequency of the candidate
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Fig. 6: Single Core Speedup comparing temporal prefetchers across SPEC 2006, SPEC 2017, and GAP benchmark suites

C to 1. Next, we feed the DPF vectors, cluster sequence,
offset sequence and load PC to T-LITE. T-LITE computes the
context-aware offset embedding and concatenates it with the
above DPF vectors, the raw cluster embeddings, and the raw
PC embedding. We flatten this vector and feed it into the two
fully connected layers for prediction. For candidate prediction,
a prediction of 1 maps to the most frequent page, F , 2 maps to
the second most, C, and 3 maps to no prefetch. Since f(B, 3)
indicates that F has never occurred 3 accesses ahead of B,
T-LITE would likely select C. We then combine the selected
page with the predicted offset to get the prefetch address.

IV. METHODOLOGY

Core
Out-of-order, 4 GHz, 352 ROB entries

6-wide fetch, decode, and dispatch
perceptron-based branch predictor [27]

L1I 32 KB, 8 ways, 4-cycle latency, 8 MSHRs

L1D 48 KB, 12 ways, 5-cycle latency, 16 MSHRs

L2 512 KB, 8 ways, 10-cycle latency, 32 MSHRs

LLC 2 MB / core, 16 ways, 20-cycle latency, 64 MSHRs

DRAM
3200 MT/S, 8 B channel width, 64K rows

tCAS = tRP = tRCD = 12.5, 8 banks / rank
1/4/8-Core: 1/2/4 channels, 1/2/2 ranks / channel

TABLE II: Machine Configuration

Voyager [41] simulated online training with epochs of 50M
instructions—the model trained on one epoch and evaluated on
the next epoch. However, since neither Voyager nor Twilight
can feasibly train online, we instead utilize an offline training
scheme to more faithfully model staged deployment. In par-
ticular, we train the model on one region of a SimPoint [20]
and evaluate on an unseen region of the same SimPoint.

All of our evaluated neural and non-neural prefetchers reside
in the LLC, training on the LLC access stream and prefetching
with degree 1. For fairness, the hardware prefetchers warm up
their structures on the neural model’s training region.

Simulator: We simulate the baseline and neural prefetchers
using ChampSim [19], a trace-based simulator that models
a 6-wide OOO processor with a 352-entry re-order buffer.
ChampSim has a detailed memory system with a three-level

cache hierarchy. Table II details the system configuration,
which is similar to an Intel Ice Lake core [3].

Benchmarks: We use as benchmarks the GAP benchmark
suite [10] and an irregular memory-intensive subset from the
SPEC 2006 CPU [1] and SPEC 2017 CPU [2] suites (we select
workloads that have >5% IPC improvement with an idealized
temporal prefetcher). Since the Google workloads that Voyager
was evaluated on are proprietary, we instead report results for
a subset of the recently released Google server workloads [5].

For SPEC, we use all SimPoints for each benchmark in our
subset. For the GAP benchmarks, we use as inputs synthetic
graphs with 217 vertices for all results except in Section VI-E2
where we evaluate T-LITE’s transferability across input graph
domains: web crawls, road networks, and citation networks.

For both of SPEC and GAP, the neural models train on the
first 200M instructions of the trace, validate on the next 25M
instructions, and are then evaluated on the subsequent 175M
instructions. Unless stated otherwise, all speedup results are
from the 175M region. By evaluating about 4× the number of
instructions evaluated by Voyager [41], we are able to better
gauge the model’s ability to generalize to unseen data.

For the Google server workloads, we port to ChampSim
the original traces, which are provided under the DynamoRIO
simulation infrastructure [14]. The memory dependence in-
formation is unavailable, but we model them using statistics
collected from CloudSuite [17], another server benchmark
suite. For each benchmark, we select the longest thread,
and warm up on the first 80% and evaluate on the last
20%. Because of the missing information, we only evaluate
prefetcher accuracy and coverage for these workloads.

Baselines: In Section V, we compare Twilight against the
state-of-the-art neural temporal prefetcher, Voyager [41], and
two idealized non-neural temporal baselines, Domino [8] and
STMS [50]. For these temporal prefetchers, we focus on
evaluating predictive power, so we do not simulate prediction
latency, storage cost, or off-chip metadata traffic. Furthermore,
all temporal prefetchers are evaluated with lookahead 2, which
provides better timeliness, except for Voyager which performs
better at lookahead 1 (see Figure 7b). We also compare against
two delta prefetchers: IPCP [34], the DPC-3 winner, and
Pythia [12], an ML-based prefetcher.
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(b) Varying Prefetch Lookahead (LA)

Fig. 7: (a) Twilight has similar or better coverage (X) at greater accuracy (�) across all benchmark suites. (b) Twilight’s
superior accuracy enables larger lookahead (LA) prefetching which improves timeliness and coverage.

Whereas in Section V we evaluate temporal prefetchers
idealistically, in Section VI we more faithfully model T-LITE’s
latency and storage to more fairly compare with Triage, a prac-
tical table-based temporal prefetcher with on-chip metadata.

V. TWILIGHT EVALUATION

We first present our single-core results. Figure 6 shows
Twilight’s performance compared with the baseline prefetchers
across SPEC and GAP. We make several observations.

First, Twilight (24.1%) outperforms Voyager (20.1%) on all
benchmark suites despite being orders of magnitude smaller
and faster (see Figure 16a). Twilight’s speedup on 473.astar
is lower than Voyager because Twilight’s set number of
candidates, N = 20, cannot accommodate the wider successor
distributions found in this benchmark. Voyager performs worse
than Twilight on 403.gcc, mcf, 607.cactuBSSN, and 621.wrf
because these benchmarks have many accesses in their eval-
uation region to pages not in the training data. As a result,
Voyager cannot effectively prefetch for those benchmarks
because its offline learned address correlations are useless,
whereas Twilight’s dynamically collected metadata allows it
to adapt and prefetch these new pages.

Second, Twilight (24.1%) significantly outperforms the
non-neural baselines, idealized STMS (11.9%) and idealized
Domino (15.6%) in all benchmark suites. By contrast, Voyager
performs worse than the non-neural baselines on SPEC due
to its inability to generalize across longer evaluation periods
(see Section V-D2). While our new abstractions dramatically
improve generalization, Twilight underperforms the non-neural
baselines on some of the benchmarks because there are some
access patterns and load PCs not found in the training data.
Training Twilight with more representative datasets or fine-
tuning the neural model online with a low-cost solution like
LoRA [23] could help bridge the remaining performance gap.
Low-Rank Adaptation (LoRA) fine-tunes neural models by
separating the fine-tuning weight updates from the model and
then decomposing them into two low-rank matrices which
enables cheap computation and requires minimal storage.

Figure 7a shows that Twilight achieves coverage similar to
or better than other prefetchers while also having significantly
higher accuracy across benchmark suites. In particular, Twi-
light has 8.6% higher accuracy than the next best prefetcher,
Voyager. Twilight’s higher accuracy is the direct result of its
frequency-based candidate selection, which culls pages that
are likely to be useless. By contrast, since Voyager can prefetch
any page, it periodically issues prefetches to pages entirely
unrelated to the current access stream.

In Figure 7b, we observe that while Voyager’s accuracy
declines with increasing lookahead, Twilight’s accuracy is
constant, enabling it to achieve 1.5% more speedup due to
better timeliness at higher lookahead. Normally, the further
into the future a prefetcher attempts to prefetch, the weaker the
temporal correlation and consequently the more often the ad-
dress mapping changes. Twilight’s online metadata component
improves its ability to adapt, which mitigates these effects.

A. Comparison with Delta Prefetchers

We now show that delta prefetchers largely target different
access patterns from temporal prefetchers and that Twilight
profitably hybridizes with them. To fairly compare predictive
power, we evaluate both delta and temporal prefetchers in the
LLC with degree 1 unless otherwise stated.

Figure 8a compares temporal prefetchers against delta
prefetchers. We see that that Voyager (1.7%) and Twilight
(5%) outperform IPCP (−0.9%) and Pythia, particularly on
SPEC06 which is the most irregular. Moreover, we observe
that only neural temporal prefetchers outperform Pythia and
that only Twilight outperforms Pythia across benchmark suites.

In Figure 8b, we hybridize various temporal prefetchers with
Pythia-deg-1 and see that Twilight (5.8%) significantly outper-
forms Voyager (2.2%), Domino (2.5%), and STMS (1.3%).
At equal prefetch degree, hybridized Twilight outperforms
degree-2 delta prefetchers, IPCP-deg-2 and Pythia-deg-2, by
5.5% and 3.5% respectively, demonstrating that hybridizing
across types of prefetchers provides better performance than
just increasing degree.
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Fig. 9: Multi-Core Speedup across 50 4-core mixes and 75
8-core mixes of SPEC 2006 and GAP benchmarks.

Figure 8c breaks down, for xalancbmk, useful prefetches
based on the distance between the prefetch and the trigger.
Whereas IPCP and Pythia4 are biased to small deltas, Twilight
predicts deltas more uniformly, indicating that it prefetches
more irregularly within pages. Furthermore, Twilight fruitfully
prefetches across pages—which delta prefetchers cannot—and
had more useful irregular prefetches (3.6M) than IPCP and
Pythia had useful prefetches (1.9M). Figure 8d shows that this
disjoint coverage occurs in all benchmark suites where 20 −
50% of useful prefetches can only be issued by Twilight.

Overall, Twilight is capable of significantly boosting perfor-
mance by accurately prefetching irregular accesses that delta

4For Pythia, we add all possible deltas to its action set.
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Fig. 10: Google Workloads Prefetch Accuracy and Coverage

prefetchers cannot cover. Moreover, it does so better than other
neural and idealized non-neural temporal prefetchers.

B. Multi-Core Results

Figure 9 shows our multi-core results for 50 4-core mixes
and 75 8-core mixes of random combinations of SimPoints
sampled from the SPEC 2006, SPEC 2017, and GAP bench-
marks suites. All cores are warmed up for 225M instructions
and simulated for 75M instructions.

In these multi-core settings where available bandwidth is
more scarce, the gap between the neural and non-neural
prefetchers grows because of the higher accuracy of the
neural prefetchers. On the 4-core mixes, Twilight (9.7%) and
Voyager (8.2%) outperform both idealized Domino (5.3%) and
idealized STMS (4.9%). This trend continues in the 8-core
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(a) Filter Voyager’s Prefetches by Twilight’s No-Prefetch
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Fig. 11: (a) We filter Voyager prefetches on trigger accesses for which Twilight predicts No-Prefetch, and we see that increased
filtering improves Voyager’s accuracy, showing that Twilight doesn’t prefetch on accesses with weak temporal correlation.
(b) Twilight issues fewer mispredicted prefetches (i.e. prefetches to addresses that aren’t the next PC-localized access) than
Voyager; moreover, Twilight’s mispredictions are more often useful because candidate selection culls out irrelevant pages.

setting where Twilight (8%) and Voyager (7.3%) maintain a
3− 4% advantage over Domino (4.4%) and STMS (4%).

C. Google Results

Figure 10 compares Voyager with Twilight on the pub-
lic Google server workloads. Twilight’s higher adaptability
enables it to achieve significantly higher accuracy (73.2%)
than Voyager (49.6%) while seeing just 0.8% lower coverage.
Moreover, the larger memory footprints from the server work-
loads increases the amount of information that Voyager must
learn, which also contributes to its reduced prefetch accuracy.

D. Frequency-Based Candidate Selection

We now provide insights into the benefits of frequency-
based candidate selection, and we show that Twilight performs
more complicated prediction than just naively multiplying the
frequency values.

1) Better Prefetch Accuracy: Frequency-based candidate
selection improves Twilight’s prefetch accuracy for two rea-
sons: (1) Twilight can predict to not prefetch and (2) Twilight’s
mispredictions are more likely to be useful.

Figure 11a evaluates the utility of Twilight’s No-Prefetch
predictions in filtering out prefetches that Voyager does
prefetch. We see that Voyager’s accuracy monotonically im-
proves with increased filtering, and at 100% filtering, Voyager
trades off 1.5% coverage for an extra 5.4% accuracy and 1.1%
speedup, showing that Twilight’s No-Prefetch predictions are
mostly for poorly correlated addresses. Unlike candidate se-
lection where Twilight learns to not prefetch infrequent suc-
cessors outside of its set of candidates, Voyager’s problem
formulation cannot determine when to not prefetch without it
becoming some analog of candidate selection.

Figure 11b shows that Twilight’s mispredictions are more
likely to be useful than Voyager’s. That is, even when a
prefetcher fails to predict the intended target address (i.e.
the address of the next access in the PC-localized stream),
the prefetch can still be useful. We see that compared to
Voyager, Twilight issues 9.6% fewer mispredicted prefetches.
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Fig. 12: Performance loss relative to speedup at 50M instruc-
tions. Whereas Voyager increasingly loses speedup in unseen
code regions, Twilight adapts and generalizes better.
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Fig. 13: Twilight’s distribution of predicted candidates com-
pared against the true distribution and the distribution from
naively multiplying the DPFs together.

Moreover, Twilight’s rate of useful mispredictions is 12.4%
higher because Twilight’s mispredictions still come from the
set of prefetch candidates and therefore are strongly temporally
correlated with the trigger address. Consequently, a Twilight
misprediction is more likely to be accessed in the near future
than a Voyager misprediction, which can be some arbitrary
address from the entire address space.

2) Generalizability: Frequency-based candidate selection
provides generalizability by enabling Twilight to prefetch
addresses not in the training data. Figure 12 shows Twilight’s
and Voyager’s performance throughout the evaluation region—
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normalized to their speedups at 50M instructions. Voyager
continually loses performance throughout evaluation, with
17% performance loss at 200M, while Twilight suffers only
6.6% performance loss and actually recovers performance
between 150M and 200M instructions, demonstrating that Twi-
light’s dynamic metadata collection improves its adaptability.

3) Predicted Candidate Distribution: Figure 13 shows that
Twilight closely predicts the true distribution of successor
candidates. The x-axis corresponds to the candidate index,
and the y-axis is the percentage of accesses for which that
candidate was chosen. The naive predictor multiplies the DPF
values together to predict the most likely candidate.

Compared to the true distribution, the naive predictor over-
predicts the top candidate by 15%, whereas Twilight overpre-
dicts by just 1.5%. Similarly, for the other candidates, Twilight
more closely mirrors the true distribution than the naive
predictor. From the second candidate onward, both predictors
underpredict the true distribution. Since these candidates occur
less often, Twilight cannot easily learn these correlations and
instead learns to not prefetch (3.7% more than the true dis-
tribution) rather than pollute the cache. By contrast, Voyager
always prefetches even for unpredictable input.

VI. T-LITE EVALUATION

Whereas Twilight was evaluated idealistically, our evalua-
tion of T-LITE models storage costs and inference latency with
higher fidelity to more fairly compare against Triage [52], a
practical table-based temporal prefetcher.

A. DPF Metadata Management

T-LITE changes two hyperparameter settings to dramati-
cally reduce the number and size of DPF metadata entries:

• T-LITE reduces the number of possible successors from
N = 20 to N = 4, trading off 9.8% coverage (see
Figure 2b) for a 80% reduction in DPF entry size and
a 30% reduction in prediction latency.

• T-LITE only uses f(P, 1), the DPF distribution for imme-
diate page successors, reducing the number of metadata
entries by two-thirds.

Since DPF metadata is tracked at a page granularity, it
requires far fewer entries than other temporal prefetchers [8],
[52], [53]. This observation combined with the above opti-
mizations enables T-LITE to retain most of Twilight’s perfor-
mance with just 64 KB of DPF metadata. Unlike Triage which
partitions out 1 MB of the last-level cache, T-LITE stores its
DPF metadata in an on-chip metadata cache separate from the
LLC (see Figure 14). We faithfully model this metadata cache
as a 8-way, set-associative cache using LRU replacement.

B. Neural Model

1) Behavioral Clustering: As described in Section III-B,
T-LITE utilizes behavioral clustering to produce a fixed num-
ber of cluster embeddings and therefore a constant model size.
Figure 16a shows that this shrinks the model size from 10.5
MB (10.8× smaller than Voyager) to 3.2 MB (35.5×).

[4] PF Req

I

[1] LLC Access

[5] PF Resp

Last-Level Cache

Main Memory

T-LITE-NN

L2 Cache

[2] DPF Req / Resp

[3] Compute

DPF Cache

Fig. 14: T-LITE’s Hardware Design. [1] On LLC access,
[2] T-LITE fetches the DPF metadata from the DPF cache.
[3] T-LITE computes the prefetch address and [4] issues the
prefetch request to DRAM which [5] fills in the LLC.
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Fig. 15: With behavioral clustering, a fine-tuning pass recali-
brates T-LITE to take clusters as inputs instead of pages.

Compared to the page-based T-LITE-Page, Figure 15 shows
that utilizing clusters without fine-tuning (T-LITE-Cluster)
drops speedup by 1.3% while fine-tuning (T-LITE) reduces
this drop to 0.1%, demonstrating the importance of recalibrat-
ing the neural model to take clusters as input instead of pages.

2) Weight Quantization: We further reduce our neural
model size by quantizing the model weights from 32-bit
floating point numbers (T-LITE-FP) to 8-bit integers (T-LITE),
reducing the model size to 0.8 MB (142× reduction) with zero
performance loss. Figure 16b shows that further quantization
is possible where T-LITE-4bit outperforms Triage by 3.2%
with a 0.4 MB (284× reduction) neural model.

C. Speculative Prediction

After quantization, T-LITE only requires 57K IOPs per pre-
diction (1421× faster than Voyager). Given matrix extensions
such as Intel AMX [4] or Arm SME [51], which can perform
8-bit integer operations at 2048 IOPs/cycle, T-LITE’s latency
is approximately 29 cycles.

However, since T-LITE has high prediction accuracy, it
can speculatively predict ahead of time based on its own
prefetches. By doing so, T-LITE can have zero-cycle prefetch
latency when the prior prefetch is correct as the latency
between LLC accesses is larger than T-LITE’s prediction
latency. Thus, we model T-LITE to have a 29 cycle delay if
the prior prefetch was incorrect and a 0 cycle delay otherwise.
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Fig. 16: (a) Our abstractions provide several orders of mag-
nitude improvement over Voyager. Voyager-FBCS utilizes
candidate selection and reduces storage by 42% and latency by
32%. (b) All quantized versions of T-LITE outperform Triage
across performance and storage.

D. Results

Figure 17 shows that T-LITE achieves a 20.7% speedup,
outperforming Triage (14.8%), a practical temporal prefetcher.
Moreover, T-LITE also achieves 2.6% higher accuracy and
7.8% higher coverage. T-LITE outperforms Triage on both
SPEC 2017 and GAP, but it underperforms on SPEC 2006
by 2%. As noted in Section V, SPEC 2006 has workloads
with wider successor distributions, and because T-LITE further
reduces the number of successors that it tracks, it has 9% lower
prefetch coverage but maintains similar accuracy to Triage.

Compared to Triage’s 1 MB metadata storage, all quantized
versions of T-LITE require less total storage: 64 KB of
metadata and 0.3 to 0.8 MB of neural weights. Moreover,
T-LITE’s 29 cycle prediction latency is similar to the 20 cycle
prefetch delay that Triage would incur to read its metadata
from the LLC. Finally, because its DPF metadata is stored
outside of the LLC, T-LITE does not contend with LLC
demand accesses, while Triage’s metadata accesses do.

Figure 16b shows that T-LITE matches Voyager’s perfor-
mance despite the many orders of magnitude improvement
in storage and latency. Moreover, even with further reduced
precision, T-LITE-6bit still matches Voyager’s performance.

E. Transfer Learning

We now evaluate T-LITE’s ability to transfer what its
learned across program inputs. We first show that unseen pages
can be accurately mapped to their corresponding behavioral
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Fig. 18: Dynamically mapping pages to clusters during runtime
by assigning the cluster with the most similar offset transition
distribution yields high accuracy with few accesses.

clusters. We then use this mapping scheme to train T-LITE on
one input and evaluate it on another.

1) Dynamic Page-to-Cluster Mapping: Figure 4 demon-
strates that similar page embeddings have similar offset tran-
sition matrices. Given this relationship, we show in Figure 18
that we can dynamically map unseen pages to their behav-
ioral clusters with reasonable accuracy. For each cluster, we
aggregate an offset transition matrix across the pages assigned
to that cluster. During runtime, we track the offset transitions
for unseen pages and assign these pages to the cluster whose
aggregate offset transitions is most similar. The mapping
accuracy increases with each access to the page and for SPEC
2006, the accuracy reaches 95.6% at 250 accesses. Given the
large number of clusters (4096), this simple scheme achieves
decent accuracy with cheaper overhead than dynamically train-
ing a page embedding for every new page.

2) Cross Input Evaluation: We now evaluate T-LITE’s
transferability across different program inputs. Specifically, we
evaluate performance on the GAP benchmark suite with input
graphs from the SuiteSparse collection [16] across different
graph types: web crawls, road networks, and citation networks.

Since there are 3 graph types, we can select one for training
(A), one for validation (B), and one for evaluation (C). First,
we train T-LITE on every graph from A and select the model
α that performs the best on B. We normalize α’s performance
on B by dividing it by the average performance of the other A-
models on B. We repeat this process with A and B switched
to produce another best model β and use the normalized scores
to select whether to transfer α or β to C, ensuring that the
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Fig. 19: T-LITE transfers well on GAP across graph inputs
from different domains (web, road, citation).

chosen model has no exposure to the evaluation data.
Figure 19 shows that T-LITE-Transfer significantly outper-

forms Triage (30.4% speedup vs. 13.8% speedup) despite
never having trained on the evaluated input graph domain.
Moreover, compared to T-LITE-FineTune which is trained on
the actual evaluation data, T-LITE-Transfer is able to achieve
94% of T-LITE-FineTune’s performance, demonstrating how
well the dynamic mapping scheme is able to align new pages
to behavioral clusters. Figure 18 shows low top-1 page-to-
cluster mapping accuracy for GAP, but these results indicate
that even if the dynamically mapped cluster isn’t the best
cluster, the mapped behavioral cluster still performs well
because it has sufficiently similar offset transition behavior.

F. T-LITE’s Limitations

While T-LITE’s latency and storage is feasible, inference
would cost more energy than the savings provided by superior
prefetching. Moreover, despite T-LITE profitably transferring
knowledge learned across different program inputs, it’s still
constrained to the program it was trained on and requires sig-
nificant offline-training on more representative data to further
improve its generalization.

VII. FUTURE WORK

Our reformulation of temporal prefetching bridges most of
the gap between the prior state-of-the-art, Voyager, and the
actual hardware deployment of a neural temporal prefetcher.
Moreover, it provides various avenues for future work in
temporal prefetching.

A. Lightweight Neural Temporal Prefetching

We believe frequency-based candidate selection is a viable
path forward for improving the accuracy of existing temporal
prefetchers. We can envision a lightweight neural model like
a perceptron accompanying a temporal prefetcher to decide
which successor prefetch candidate should be issued given
features such as the PC, the access history, bandwidth, etc.

B. Insights for Non-Neural Temporal Prefetching

Voyager’s page and offset split make it feasible to train
and evaluate neural temporal prefetchers. In tracking our page-
granularity DPF metadata, we observe a significant reduction

in the amount of required metadata for our temporal prefetcher.
This decomposition of addresses could likewise help future
temporal prefetchers reduce their metadata by utilizing page-
to-page temporal locality.

VIII. CONCLUSIONS

The Voyager prefetcher showed the tremendous promise that
neural networks hold for performing temporal data prefetch-
ing. Unfortunately, its costs in terms of model size, prediction
latency, and training time are so large that they cannot be
bridged by standard machine learning techniques such as
distillation, pruning, and quantization. Moreover, the direct use
of addresses in temporal prefetching precludes the use of any
kind of staged deployment, in which the neural prefetcher is
trained offline with predictions being performed online.

In this paper, we have reformulated the temporal prefetching
problem to make it fundamentally more suitable for practical
implementation in hardware. By introducing two novel layers
of indirection that abstract a temporal prefetcher away from
specific data addresses, we have enabled neural prefetchers
to operate in a staged manner, where the neural model is
first trained offline on representative program traces and then
deployed online, where it can dynamically track address
metadata to allow it to adapt to different program phases and
to prefetch unseen addresses across program inputs.

Our new formulation also dramatically reduces the size and
cost of the neural model. Compared to Voyager, our Twilight
neural prefetcher utilizes frequency-based candidate selection
to improve the storage (10.8× smaller) and latency (988×
faster) by orders of magnitude, while also generalizing better,
allowing it to outperform Voyager by 4%.

We have also introduced T-LITE, which utilizes behavioral
clustering, quantization, and other optimizations to move
neural temporal prefetching towards feasible hardware de-
ployment by trading off performance. T-LITE outperforms
Triage by 5.9% and even matches Voyager’s performance
while having 142× less storage and 1421× faster prediction
latency. We have evaluated versions of T-LITE whose model
size ranges from 0.3 MB to 0.8 MB and all outperform Triage
provisioned with 1 MB for on-chip metadata storage. These
versions of T-LITE require just 64 KB of on-chip storage
for metadata, demonstrating that the amount of dynamic
metadata for temporal prefetching can be orders of magnitude
smaller than previously thought because a significant amount
of prefetching knowledge can be baked into the neural model.
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