
Optimizing the Use of High Performance Software
Libraries

�

Samuel Z. Guyer and Calvin Lin

The University of Texas at Austin, Austin, TX 78712

Abstract. This paper describes how the use of software libraries, which is preva-
lent in high performance computing, can benefit from compiler optimizations in
much the same way that conventional programming languages do. We explain
how the compilation of these informal languages differs from the compilation
of more conventional languages. In particular, such compilation requires precise
pointer analysis, domain-specific information about the library’s semantics, and a
configurable compilation scheme. We describe a solution that combines dataflow
analysis and pattern matching to perform configurable optimizations.

1 Introduction

High performance computing, and scientific computing in particular, relies heavily on
software libraries. Libraries are attractive because they provide an easy mechanism for
reusing code. Moreover, each library typically encapsulates a particular domain of ex-
pertise, such as graphics or linear algebra, and the use of such libraries allows pro-
grammers to think at a higher level of abstraction. In many ways, libraries are infor-
mal domain-specific languages whose only syntactic construct is the procedure call.
This procedural interface is significant because it couches these informal languages in
a familiar form without imposing new syntax. Unfortunately, libraries are not viewed
as languages by compilers. With few exceptions, compilers treat each invocation of a
library routine the same as any other procedure call. Thus, many optimization opportu-
nities are lost because the semantics of these informal languages are ignored.

As a trivial example, an invocation of the C standard math library’s exponentia-
tion function, pow(a,b), can be simplified to 1 when its second argument is 0. This
paper argues that there are many such opportunities for optimization, if only compil-
ers could be made aware of a library’s semantics. These optimizations, which we term
library-level optimizations, include choosing specialized library routines in favor of
more general ones, eliminating unnecessary library calls, moving library calls around,
and customizing the implementation of a library routine for a particular call site.

Figure 1 shows our system architecture for performing library-level optimizations [13].
In this approach, annotations capture semantic information about library routines. These
annotations are provided by a library expert and placed in a separate file from the source
code. This information is read by our compiler, dubbed the Broadway compiler, which
performs source-to-source optimizations of both the library and application code.

�

This work was supported in part by NSF CAREER Grant ACI-9984660, DARPA Contract
#F30602-97-1-0150 from the US Air Force Research Labs, and an Intel Fellowship.

Integrated and optimized
source codeBroadway Compiler

AnnotationsHeader Files + Source Code +
Library:

Application
source code

Fig. 1. Architecture of the Broadway Compiler system

This system architecture offers three practical benefits. First, because the annota-
tions are separate from the library source, our approach applies to existing libraries and
existing applications. Second, the annotations describe the library, not the application,
so the application programmer does nothing more than use the Broadway Compiler
in place of a standard C compiler. Finally, the non-trivial cost of writing the library
annotations can be amortized over many applications.

This architecture also provides an important conceptual benefit: a clean separation
of concerns. The compiler encapsulates all compiler analysis and optimization ma-
chinery, while the annotations describe all library knowledge and domain expertise.
Together, the annotations and compiler free the applications programmer to focus on
application design rather than on performing manual library-level optimizations.

The annotation language faces two competing goals. To provide simplicity, the lan-
guage needs to have a small set of useful constructs that apply to a wide range of soft-
ware libraries. At the same time, to provide power, the language has to convey sufficient
information for the Broadway compiler to perform a wide range of optimizations. The
remainder of this paper will focus on the annotation language and its requirements.

This paper makes the following contributions. (1) We define the distinguishing char-
acteristics of library-level optimizations. (2) We describe the implications of these char-
acteristics for implementing library-level optimizations in a compiler. (3) We present
formulations of dataflow analysis and pattern matching that address these implications.
(4) We extend our earlier annotation language [13] to support the configuration of the
dataflow analyzer and pattern matcher.

2 Opportunities

This section characterizes library-level optimizations and their requirements.

Conceptually similar to traditional optimizations. Library-level optimizations are con-
ceptually similar to traditional optimizations, which can be grouped into the following
classes of optimizations. (1) Eliminate redundant computations: Examples include par-
tial redundancy elimination, common subexpression elimination, loop-invariant code
motion, and value numbering. (2) Perform computations at compile-time: This may be
as simple as constant folding or as complex as partial evaluation (3) Exploit special
cases: Examples include algebraic identities and simplifications, as well as strength re-
duction. (4) Schedule code: For example, exploit non-blocking loads and asynchronous

I/O operations to hide the cost of long-latency operations. (5) Enable other improve-
ments: Use transformations such as inlining, cloning, loop transformations, and lower-
ing the internal representation. These same categories form the basis of our library-level
optimization strategy. In some cases, the library-level optimizations are identical to their
classical counterparts. In other cases we need to reformulate the optimizations for the
unique requirements of libraries.

Significant opportunities exist. Most libraries receive no support from traditional op-
timizers. For example, the code fragments in Figure 2 illustrate the untapped opportu-
nities of the standard C Math Library. A conventional C compiler will perform three
optimizations on the built-in operators: (1) strength reduction on the computation of
d1, (2) loop-invariant code motion on the computation of d3, and (3) replacement of
division with bitwise right-shift in the computation of int1. The resulting optimized
code is shown in the middle fragment. However, there are three analogous optimiza-
tion opportunities on the math library computations that a conventional compiler will
not discover: (4) strength reduction of the power operator in the computation of d2, (5)
loop-invariant code motion on the cosine operator in the computation of d4, and (6)
replacement of sine divided by cosine with tangent in the computation of d5. The code
fragment on the right shows the result of applying these optimizations.

Library−level

d1 = 0.0;
d2 = 1.0;
d3 = 1.0/z;
d4 = cos(z);
d5 = tan(y);
for (i=1; i<=N; i++) {
 d1 += 2.0;
 d2 *= x;
 int1 = i >> 2;
}

Original Code

for (i=1; i<=N; i++) {
 d1 = 2.0 * i;
 d2 = pow(x, i);
 d3 = 1.0/z;
 d4 = cos(z);
 int1 = i/4;
 d5 = sin(y)/cos(y);
}

1

2

3

Conventional

d1 = 0.0;
d3 = 1.0/z;
for (i=1; i<=N; i++) {
 d1 += 2.0;
 d2 = pow(x, i);
 d4 = cos(z);
 int1 = i >> 2;
 d5 = sin(y)/cos(y);
}

4
5

6

Fig. 2. A conventional compiler optimizes built-in math operators, but not math library operators.

Significantly, each application of a library-level optimization is likely to yield much
greater performance improvement than the analogous conventional optimization. For
example, removing an unnecessary multiplication may save a few cycles, while remov-
ing an unnecessary cosine computation may save hundreds or thousands of cycles.

Specialized routines are difficult to use. Many libraries provide a basic interface which
provides basic functionality, along with an advanced interface that provides special-
ized routines that are more efficient in certain circumstances [14]. For example, the
MPI message passing interface [11] provides 12 variations of the basic point-to-point
communication operation. These advanced routines are typically more difficult to use
than the basic versions. For example, MPI’s Ready Send routines assume that the com-
municating processes have already been somehow synchronized. These specialized rou-

tines represent an opportunity for library-level optimization, as a compiler would ideally
translate invocations of basic routines to specialized routines.

Domain-specific analysis is required. Most libraries provide abstractions that can be
useful for performing optimizations. For example, the PLAPACK parallel linear algebra
library [19] manipulates linear algebra objects indirectly though handles called views.
A view consists of data, possibly distributed across processors, and an index range that
selects some of the data. While most PLAPACK procedures are designed to accept
any type of view, the actual parameters often have special distributions. Recognizing
and exploiting these special distributions can yield significant performance gains [2].
For example, in some cases, calls to the general-purpose PLA Trsm() routine can be
replaced with calls to a specialized routine, PLA Trsm Local(), which assumes the
matrix view resides completely on a single processor. This customized routine can run
as much as three times faster [13].

The key to this optimization is to analyze the program to discover the special case
matrix distributions. While compilers can perform many kinds of dataflow analysis,
most compilers have no notion of “matrix,” let alone PLAPACK’s particular notion
of matrix distributions. Thus, to perform this kind of optimization, there must be a
mechanism for telling the compiler about the relevant abstractions and for facilitating
program analysis in those terms.

Challenges. To summarize, while there are many opportunities for library-level opti-
mization, there are also significant challenges. First, while library-level optimizations
are conceptually similar to traditional optimizations, library routines are typically more
complex than primitive language operators. Second, a library typically embodies a
high-level domain of computation whose abstractions are not represented in the base
language, and effective optimizations are often phrased in terms of these abstractions.
Third, the compiler cannot be hardwired for every possible library because each library
requires unique analyses and optimizations. Instead, all of these facilities need to be
configurable. The next two sections address these issues in more detail.

3 Dependence Analysis

Almost any kind of program optimization requires a model of dataflow dependences to
preserve the program’s semantics. The use of pointers, and particularly pointer-based
data structures, can greatly complicate dependence analysis, as pointers can make it dif-
ficult to determine which memory objects are actually modified. While many solutions
to the pointer analysis problem have been proposed, we now argue that optimization at
the library level requires the most precise and most aggressive.

3.1 Why Libraries Need Pointers

Libraries use pointers for two main reasons. The first is to overcome the limitations
of the procedure call mechanism, as pointers allow a procedure to return more than
one value. The second reason is to build and manipulate complex data structures that

represent the library’s domain-specific programming abstractions. It is important to un-
derstand these structures because data dependences may exist between internal compo-
nents of these data structures which, if violated, could change the program’s behavior.
As an example, consider the following PLAPACK routine:

PLA_Obj_horz_split_2(size, A, &A_upper, &A_lower);

This routine logically splits the matrix into two pieces by returning objects that rep-
resent ranges of the original matrix index space. Internally, the library defines a view
data structure that consists of minimum and maximum values for the row and column
indices, and a pointer to the actual matrix data. To see how this complicates analysis,
consider the following code fragment:

PLA_Obj A, A_upper, A_lower, B;
PLA_Create_matrix(num_rows, num_cols, &A);
PLA_Obj_horz_split_2(size, A, &A_upper, &A_lower);
B = A_lower;

The first line declares four variables of type PLA_Obj, which is an opaque pointer to a
view data structure. The second line creates a new matrix (both view and data) of the
given size. The third line creates two views into the original data by splitting the rows
into two groups, upper and lower. The fourth line performs a simple assignment of one
view variable to another. Figure 3 shows the resulting data structures graphically.

A A_upper A_lower B

__view_1 __view_2 __view_3

__data

Program variables:

Internal heap objects:

Fig. 3. Library data structures have complex internal structure.

The shaded objects are never visible to the application code, but accesses and mod-
ifications to them are still critical to preserving program semantics. For example, re-
gardless of whether A, A_lower, or B is used, the compiler cannot change the order of
library calls that update the data.

3.2 Pointer Analysis for Library-Level Optimizations

Pointer analysis attempts to determine whether there are multiple ways to access the
same piece of memory. We categorize the many approaches to pointer analysis along the
following dimensions: (1) points-to versus alias representation, (2) heap model, and (3)
flow and context sensitivity. This section describes the characteristics of our compiler’s
pointer analysis and explains why they are appropriate for library-level optimization.

Representation. Heap allocation is common for library code because it allows data
structures to exist throughout the life of the application code and it supports complex
and dynamic structures. By necessity, components of these structures are connected by
pointers, so a points-to relation provides a more natural model than alias pairs. Further-
more, in C the only true variable aliasing occurs between the fields of a union; all other
aliases occur through pointers and pointer expressions.

Heap Model. The heap model determines the granularity and naming of heap allocated
memory. Previous work demonstrates a range of possibilities including (1) one object
to represent the whole heap [9], (2) one object for each connected data structure [12],
(3) one object for each allocation call site [4], and (4) multiple objects for a malloc call
site with a fixed limit (“k-limiting”) [6]. In the matrix split example above, we need a
model of the heap that distinguishes the views from the data. Thus, neither of the first
two approaches is sufficiently precise. We choose approach (3) because it is precise,
without the unnecessary complexity of the k-limiting approach.

Often, a library will provide only one or two functions that allocate new data struc-
tures. For example, the above PLA_matrix_create function creates all matrices in the
system. Thus, if we associate only one object (or one data structure, e.g., one view and
one data object) with the call site, we cannot distinguish between individual instances
of the data structure. In the example, we would have one object to represent all views
created by the split operation, preventing us from distinguishing between __view_2

and __view_3. Therefore, we create a new object in the heap model for each unique
execution path that leads to the allocation statement.

This naming system leads to an intuitive heap model where objects in the model
often represent conceptual categories, such as “the memory allocated by foo().” Note
that when allocation occurs in a loop, all of the objects created during execution of the
loop are represented by one object in the heap model.

Context and Flow Sensitivity. Libraries are mechanisms for software reuse, so library
calls often occur deep in the application’s call graph, with the same library functions
repeatedly invoked from different locations. Without context and flow sensitivity, the
analyzer merges information from the different call sites. For example, consider a sim-
ple PLAPACK program that makes two calls to the split routine with different matrices:

PLA_Obj_horz_split_2(size, A, &A_upper, &A_lower);
PLA_Obj_horz_split_2(size, B, &B_upper, &B_lower);

Context insensitive analysis concludes that all four outputs might point to either A’s
data or B’s data. While this information is conservatively correct, it severely limits op-
timization opportunities by creating an unnecessary data dependence. Any subsequent
analyses that use this information suffers the same merging of information. For exam-
ple, if the state of A is unknown, then analysis cannot safely infer that B_upper and
B_lower contain all zeros, even if analysis concludes that B contains all zeros before
the split.

The more reuse that occurs in a system, the more important it is to keep information
separate. Thus, we implement full context sensitivity. While this approach is complex,

recent research shows that efficient implementations are possible [22]. Recent work
also shows that more precise pointer analysis not only causes subsequent analyses to
produce more precise results, but also causes them to run faster [18].

3.3 Annotations for Dependence Analysis

Our annotation language provides a mechanism for explicitly describing how a routine
affects pointer structures and dataflow dependences. This information is integrated into
the Broadway compiler’s dataflow and pointer analysis framework. The compiler builds
a uniform representation of dependences, regardless of whether they involve built-in
operators or library routines. When annotations are available, our compiler reads that
information directly. For the application and for libraries that have not been annotated,
our compiler analyzes the source code using the pointer analysis described above.

 { obj __view_1, DATA __view_1 __data }

 PLA_Obj_horz_split_2(obj, height, upper, lower)procedure

 access { __view_1, height }
 modify { }
 { upper __view_2, DATA __view_2 __data,
 lower __view_3, DATA __view_3 __data }
 on_exit of −−>new−−>

of −−>new−−>
}

{
 on_entry −−>of−−>

Fig. 4. Annotations for pointer structure and dataflow dependences.

Figure 4 shows the annotations for the PLAPACK matrix split routine. In some
cases, a compiler could derive such information from the library source code. However,
there are situations when this is impossible or undesirable. Many libraries encapsulate
functionality for which no source code is available, such as low-level I/O or interprocess
communication. Moreover, the annotations allow us to model abstract relationships that
are not explicitly represented through pointers. For example, a file descriptor logically
refers to a file on disk through a series of operating system data structures. Our annota-
tions can explicitly represent the file and its relationship to the descriptor, which might
make it possible to recognize when two descriptors access the same file.

Pointer Annotations: on entry and on exit. To convey the effects of the procedure
on pointer-based data structures, the on_entry and on_exit annotations describe the
pointer configuration before and after execution. Each annotation contains a list of ex-
pressions of the following form:

[label of] identifier --> [new] identifier

The --> operator, with an optional label, indicates that the object named by the iden-
tifier on the left logically points to the object named on the right. In the on_entry

annotations, these expressions describe the state of the incoming arguments and give
names to the internal objects. In the on_exit annotations, the expressions can create
new objects (using the new keyword) and alter the relationships among existing objects.

In Figure 4, the on_entry annotation indicates that the formal parameter obj is
a pointer and assigns the name __view_1 to the target of the pointer. The annotation
also says that __view_1 is a pointer that points to __data. The on_exit annotation
declares that the split procedure creates two new objects, __view_2 and __view_3.
The resulting pointer relationships correspond to those in Figure 3.

Dataflow Annotations: access and modify. The access and modify annotations de-
clare the objects that the procedure accesses or modifies. These annotations may refer
to formal parameters or to any of the internal objects introduced by the pointer annota-
tions. The annotations in Figure 4 show that the procedure uses the length argument
and reads the input view __view_1. In addition, we automatically add the accesses and
modifications implied by the pointer annotations: a dereference of a pointer is an access,
and setting a new target is a modification.

3.4 Implications

As described in Section 2, most library-level optimizations require more than just de-
pendence information. However, simply having the proper dependence analysis infor-
mation for library routines does enable some classical optimizations. For example, by
separating accesses from modifications, we can identify and remove library calls that
are dead code. To perform loop invariant code motion or common subexpression elim-
ination, the compiler can identify purely functional routines by checking whether the
objects accessed are different from those that are modified.

4 Library-Level Optimizations

Our system performs library-level optimizations by combining two complementary
tools: dataflow analysis and pattern-based transformations. Patterns can concisely spec-
ify local syntactic properties and their transformations, but they cannot easily express
properties beyond a basic block. Dataflow analysis concisely describes global context,
but cannot easily describe complex patterns. Both tools have a wide range of realiza-
tions, from simple to complex, and by combining them, each tool is simplified. Both
tools are configurable, allowing each library to have its own analyses and transforma-
tions.

The patterns need not capture complex context-dependent information because such
information is better expressed by the program analysis framework. Consider the fol-
lowing fragment from an application program:

PLA_Obj_horz_split_2(A, size, &A_upper, &A_lower);
...
if (is_Local(A_upper)) { ... } else { ... }

The use of PLA_Obj_horz_split_2 ensures that A_upper resides locally on a single
processor. Therefore, the condition is always true, and we can simplify the subsequent
if statement by replacing it with the then-branch. The transformation depends on two
conditions that are not captured in the pattern. First, we need to know that the is_Local

function does not have any side-effects. Second, we need to track the library-specific
local property of A_upper through any intervening statements to make sure that it is
not invalidated. It would be awkward to use patterns to express these conditions.

Our program analysis framework fills in the missing capabilities, giving the patterns
access to globally derived information such as data dependences and control-flow in-
formation. We use abstract interpretation to further extend these capabilities, allowing
each library to specify its own dataflow analysis problems, such as the matrix distri-
bution analysis needed above. This approach also keeps the annotation language itself
simple, making it easier to express optimizations and easier to get them right. The fol-
lowing sequence outlines our process for library-level optimization:

1. Pointers and dependences. Analyze the code using combined pointer and depen-
dence analysis, referring to annotations when available to describe library behavior.

2. Classical optimizations. Apply traditional optimizations that rely on dependence
information only.

3. Abstract interpretation. Use the dataflow analysis framework to derive library-
specific properties as specified by the annotations.

4. Patterns. Search the program for possible optimization opportunities, which are
specified in the annotations as syntactic patterns.

5. Enabling conditions. For patterns that match, the annotations can specify addi-
tional constraints, which are expressed in terms of data dependences and the results
of the abstract interpretation.

6. Actions. When a pattern satisfies all the constraints, the specified code transforma-
tion is performed.

4.1 Configurable Dataflow Analysis

This section describes our configurable interprocedural dataflow analysis framework.
The annotations can be used to specify a new analysis pass by defining both the library-
specific flow value and the associated transfer functions. For every new analysis pass,
each library routine is supplied a transfer function that represents its behavior.

The compiler reads the specification and runs the given problem on our general-
purpose dataflow framework. The framework takes care of propagating the flow values
through the flow graph, applying the transfer functions, handling control-flow such as
conditionals and loops, and testing for convergence. Once complete, it stores the final,
stable flow values for each program point.

While other configurable program analyzers exist, ours is tailored specifically for
library-level optimization. First, we would like library experts, not compiler experts,
to be able to define their own analyses. Therefore, the specification of new analysis
problems is designed to be simple and intuitive. Second, we do not intend to support
every possible analysis problem. The annotation language provides a small set of flow
value types and operators, which can be combined to solve many useful problems. The
lattices implied by these types have predefined meet functions, allowing us to hide the
underlying lattice theory from the annotator.

For library-level optimization, the most useful analyses seem to fall into three rough
categories: (1) analyze the objects used by the program and classify them into library-
specific categories, (2) track relationships among those objects, and (3) represent the

overall state of the computation. The PLAPACK distribution analysis is an instance of
the first kind. To support these different kinds of analysis, we propose a simple type
system for defining flow values.

Flow Value Types. Our flow value type system consists of primitive types and simple
container types. A flow value is formed by combining a container type with one or two
of the primitive types. Each flow value type includes a predefined meet function, which
defines how instances of the type are combined at control-flow merge points. The other
operations are used to define the transfer functions for each library routine.

number The number type supports basic arithmetic computations and comparisons.
The meet function is a simple comparison: if the two numbers are not equal, then
the result is lattice bottom.

object The object type represents any memory location, including global and stack
variables, and heap allocated objects. The only operation supported tests whether
two expressions refer to the same object.

statement The statement type refers to points in the program. We can use this type to
record where computations take place. Operations include tests for equality, domi-
nance and dependences.

category Categories are user-defined enumerated types that support hierarchies. For
example, we can define a Vehicle categorization like this:

{ Land { Car, Truck { Pickup, Semi}}, Water { Boat, Submarine}}

The meet function chooses the most specific category that includes the two given
values. For example, the meet of Pickup and Semi yields Truck, while the meet of
Pickup and Submarine yields lattice bottom. The resulting lattice forms a simple
tree structure, as shown in Figure 5.

Semi Pickup

Boat SubmarineTruckCar

Land Water

Top

Bottom

Fig. 5. The lattice induced by the example vehicle categories.

Operations on the categories include testing for equality and for category member-
ship. For example, we may want to know whether something is a Truck without
caring about its specific subtype.

set-of � T � Set is the simplest container: it holds any number of instances of the primi-
tive type T. We can add and remove elements from the set, and test for membership.

We support two possible meet functions for sets: set union for “optimistic” anal-
yses, and set intersection for “pessimistic” analyses. It is up to the annotator to
decide which is more appropriate for the specific analysis problem.

equivalence-of � T � This container maintains an equivalence relation over the ele-
ments that it contains. Operations on this container include adding pairs of elements
to indicate that they are equivalent, and removing individual elements. The basic
query operator tests whether two elements are equivalent by applying the transitive
closure over the pairs that have been added. Like the set container, there are two
possible meet functions, one optimistic and one pessimistic, that correspond to the
union and intersection of the two relations.

ordering-of � T � The ordering container maintains a partial order over the elements
it contains. We add elements in pairs, smaller element and larger element, to in-
dicate ordering constraints. We can also remove elements. Like the equivalence
container, the ordering container allows ordering queries on the elements it con-
tains. In addition, it ensures that the relation remains antisymmetric by removing
cycles completely.

map-of � K,V � The map container maintains a mapping between elements of the two
given types. The first type is the “key” and may only have one instance of a partic-
ular value in the map at a time. It is associated with a “value.”

We can model many interesting analysis problems using these simple types. The an-
notations define an analysis using the property keyword, followed by a name and then
a flow value type expression. Figure 6 shows some example property definitions. The
first one describes the flow value for the PLAPACK matrix distribution analysis. The
equivalence Aligned could be used to determine when matrices are suitably aligned
on the processors. The partial order SubmatrixOf could maintain the relative sizes of
matrix views. The last example could be used for MPI to keep track of the asynchronous
messages that are potentially “in flight” at any given point in the program.

General { RowPanel, ColPanel, Local },
Distribution :property

map−of < object , {
Vector,
Empty } >

property Aligned : pessimistic equivalence−of < object >
property SubMatrixOf : ordering−of < object >
property MessagesInFlight : optimistic set−of < object >

Fig. 6. Examples of the property annotation for defining flow values.

Transfer Functions. For each analysis problem, transfer functions summarize the ef-
fects of library routines on the flow values. Transfer functions are specified as a case
analysis, where each case consists of a condition, which tests the incoming flow values,
and a consequence, which sets the outgoing flow value. Both the conditions and the
consequences are written in terms of the functions available on the flow value type.

 { obj __view_1, DATA __view_1 __data }

 PLA_Obj_horz_split_2(obj, height, upper, lower)procedure

 access { __view_1, height }
 modify { }

 { upper __view_2, DATA __view_2 __data,
 lower __view_3, DATA __view_3 __data }
 on_exit of −−>new−−>

of −−>new−−>

{
 on_entry −−>of−−>

analyze Distribution {
 (__view_1 == General) => __view_2 = RowPanel, __view_3 = General;
 (__view_1 == RowPanel) => __view_2 = RowPanel, __view_3 = RowPanel;
 (__view_1 == ColPanel) => __view_2 = Local, __view_3 = ColPanel;
 (__view_1 == Local) => __view_2 = Local, __view_3 = Empty;
}

}

Fig. 7. Annotations for matrix distribution analysis.

Figure 7 shows the annotations for the PLAPACK routine PLA_Obj_horz_split_2,
including those that define the matrix distribution transfer function. The analyze key-
word indicates the property to which the transfer function applies. We integrate the
transfer function with the dependence annotations because we need to refer to the un-
derlying structures. Distribution is a property of the views (see Section 2), not the sur-
face variables. Notice the last case: if we deduce that a particular view is Empty, we can
remove any code that computes on that view.

4.2 Pattern-Based Transformations

The library-level optimizations themselves are best expressed using pattern-based trans-
formations. Once the dataflow analyzer has collected whole-program information, many
optimizations consist of identifying and modifying localized code fragments. Patterns
provide an intuitive and configurable way to describe these code fragments. In PLA-
PACK, for example, we use the results of the matrix distribution analysis to replace
individual library calls with specialized versions where possible.

Pattern-based transformations need to identify sequences of library calls, to check
the call site against the dataflow analysis results, and to make modifications to the code.
Thus, the annotations for pattern-based transformations consist of three parts: a pattern,
which describes the target code fragment, preconditions, which must be satisfied, and
an action, which specifies modifications to the code. The pattern is simply a code frag-
ment that acts as a template, with special meta-variables that behave as “wildcards.”
The preconditions perform additional tests on the matching application code, such as
checking data dependences and control-flow context, and looking up dataflow analysis
results. The actions can specify several different kinds of code transformations, includ-
ing moving, removing, or substituting the matching code.

Patterns. The pattern consists of a C code fragment with meta-variables that bind to
different components in the matching application code. Our design is influenced by the
issues raised in Section 3. Typical code pattern matchers work with expressions and

rely on the tree structure of expressions to identify computations. However, the use of
pointers and pointer-based data structures in the library interface presents a number of
complications, and forces us to take a different approach.

The parameter passing conventions used by libraries have several consequences for
pattern matching. First, the absence of a functional interface means that a pattern cannot
be represented as an expression tree; instead, patterns consist of a sequence of state-
ments with data dependences among them. Second, the use of the address operator
to emulate pass-by-reference semantics obscures those data dependences. Finally, the
pattern instance in the application code may contain intervening, but computationally
irrelevant statements. Figure 8 depicts some of the possible complications by showing
what would happen if the standard math library did not have a functional interface.

y = sin(x)/cos(x);

y = tan(x);

cos(x, &t1);
sin(x, &t0);

y = t0/t1;

tan(x, &y);

cos(*p, &t1);
y = t0/t1;

tan(*p, &y);

sin(x, &t0);
p = &x;

Basic Pattern Non−functional Interface Access Complications

Fig. 8. The use of pointers for parameter passing complicates pattern matching.

To address these problems, we offer two meta-variable types, one that matches ob-
jects (both variables and heap-allocated memory), and one that matches constants. The
object meta-variable ignores the different ways that objects are accessed. For example,
in the third code fragment in Figure 8, the same meta variable would match both x

and *p. The constant meta-variable can match a literal constant in the code, a constant
expression, or the value of a variable if its value can be determined at compile time.

For a pattern to match, the application code must contain the specified sequence of
statements, respecting any data dependences implied by the meta-variable names. The
matching sequence may contain intervening statements, as long as those statements
have no dependences with that sequence. We would like to weaken this restriction in
the future, but doing so raises some difficult issues for pattern substitution.

Preconditions. The preconditions provide a way to test the results of the pointer anal-
ysis and user-defined dataflow analyses, since these can’t be conveniently represented
in the syntactic patterns. These dataflow requirements can be complicated for libraries,
because important properties and dependences often exist between internal components
of the data structures, rather than between the surface variables. For example, as shown
in Figure 3, two different PLAPACK views may refer to the same underlying matrix
data. An optimization may require that a sequence of PLAPACK calls all update the
same matrix. In this case the annotations need a way to access the pointer analysis in-
formation and make sure that the condition is satisfied. To do this, we allow the precon-
ditions to refer to the on_entry and on_exit annotations for the library routines in the

pattern. To access the dataflow analysis results, the preconditions can express queries
using the same flow value operators that the transfer functions use. For example, the
preconditions can express constraints such as, “the view of matrix A is empty.”

Actions. When a pattern matches and the preconditions are satisfied, the compiler can
perform the specified optimization. We have found that the most common optimizations
for libraries consist of replacing a library call or sequence of library calls with more spe-
cialized code. The replacement code is specified as a code template, possibly containing
meta variables, much like the patterns. Here, the compiler expands the embedded meta-
variables, replacing them with the actual code bound to them. We also support queries
on the meta-variables, such as the C datatype of the binding. This allows us to declare
new variables that have the same type as existing variables.

In addition to pattern replacement, we offer four other actions: (1) remove the
matching code, (2) move the code elsewhere in the application, (3) insert new code,
or (4) trigger one of the enabling transformations such as inlining or loop unrolling.

When moving or inserting new code, the annotations support a variety of useful
positional indicators that describe where to make the changes relative to the site of the
matching code. For example, the earliest possible point and the latest possible point are
defined by the dependences between the matching code and its surrounding context.
Using these indicators, we can perform the MPI scheduling described in Section 2:
move the MPI_Isend to the earliest point and the MPI_Wait to the latest point. Other
positional indicators might include enclosing loop headers or footers, and the locations
of reaching definitions or uses. Figure 9 demonstrates some of the annotations that use
pattern-based transformations to optimize the examples presented in this paper.

5 Related Work

Our research extends to libraries previous work in optimization [17], partial evalua-
tion [3, 7], abstract interpretation [8, 15], and pattern matching. This section relates our
work to other efforts that provide configurable compilation technology.

The Genesis optimizer generator produces a compiler optimization pass from a
declarative specification of the optimization [21]. Like Broadway, the specification uses
patterns, conditions and actions. However, Genesis targets classical loop optimizations
for parallelization, so it provides no way to define new program analyses. Conversely,
the PAG system is a completely configurable program analyzer [16] that uses an ML-
like language to specify the flow value lattices and transfer functions. While power-
ful, the specification is low-level and requires an intimate knowledge of the underlying
mathematics. It does not include support for actual optimizations.

Some compilers provide special support for specific libraries. For example, seman-
tic expansion has been used to optimize complex number and array libraries, essentially
extending the language to include these libraries [1]. Similarly, some C compilers rec-
ognize calls to malloc() when performing pointer analysis. Our goal is to provide
configurable compiler support that can apply to many libraries, not just a favored few.

Meta-programming systems such as meta-object protocols [5], programmable syn-
tax macros [20], and the Magik compiler [10], can be used to create customized library

 ${obj: } ${expr: } ${obj: } MPI_Isend(buffer , dest , req_ptr)

${obj: } ${obj: } ${obj: } y = sin(x)/cos(x)

 on_entry { −−> , of −−> } A __view_1 DATA __view_1 __data
 when (of ==) remove; Distribution __view_1 Empty
 when (of ==) Distribution __view_1 Local

{
 replace {
}

pattern {

}
{
 move @earliest;
}

pattern {
 PLA_Obj_horz_split_2(A , size ,

}pattern {

 }$y = tan($x)

}
{

 replace {
 PLA_obj_view_all($A, $upper_ptr);
 }
}

 ${obj: } ${obj: }) upper_ptr , lower_ptr

 ${obj: } ${expr: }

Fig. 9. Example annotations for pattern-based transformations.

implementations, as well as to extend language semantics and syntax. While these tech-
niques can be quite powerful, they require users to manipulate AST’s and other compiler
internals directly and with little dataflow information.

6 Conclusions

This paper has outlined the various challenges and possibilities for performing library-
level optimizations. In particular, we have argued that such optimizations require pre-
cise pointer analysis, domain-specific information, and a configurable compilation scheme.
We have also presented an annotation language that supports such a compilation scheme.

A large portion of our Broadway compiler has been implemented, including a flow-
and context-sensitive pointer analysis, a configurable abstract interpretation pass, and
the basic annotation language [13] without pattern matching. Experiments with this
basic configuration have shown that significant performance improvements are possible
for applications that use the PLAPACK library. One common routine, PLA Trsm(),
was customized to improve its performance by a factor of three, yielding speedups of
26% for a Cholesky factorization application and 9.5% for a Lyapunov program [13].

While we believe there is much promise for library-level optimizations, several
open issues remain. We are in the process of defining the details of our annotation
language extensions for pattern matching, and we are implementing its associated pat-
tern matcher. Finally, we need to evaluate the limits of our scheme—and of our use
of abstract interpretation and pattern matching in particular—with respect to both opti-
mization capabilities and ease of use.

References

1. P.V. Artigas, M. Gupta, S.P. Midkiff, and J.E. Moreira. High performance numerical com-
puting in Java: language and compiler issues. In Workshop on Languages and Compilers for
Parallel Computing, 1999.

2. G. Baker, J. Gunnels, G. Morrow, B. Riviere, and R. van de Geijn. PLAPACK: high perfor-
mance through high level abstractions. In Int’l Conf. on Parallel Processing, 1998.

3. A. Berlin and D. Weise. Compiling scientific programs using partial evaluation. IEEE
Computer, 23(12):23–37, December 1990.

4. D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of pointers and structures. ACM
SIGPLAN Notices, 25(6):296–310, June 1990.

5. S. Chiba. A metaobject protocol for C++. In Proceedings of the Conference on Object Ori-
ented Programming Systems, Languages and Applications, pages 285–299, October 1995.

6. J.-D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interprocedural computation of
pointer-induced aliases and side effects. In ACM Symposium on Principles of Programming
Languages, pages 232–245, 1993.

7. C. Consel and O. Danvy. Tutorial notes on partial evaluation. In ACM Symposium on Prin-
ciples of Programming Languages, pages 493–501, 1993.

8. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and Compu-
tation, 2(4):511–547, August 1992.

9. M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive interprocedural points-to analysis
in the presence of function pointers. In ACM Conference on Programming Language Design
and Implementation, pages 242–256, 1994.

10. D. R. Engler. Incorporating application semantics and control into compilation. In Proceed-
ings of the Conference on Domain-Specific Languages (DSL-97), pages 103–118, Berkeley,
October15–17 1997. USENIX Association.

11. Message Passing Interface Forum. MPI: A message passing interface standard. International
Journal of Supercomputing Applications, 8(3/4), 1994.

12. R. Ghiya and L. J. Hendren. Connection analysis: A practical interprocedural heap analysis
for C. International Journal of Parallel Programming, 24(6):547–578, December 1996.

13. S. Z. Guyer and C. Lin. An annotation language for optimizing software libraries. In Second
Conference on Domain Specific Languages, pages 39–52, October 1999.

14. S. Z. Guyer and C. Lin. Broadway: A software architecture for scientific computing. In IFIPS
Working Group 2.5: Software Architectures for Scientific Computing Applications, October
2000.

15. N. D. Jones and F. Nielson. Abstract interpretation: a semantics-based tool for program
analysis. In Handbook of Logic in Computer Science. Oxford Univ. Press, 1994. 527–629.

16. F. Martin. PAG – an efficient program analyzer generator. International Journal on Software
Tools for Technology Transfer, 2(1):46–67, 1998.

17. S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauffman, 1997.
18. M. Shapiro and S. Horwitz. The effects of the precision of pointer analysis. In 4th Interna-

tional Static Analysis Symposium, Lecture Notes in Computer Science, Vol. 1302, 1997.
19. R. van de Geijn. Using PLAPACK – Parallel Linear Algebra Package. The MIT Press, 1997.
20. D. Weise and R. Crew. Programmable syntax macros. In Proceedings of the Conference on

Programming Language Design and Implementation, pages 156–165, June 1993.
21. D. Whitfield and M. L. Soffa. Automatic generation of global optimizers. ACM SIGPLAN

Notices, 26(6):120–129, June 1991.
22. R. P. Wilson. Efficient, Context-sensitive Pointer Analysis for C Programs. PhD thesis,

Stanford University, Department of Electrical Engineering, 1997.

