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Abstract

The Phase Abstractions formulation of Livermore’s SIMPLE computation is de-
scribed in detail. This new program is of interest for three reasons. First, it enables
the Phase Abstractions approach to be easily compared with the many other program-
ming styles illustrated by SIMPLE in the past. Secondly, this program has recently been
reported to execute on five diverse MIMD computers, in all cases achieving efficiency in
excess of 50%. Thirdly, the Phase Abstractions permit easy revisions of the program that
enable performance experimentation. Specifically, “array blocks” are compared to “col-
umn strips” as a means of array decomposition. Results comparing the two approaches
are presented for the Sequent Symmetry, BBN Butterfly, Intel iPSC/2 and NCUBE/7.
The results confirm the intuition that blocks are superior.

1 Introduction

The SIMPLE program, a “simple” computational fluid dynamics code, was released by
Lawrence Livermore National Laboratory in 1978 [5] as a benchmark program to evaluate
new computers and Fortran compilers. Since that time the program has frequently been
used to illustrate new computational approaches [7, & 9, 18] and to estimate machine
performance (3, 6, 9, 11, 13]. This paper follows both themes by presenting a version of
SIMPLE written using the Phase Abstractions [2, 12, 22] as well as certain performance
data.

The Phase Abstraction version of SIMPLE is notable because it has recently been shown
to be portable across a wide variety of MIMD parallel computers [16]. Figure 1 shows the
speedups achieved for the BBN Butterfly, the Intel iPSC/2, the NCUBE/7, the Sequent
Symmetry, and a detailed simulator for a Transputer-based multicomputer. Though the
machines differ substantially, e.g. in memory structure, the speedups fall roughly within
the same range.
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Figure 1: SIMPLE on Various Machines

The Phase Abstractions — the XYZ programming levels and the ensemble structures -
provide critical information about a program that can be used by a compiler to generate
efficient code for the target machine. These include locality, scalable concurrency, granu-
larity and communication patterns. It is the goal of this paper to present SIMPLE and to
illustrate how these features are described and controlled to achieve portability

To illustrate how abstractions can structure a program to improve portability, consider
the grain size of SIMPLE.

The program presented here is the latest in a series of improvements beginning with
the work of Gannon and Panetta [8], who developed a version of SIMPLE suitable for
the CHiP architecture and programmed it using early Poker software. Their emphasis [9]
was on extracting the essence of the computation from the original Fortran version and
reformulating it using highly parallel algorithms suitable for the nonshared memory model
of computation. Their code used a one-point-per-process approach, i.e. each process retains
the values describing a single point of the state space, rather than, say, a region of points.
A similar approach was taken by Gates [10] in his later Poker version of SIMPLE. Such
fine grain solutions achieve a very high degree of concurrency and are conceptually easy to
program, but they have a serious drawback: They can be too concurrent!

Since problems tend to have many more data points than physical processors, the par-
allel execution of a one-point-per-process program requires many logical processes to be



executed on each physical processor. This generally requires that processes be multiplexed,
though compilation techniques are now being developed that can in some cases “aggregate”
fine grain processes into coarser grain processes to avoid multiplexing [23]. Multiplexing,
whether done in hardware [24] or software [4], incurs overhead because at the very least
there is context switching overhead, and in the usual case many instructions are executed
which are superfluous in the absence of physical concurrency.

But if the finest granularity is not ideal, neither is any specific choice of coarse granu-
larity. Clearly, the problem size and number of processors available will change. Moreover,
though multiple processes are useful for hiding communication latency, machines differ
greatly on their ability to benefit from them.

The Phase Abstractions approach supports the definition of variable grain size programs.
The processes are parameterized so that grain size can be customized based on the problem
size, number of processors, operating characteristics of the target architecture, etc. The
customization is performed by the compiler, loader, or runtime system depending on when
sufficient information is known to define the granularity. The Phase Abstraction mechanisms
that support this control of granularity are the ensembles and the X programming level.
Both are described in the next section.

2 Phase Abstractions

Recall [2, 12, 22] that the term Phase Abstractions encompasses both the XYZ programming
levels and the ensemble structures.

The XYZ programming levels are an abstraction that recognizes that the instructions
of a parallel program serve different purposes. Beginning at the lowest level, instructions
are used to form processes (X level), which are the basic building blocks of a computation.
Processes are then composed to form concurrent phases (Y level). Phases correspond to
our informal notion of a parallel algorithm. The problem level (Z level) controls the overall
phase invocation to solve the user’s problem.

The XYZ decomposition of the SIMPLE computation is (partially) illustrated in Fig-
ure 2. The computation begins by invoking a phase that reads in the problem state and
initializes program variables. Then a series of five phases — Delta, Hydro, Heat, Energyl,
and Energy?2 — are iteratively invoked to implement the state changes required in one logical
iteration of the algorithm. When convergence is achieved, an output phase is invoked. Each
phase is a parallel algorithm composed of processes, as explained next.

Phases are defined using ensembles. An ensemble is a set with a partitioning. The set
is generally composed of names having additional structure and the partitioning describes
how it is decomposed into constituent parts. A partition is called a section.

Three kinds of ensembles are used to define a phase: A data ensemble is a data structure
with a partitioning. A code ensemble is a set of process instances with a partitioning. A
port ensemble is a set of adjacency names with a partitioning. Ensembles will be illustrated
extensively in subsequent sections, but illustrations of a data ensemble can be seen in
Figure 4, a code ensemble in Figure 5, and a port ensemble in Figure 9.)



data := Load();

while (error > §)

{
Delta(data);
Hydro(data);
Heat(data);
Energyl(data);
error := Energy2(data);

}

Output (data);

Figure 2: Z Level for SIMPLE

To define a phase, the partitionings of the data, code and port ensembles must be
isomorphic. This requirement permits the process(es) of each section of a code ensemble to
be associated with the data of the corresponding section of the data ensemble and with the
ports of the corresponding section of the port ensemble. Each section will be allocated to a
processor for execution: The process executes on that processor, the data can be stored in
memory local to that processor, and ports support interprocessor communication.

The data ensemble provides a (logically) global view of the problem state as represented
by its data structures, but it does so in a way that permits data to be allocated to sepa-
rate address spaces if necessary. The code ensemble gives a (logically) global view of the
processes performing the parallel computation; when the process instances differ the model
is MIMD, but it can be SPMD if they are all identical. Finally, the port ensemble gives
the overall communication structure of the phase, which is extremely useful in cases where
interprocessor communication can be optimized.

To complete the illustration begun in the last section, the “size” of a section, that
is, the amount of data allocated to the section in the data ensemble and the amount of
computation required to execute the process in that section, defines the granularity of the
parallel computation. Changes to the data ensemble — total number of partitions or the
amount of data allocated to a section — are the means of changing the granularity of the
computation. Notice that the section also captures the important notion of locality.

3 The SIMPLE Computation

The goal of SIMPLE is to simulate the flow of a pressurized fluid as it moves inside a
spherical shell. This section describes the computation. For a more detailed description of

the derivation of the formulas, see Crowley, Gannon, and Gates [5, 9, 10].
The algorithm is based on Lagrangian hydrodynamics, which gives the following set of
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Figure 3: Mapping of Physical Domain to Computation Domain

equations:
d
S (PV) =0 (1)
di -
P+ V(p+a) =0 (2)
de dr
E+(P+Q)E~—0 (3)
dr .
q=q(p, bu) (5)
p=p(p,e) (6)
de de\ df de\ dr
= a5 (™
where

Z is position vector,

i is velocity vector,

p 1s mass density,

T 1s specific volume,

¢ 1s specific internal energy,

g is artificial viscosity,

p is pressure,

@ is temperature,

k is heat conductivity and ¢ is time.

Two types of boundary conditions occur in SIMPLE: (1) pressure may be applied to
any surface and (2) the component of acceleration normal to the surface may be zero along
any surface. In this paper a type 1 boundary condition is chosen for the inner surface and
a type 2 boundary condition is chosen for the outer surface.

Because of the spherical symmetry of this problem, a cylindrical coordinate system is
used. The physical domain of the problem is reduced to a quarter of an annular region



(Figure 3 (a)) by first projecting the shell onto a 2 dimensional plane and then taking the
upper right quadrant of the projected annular region. Consequently, vectors such as velocity
only have 2 components in the newly reduced physical domain: r, the radius, and =, the
height.

In order to solve the equations which simulate the motion of the fluid, both the time
and the physical domain are discretized. The time, t, is discretized into a sequence of steps
and the physical domain is discretized into a finite number of nodes. For convenience. the
physical domain is mapped to the computation domain as depicted in Figure 3. In the
following, the notation V;; is used to denote the physical variable of node (i. j) in the
computation grid (Figure 3 (b)). It is assumed that the pressure, density, Jacobian and
viscosity are constants inside any square surrounded by nodes (i, j), (i, 7+1), (¢+1, j+1)
and (i+1, j) and that they are represented as values in the node at the the upper right
corner of the square, node (i+1, j+1).

What follows is the basic algorithm to solve the set of equations. For clarity the code to
deal with boundary conditions is omitted here. The next section gives a brief description
of boundary conditions. A more detailed description can be found in [3, 9]. In the follow-
ing r and z denote the r and = components of the coordinate, v and w denote the r and
= component of the velocity and a” and a* denote the r and z component of the acceleration.

The SIMPLE algorithm:
First compute the initial coordinates of all nodes and initialize the variables of every
node, then iteratively carry out the following sequence of steps:

1. Compute the next time step.

A standard rule is that the time step should not be so large that a speed-of-sound signal
can move across a grid cell in one time step. This is called the Courant condition. So.

tit= mini,_,

0.5J:,
Ca[ar? +6r2 ]
Here, the following notation is used:
2Afiy = fiy + fimry = fig=1 = ficr
zsfij = f:'.J + fi,;—l = fi—l.]vl = fi—l‘}
where f stands for any point quantity such as r, z, u, w, and Cy is the local speed of

sound, which can be computed as follows:

CA = ‘}'—-—p‘]
rhoi;

2. Compute the new acceleration.

The derivative in equation (2) is replaced by a contour line integral according to
Green’s theorem. Furthermore, because the physical domain is discretized, the line
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integral is reduced to a summation. Let f denote p + g.

e Jig CEicig = g0 figan (#ge1 —Fisns) + Fistasd (B — %541 )+ fidig (Sige1 — Sig1y)
@i; = : 7

0.5(pigdiy + pigtr i + pitr g1 Jigr 41 + pig15diz1,,)
ol = fig(riciy —mig=1)+ fig41 (rijer —riciy) + figvrg41 (Pigrg —rige1) + fiviy (riy—1 — rigay)
i3 <=

0.5(pisdiy + pige1dig+1 + piv1+1 Jivrg41 + Pig1,yJitry)

Compute the new velocity and new coordinates.

@iy =i, + 6t di,
+ 6t @,

Compute the new Jacobian and volume of revolution.

tmp—-]li.; = {Ti,; (Zl,;—l = 3:‘—1.3} +T|,3—1 (Zi—l,j = 25‘3} + Ti-1,3 (31‘3 = 31‘371)}

(RN B Ry

tmp_J2i; = = [rigo1 (2iciy-1 — 2ic1y) Fricty—1 (Ziciy = Zig—1) +Tic1y (2i,-1 — ol ||

Ji; =tmp 1, + tmpJ2,
old_S; ; = new.S;

- 1 .
new Sy = 3 ((riy + rig=1 Frici ) tmpd iy + (riyo1 +7im1 -1 + Timy,y ) tmp_J 2, )]

Compute the new density and artificial viscosity.
. old_S; ,
Piy 1= Py new...S',gJ
Aréw—Azéu]? .
f:rnp]_ = Ar<4 Az if [] <0
0 otherwise
Aubz—Awbr]? .
itmp2 = I_T;?:Fz‘r]_ if[]<0
0 otherwise

gi,y i= L3pi,; (tmpl + tmp2) + 0.5p; ,Car/tmpl + tmp2

Compute the new energy and pressure.
(=)

€ = Gy — (P + g0y ) deltar;
tmpi, = (v—1)€i;0:;
i, 1= €1y — (% (tmpi; +piy) + q.d) delta_r, ,
Piy = (v — 1) €500,
where delta_r is the difference between the new r (specific volume) and the 7 in the

previous iteration. 7 is the specific heat. 7 = 1/p, v = 1.4 for air.

)

. Compute the new temperature and heat.

The heat equation (equation 7) can be separated into 2 equations, one in the k direction
and one in the | direction. Since the physical domain is discretized, both equations
can be reduced to a set of linear equations with a tridiagonal matrix. Two passes are
needed to solve this set of linear equations. The first pass transforms the tridiagonal



matrix to an upper-right triangle matrix and the second pass directly computes the
solution beginning with the last equation.

Heat flow into the shell is also calculated in this step.
for each pair (i,j) do

Jig = (rig = rig=a) (zig—1 — 2i5) — (2051 — zig)(rig —ric1y) (8)
oiy = 0.1pi 50 /08 (9)
0C;,; :=0.00016;/2/ ;5 (10)
R CCi;CCi 341

(S e 11
B = B+ CFsn -
RE,J = (T:,; + T!,j—l) ((rl,] —Tij—1 )2 (2-'\',_1 — Zi3-1 )2) I('JL.J (12)

end for

for j := 0 to max_K do
for each i do

Diji=ai;+ Rij+ Rizj—1 (1 —ai;-1) (13)
tiga= Risf By (14)
: Ri,—18i5-1 + i ;0 .
!.-51‘ e ¥ ] s3] (1._))
] D“J
end for
end for

for j = max K to 0 do
for each i do

8i; = aijbi41 + By (16)

end for
end for
fori:= 0 to max_L do

heatio = (8i0 — ¥i1) Rio 6t

end for
Do the same calculation (except statement 17) in the 1 direction.

8. Compute the energy and work. Check for error.
for each pair (i,j) do

.
My 1= PijySi;

1 . . ; ’
energy; , = €. ;mi; + = (Mi, +mije1 +mi+1,j4+1+mi+1,7) (ui) - wfd)

1
tmp;,; 1= Z‘St(phJ = pegt1) (rigor = rig) [(rig — rig—1) (e +wig—1) — (207 = 2i5-1) (i + - )]
—tmp:, if (i,j) is on the west boundary of the computation grid
work; ; 1= y
0 otherwise
end for

total energy = Z ENETJY: 5
i



total _work = Z work; ;
{,7=0
total_heat := heat; ,
1,7=0
error := total_energy — total_work + total_heat

4 The SIMPLE Program

The problem level (Z level) logic of the SIMPLE program has already been illustrated in
Figure 2. Since we presume that input and output are handled by phases provided by the
system, it remains to define the five computational phases.! To do so, we define ensembles.
which in turn require that we define data structures, processes, and communication graphs.
The three types of ensembles will be discussed in their own subsection.

Data Ensembles. Practical programs will usually require many data ensembles for each
phase. Since all of the ensembles will require the same partitioning in order to be part of
the phase, it is most convenient to define all of the data structures first, then define a single
partitioning, and finally apply the partitioning to all data structures to form ensembles.

The arrays used to represent the state of the SIMPLE computation are given in Table
| together with a short description of what they represent. The elements of the z, u and
a arrays are two element double precision vectors representing the » and z components in
the physical domain. Not all items are used in each phase, and the last five items are used
only in the Fnergyl phase.

In addition to the arrays, three global scalar values are used (see Table 2). The last
item is used only in the Hydro phase and then only for computations along the “west wall”.

The arrays will be partitioned into contiguous two dimensional subarrays (blocks). Re-
call that partitions are called sections. This choice reflects the assumption that the locality
of the computation is greatest when one process updates all points of a contiguous block. It
is not immediately obvious that this is true (though it is commonly assumed) and we return
to this issue in a later section. The appropriate specification of the block partitioning is
given below:

rows = F-.s
cols = -t
Vi€ 0:(F1), Yjeo:(zl)
block[t][j] =i s+ [0:s-1]] [+t +[0:1¢-1]]

which states that a rows - cols array is to be partitioned into a collection of 7 - & blocks each
of size s-t. This partitioning is applied to each of the arrays. For example, we indicate that
the pressure array, p, is converted into an ensemble by specifying block(p). This has the

" At this time no language implementation of the Phase Abstractions exists, so the program text given in
this paper is all expressed in pseudocode. To achieve the results presented in Figure 1, this pseudocode was
hand translated into code acceptable to each object machine’s C compiler.



Type Variable Description

Vector  x[rows][cols] position vectors

Vector  u[rows][cols] velocity vectors

Vector  a[rows][cols] acceleration vectors

double  rho[rows][cols] fluid density

double  p[rows][cols] fluid pressure

double  g[rows][cols] fluid artificial viscosity

double  delta_tau[rows][cols] diff in specific volume

double  e[rows][cols] energy

double  theta[rows][cols] temperature

double  J[rows]|[cols] Jacobian of transformation

double  S[rows][cols] volume of revolution

double  delta_t[rows][cols] time step

double  heat[rows][cols] heat flow across boundary

double  en_error[rows][cols] energy check error (Energyl)

double  int_en[rows][cols] internal energy (Energyl)

double  kin-en[rows][cols] kinetic energy (Energyl)

double  work[rows][cols] work done at boundary (Energyl)

double  mass[rows][cols] zonal mass (Energy1)
Table 1: Array Values in SIMPLE

Type Variable Description

double  time time

int iter current iteration

double  bound.p pressure at the inner shell

Table 2: Scalar Values for SIMPLE

10



effect of associating p[i-s + z][j-t + y] with element z,y of section i,j. Figure 4 illustrates
the pressure array converted into an ensemble.

P00 P01 PO2 PO3
P10 P11 P12 P13
P20 P21 P22 P23
P30 P31 P32 P33
P40 P41 P42 P43

P50 P51 P52 P53

Data Structure

P04

P14

P24

P34

P44

P54

P05

P15

P25

P35

P45

PS5

Poo Pot1| [Po2 Po3| [Po4 Pos
P10_P11] |P12__P13| [P14_ P15
P20 P21| [P22 P23| [P24 P25
P30 _P31| |P32  P33| [P34 P3
Pa0 Pa1| [P42 P43| [Paa  Pag
P50 P51| |P5s2  Ps3| |Ps4  Ps

Data Ensemble

Figure 4: The Pressure Array and the Pressure Ensemble, where rows=cols=6, r=3, ¢=3,

§=2, t=2.

In addition to converting the data structures into data ensembles, it is useful to assign
a copy of each of the global scalars to each section to be available for local computations.

Code Ensembles. Having defined the data partitioning, the next task is to provide
processes to operate on each region. This is the role of the code ensemble. A code ensemble
is simply a set of process instances with a partitioning,.

xHydro( ) xHydro( ) xHydro( )
xHydro()| | xHydro() xHydro( )
xHydro( )| | xHydro() xHydro()

Code Ensemble

Figure 5: The Code Ensemble for the Hydro Phase.

In SIMPLE, the processes forming each phase are instances of a single process. For

1.



example, the Hydro phase uses instances of the zHydro() process. Thus, SIMPLE appears
not to require the full MIMD capability of code ensembles — where the instances can be
instances of different processes — but rather requires only the SPMD capability. This ap-
parent uniformity derives to a considerable extent from mechanisms provided by the Phase
Abstractions. Specifically, to handle the rather complex boundary conditions, it has been
necessary in the past [10] to provide nine different process types, corresponding to which
portion, if any, of the perimeter is included in the section, e.g. North edge, NorthEFast cor-
ner, etc. The processing of the boundary code is what makes each routine unique. But with
Phase Abstractions only a single code defining the activity on interior nodes is required.
Boundary computations are specified using “port bindings,” which are explained below.

The specification of a code ensemble for a phase, say the Hydro phase, is accomplished
by declaring the process instance that is assigned to the section:

Hydroli][j].code := z Hydro(); [0:71] [0:¢&1]

Each of the 7 sections? will be assigned an instance of the zHydro() code. More complex
code ensembles are possible, e.g. with multithreading, but they are not needed in SIMPLE.

The zHydro() code, which computes the point updates for the blocks of data assigned
to a section, is too large to be given in complete detail. Figure 6 shows a schematic of the
process code. Several features are noteworthy:

e parameters — The arguments to the process are formal parameters that establish the
correspondence between the local names for variables and the blocks of the ensembles.

For example, in the phase declaration given below the local pressure array will be
bound to the ensemble p.

e ports — The names of the neighboring sections are listed in the port declaration. These
names are the destinations and sources of sends and receives.

e local declarations — Space is allocated for the local portion of a data ensemble, resulting
in a more conveniently indexed arrangement of data. Notice that the size of the array
will be determined by the size of the block in the data ensemble and is thus logically
an input to the process. Furthermore, the size of the formal parameters may be
smaller than that of its corresponding local array. For example, the local pressure
array contains extra rows and columns to hold values from neighboring sections; the

formal declaration p[1 : s][1 : t] and the local declaration pressure[0 : s+ 1][0: t + 1]
specifies this mapping.

o sends/receives — Communication is implemented with the transmit operator (<—) for
which a port name on the left specifies a send of the righthand side, and a port on

2Throughout this paper, the notation [lower : upper] specifies a range of values. Similarly, the notation
[ : w’][I" : "] specifies a 2D range of values. In the above example, the 2D range specification indicates
that for the array on the left, Hydro[i][j], the index of the first dimension, i, takes on all values in the range
[0:#1), and that the index of the second dimension, j, takes on all values in the range [0 : &-1].

12



the right indicates a receive into the variable on the lefthand side. The semantics are
that sends transmit immediately, with data buffered at the destination, and receives
remove data from the buffer in order of arrival, blocking on empty.

e local computation — The logic of the process is essentially the sequential computation
of the original program, a characteristic that allows the number of partitions in the
ensembles to go to one, yielding serial computation.

Notice, finally, that the process achieves a certain amount of encapsulation and captures
locality.

The syntax in this paper is intended to illustrate the full flexibility of the ensembles.
In practice the ensembles may be specified in some higher level manner so the programmer
will not have to specify these bindings and ensembles in such detail. For example, there
may be a Block ensemble which defines a 2D array of square sections. Similarly, we envi-
sion a Strips ensemble which defines an array of long narrow sections. Also, the neighbor
communication might also be specified implicitly, freeing the programmer from the details
of message passing.

Port Ensembles. The process instances of the code ensembles must communicate with
one another. The overall structure of this communication for the five phases is illustrated
in Figure 7, where the boxes represent process instances and the edges indicate the pairs
of processes that must exchange information. The port ensemble is used to specify this
association.

The Hydro phase, for example, uses a hex mesh where each section has six ports specified
in the port ensemble:

Hydro.portnames -« N,NE E, S, SWW

which binds the section’s ports to the (possibly different) names used in the process’ port
declaration. The pairing of port names to define a communication channel is specified as
follows:

Hydro[i-1][j].port.S =  Hydroli][j].N [1:71] [0:e-1]
Hydroli][j-1].port.E  — Hydrol[i][j].W [0:71] [1:¢1]
Hydro[i][j-1].port. NE — Hydro[i-1][j].SW [1:71] [1:e-1]

This specification associates only a subset of all of the ports, namely, those that are con-
nected as in Figure 7. The remaining ports, those that are on the boundary of the problem
space, can be bound to functions. These functions compute the boundary conditions using
data local to the section. For example, the specification

Hydro[i][t].port.E teceive = Eboundary(); [0:71]

13



xHydro(p[1:s][1:t], tho[1:s][1:t], J[1:s][1:t] ... bound_p)

double
double
double

double

port

int
double

pressure[0:s+1][0:t+1];
rho[0:s+1][0:t+1];
J[0:5+1][0:t+1];

bound_p;
North, NorthEast, East, South, SouthWest, West;

1, )3
denom;

/+ Receive from the East a column of the rho array =/
/# and place it in the rightmost column of rho. /
rho[0:s][t+1] <— East;

/* other communication . . . */

/* Compute acceleration */
for (i=0; i<s; i++)

{

for (j=0; i<t; i++)

{

}

denom = (rholi][j] * J[i][j] +
rholi][j+1] = Jfi][j+1] +
rho[i+1][j+1] = J[i+1][j+1] +
rho[i+1](j] * J[i+1](]) / 2;

/* other computation . . . */

Figure 6: X Level Code for the Hydro Phase

14



Delta and Energy2 Phases Hydro and Energyl Phases Heat Phase

Figure 7: Instances of the Communication Graph Families for SIMPLE

states that for sections along the east boundary, a “receive” from the F port will return
the value computed by the function Eboundary(). Figure 8 shoes the computation of this
boundary condition.

Other boundaries can be defined similarly. For example,

Hydrol[i][t].port.E send —  No-op(); [0:7-1]

states that sending data to an unbound East port results in a no-op (This is the default).
Once these functions have been defined, boundary values can be accessed through ports in
the same manner that interior processes access values in neighboring sections. Thus, all
processes can execute the same code.

Phase Definition. A phase is the composition of data ensembles, a code ensemble and
a port ensemble. For the Hydro phase, for example, the latter two bindings have already
been made explicitly. To incorporate the necessary data ensembles we specify

Hydro.data «~ =,u,a, rho, p, q, delta_tau, e, J, S, bound_p

which conceptually declares the actual parameters that correspond to the formals in the
process preamble. Any or all of these could have been specified at the call site if they varied
from call to call in the problem level (Z level) program.

5 Experiments

Given a particular application and a particular machine, it’s not always clear what choice
of partitioning is best [21]. Two obvious choices are to partition the data into squares or
into strips. For applications with nearest neighbor communication, square sections result in
less data transmission but in more messages, since each interior section has four neighbors.
With strips, each section has at most two neighbors, but more data is transmitted because
each section has a larger perimeter to area ratio.

Pingali and Rogers [20] pose the question of whether squares are better than strips for
SIMPLE. Data ensembles ease the task of changing data partitions and provide a mechanism

15



Eboundary(x, u)
Vector  x[s+1][t+1];
Vector  ufs+1][t+1];

double alpha, beta, omega;
int i, J;

for (i=1; i<s+1; i++)

{
x[i][t+1].r = x[i][t].r + (x[i]){t].r — x[i]{t—1].r);
x[i)[t+1].z = x[i][t].z + (x[i][t].z — x[i][t—1].2);
ufi][t+1].r = ufi]ft—1].1;
ufi][t+1].z = ufi][t—1].z;

Il

Figure 8: Function to Handle East Boundary Condition in zHydro()

for studying this question. The Block partitioning is the data ensemble described in the
previous section. This will be compared against the Strip partitioning in which each section
contains a vertical strip of the data arrays.

Recall that the data ensembles discussed earlier create 7 x € arrays of blocks. So with the
Phase Abstractions, the Strip partitioning is easily derived from the Block partitioning by
setting 7 = 1 and ¢ = Number-of-Processors. In addition, Strips require that each process
have only East-West neighbors instead of the six neighbors used in Block. By using the
port ensembles to bind functions to unused ports — in this case the North, South, NorthEast
and SouthWest ports — the program can easily accommodate this change in the number of
neighbors.

Before presenting the results, we first explain our experimental methodology and hard-
ware environment.

Methodology. Since the Phase Abstractions version of SIMPLE is portable, it can ex-
ecute on several different machines and serve as a tool for studying the effects of various
program characteristics. Using a single portable program has the advantage of controlling
one important variable, namely, the application under study.

Since no Phase Abstractions compiler currently exists® we hand ported our program to
run on the various machines. Our X level language was C, and we used machine specific
routines (also written in C) to implement the other Phase Abstractions entities. In porting

*A Phase Abstraction compiler is under construction at the University of Washington.
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Figure 9: Examples of Port Ensembles

this program, only rudimentary source level changes dealing with the differences in message
passing and process/node management were necessary.*

Hardware. We used four multiprocessors in our experiments. The first is a Sequent
Symmetry Model A, which has 20 Intel 80386 processors connected by a shared bus to a
32 MB memory module. Each processor has a 64K cache (for both data and instructions)
and an 80387 floating point accelerator [17].

A second machine is a 24 node BBN Butterfly GP1000. In addition to a Motorola
68020 processor, each node has 4 MB of local memory and a processor node controller
which interacts with an omega network to make remote references when needed. Together,
the 24 memory modules, the process node controllers, and the network form a single shared
memory which all processors may access. Local memory access is about 12 times faster
than remote access [1].

The remaining machines are hypercubes. On the 32 node Intel iPSC/2 each node con-
tains an 80386 processor, an iPSC SX floating point accelerator, and 8 MB of memory. All
inter-processor communication is through message passing [14]. On the 64 node NCUBE/7
each node has a custom main processor and 512 KB of memory. Like the iPSC/2, the
NCUBE/7 is a nonshared memory machine [19].

Results. Figure 10 shows our results for problem sizes of 1K, 2K, and 4K points. The
Block partitioning performed better in every case, and the difference between the two strate-
gies generally increases as the number of processors grows. This means that the overhead of
sending more messages in Blocks is offset by the fact that Block transmits less overall data
than Strips. Thus, we expect Block’s performance advantage to increase with the problem

For the shared memory machines, message passing routines were implemented using shared memory.
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size since such changes do not alter the number of messages sent, but only increase the
size of these messages. Our results appear to confirm this reasoning. We conclude that for
SIMPLE, partitioning by blocks is superior to partitioning by strips.

As currently written, our program assumes equal-sized data sections for each processor.
Note that when this assumption is relaxed, choosing the optimal data partitioning is further
complicated by issues of load balance [23] and by an increase in the number of possible
partitioning strategies.

6 Conclusion

We have presented the Phase Abstractions and shown how they can be used to write a
parallel version of SIMPLE. Furthermore, we have demonstrated how the port and data
ensembles facilitate the creation of alternate program implementations, and we have used
this flexibility to study the issue of choosing the best data partitioning for SIMPLE.
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