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Abstract

This paper describes Orca C, the first language built on the Phase
Abstractions programming model. The focus is on the syntax and
semantics of the date ensembles, a parallel data structuring facility to
support machine-independent parallel programs. These features are
compared with the data decompasition capabilities of other parallel
languages, including Fortran D, Vienna Fortran, and Kali.

1 Introduction

Orca C is the first programming language based on the Phase Abstractions parallel pro-
gramming model. The importance this model has already been demonstrated: Experiments
have shown that it leads to programs that are both efficient and portable. (Scalability is
another goal, but this has yet to be demonstrated.) For example, for P processors, the
Phase Abstractions version of Livermore's SIMPLE fluid dynamics code has achieved at
least P/2 speedup on all types of MIMD parallel machines, including the Sequent Symme-
try, the BBN Butterfly GP1000, the Intel iPSC/2 and nCUBE/7 hypercubes, and a mesh
machine built from the Transputer T800s [10]; similar results have been reported for the
modified Gram-Schmidt method of QR factorization [11]. Though the results do not prove
the claims of efficiency and portability, they strongly suggest that a language based on the
Phase Abstractions might have these properties. Orca C is such a language.

“Phase Abstractions” is a collective term referring to two types of programiming concepts
for MIMD parallel computation: the XYZ programming levels and ensembles [14]. The
XYZ programming levels structure a parallel program into its constituent parts, including
processes, parallel algorithms (phases), data parallel operations and high level control.
Ensembles, used to define parallel algorithms (phases), enable the programmer to think of 2



113

computation globally while having local control over the details of general MIMD processes.
Three kinds of ensembles are required to define a parallel application: data ensembles define
global data structures, code ensembles define the process structure of the computation, and
port ensembles specify the commumnication induced by the data dependencies. Though all
three ensemble types are essential for defining parallel algorithms, data ensembles are first
among equals, both when designing programs and when understanding Phase Abstractions.

In their most general formulation data ensemnbles are partitioned data structures [8). In
Orca C, a simple Phase Abstraction language designed for scientific computations, data
ensembles are limited to being partitioned arrays. Even so, Orca C's data ensembles
provide greater flexibility than the array partitioning facilities of recent parallel language
proposals, e.g., Fortran D. The goal of this paper is to describe the Orca C formulation of
data ensembles, present solutions to certain implementation issues, and compare it with
related work.

Z Level X Level

prog SIMPLE(delta):
< declarations>
data := LOAD();
while (err > delta) do
{ DELTA(data);

B §

HYDRO(data);
HEAT (data),
ENERGY 1 (data); =
err := ENERGY2(data) } =
VISUALIZE(data); .
end' @

Figure 1: The XYZ Illustration of SIMPLE.

2 Introduction to the Ensemble Abstractions

To describe the role of ensembles in specifying a parallel computation, it is necessary to
summarize the details of the XYZ programming levels [13): A parallel program is viewed
as having three kinds of code:

process level (X): composition of instructions to define a lightweight thread,
phase level (Y}): composition of processes into a scalable parallel algorithm,
problem level (Z): composition of phases to solve a user's problem.
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Phase=Data Ensembles+Code Ensemble+Port Ensemble
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Figure 2: The Combination of Ensembles to Form a Phase.

Viewed in the Z-Y-X order, this formulation gives a top down view of a parallel com-
putation, The Z code gives the high level logic in terms of the invocation of parallel
algorithms; the Y code specifies the parallel algorithms as the concurrent execution of a
collection of process instances; the X level defines the processes needed to implement the
algorithms.

Figure | gives a schematic diagram of the XYZ levels of the SIMPLE code [10] illus-
trating features typical of these levels. The Z level code is typically a short sequence of
code; in this case it is an iterative algorithin composed of five phases. The phases, de-
picted as graphs, are defined by ensembles as explained below; each graph describes the
characteristic communication structure of a phase. The processes, illustrated as segments
of sequential code, form the nodes of the graph. Besides providing a convenient way to
structure a large computation, the X'YZ levels also describe the computation so that it can
be easily compiled into efficient code. The key components are the ensembles that specify
the Y level phases.

A phase is defined by the composition of three types of ensembles: data ensembles, code
ensembles and port ensembles [2, 8]. An ensemble is a set with a partitioning. In particular,
a data ensemble partitions the items of a data structure, a code ensemble partitions a
set of (X level) process instances, and a port ensemble partitions a graph. In order to
compose ensembles of the three types into a phase, it is necessary that the ensembles be
conformable, i.e., the partitionings have the same cardinality (and in Orca C, the same
dimensions). Since the partitionings conform, a particular partition, called a section, in
one ensemble can be associated with a corresponding section in another ensemble. This
allows us to define informally the high level semantics of a phase: The process in the i*
section of a code ensemble executes on the data of the i*" section of the data ensembles and
communicates with the neighbors of the vertices of the i** section of the port ensembles;
the initial state of a phase is the content of the data ensembles prior to invocation of the
phase, and the result of the phase is the content of the data ensembles upon completion of
the processes.

Figure 2 shows a schematic diagram of the heat () phase of the SIMPLE computation.
For this iterative approximation there are several data ensembles that correspond to dis-
cretized quantities, e.g., energy at each point, temperature at each point, etc. The data
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ensembles are partitioned into blocks. That is, each block contains a set of contiguous
data points, The code ensemble specifies that each section will execute the same pro-
cess, xHeat (), so in this case we have an SPMD computation. Finally, the port ensemble
specifies that the communication of the computation will be to nearest neighbors named
N.E,W.5.

A key concept of ensembles is that their size is parameterized and their partitioning is
parameterized. The parameterization specifies how the number of sections is to grow or
shrink in response to changes in problem size, number of processors, preference for many
or few multiplexed threads per processor, etc. Thus, the number of sections in a phase’s
ensembles specifies the logical concurrency of the computation. This conttol is essential in
making the computation malleable enough to run on many different machine types, i.e., to
be portable.

3 Orca C Overview

Orca C is a simple language implementation of Phase Abstractions. Facilities are provided
for programming at the X, Y and Z levels. Additionally, facilities are provided for defining
data, code and port ensembles. An Orca C program has the following structure:

program <name> [<pammrzter Hst}];
configuration and constraint computations;
(< configuration parameter list>):
data ensemble definitions; i
code ensemble definitions; |
port ensemble definitions; i
phase definitions; |
process definitions; X level
begin
program body 7 level
end.

Y level

The itemns of the five declaration sections prior to the begin can be presented in any order.

The parameter list specifies arguments to the computation including computation-
specific information such as the convergence limit, and (possibly implicit) environment,
characteristics such as the number of processors on the host machine. This data, plus
other information that might be read in from external media, such as the size of data sets,
are input to configuration computations that the programmer defines, These computa-
tions determine how the structures of the program are to be configured to respond to the
execution environment. Typical of a configuration computation is the determination of
the number of sections the computation should have, i.e., how much logical concurrency
is appropriate for the prevailing conditions. Once computed, the parameters are explicitly
listed in the configuration parameter list, followed by the definition of the parallel program.

The focus of this paper is the data ensemble specification portion of the program and
its sermantics.
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4 The Syntax of Data Ensembles

In its simplest form, Orca C uses a syntax for specifying data ensembles that leads to the
following kinds of specifications.

ensemble square(p][q] float a[m][n};

This Y level declaration hegins with the keyword enseamble, declares an ensemble named
square, and defines a partitioning where data js decomposed into p rows and ¢ columns
of data blocks. Following the partition definition is a standard C language variable decla-
ration, in this case a two dimensional array of float's named a. This declaration specifies
the data from a global view. That is, the overall size of the a array is m x n, which is to be
partitioned into an array of p x ¢ sections. Together, these two sets of parameters implicitly
define the size of each local section. If the number of sections do not evenly divide the
array dimensions, i.e.,m = (p—1) s +r, then (p—1) sections will have s elements and the
last section will have r elements. The values of Ps ¢, m, and n can be runtime parameters
computed in the “configuration and constraint computations” section of the Program.

The general rule for decomposing Orca C arrays is given below, where d(Part) is the
number of dimensions of the partitioning and d(Array) is the number of dimensions of the
array. These rules for Orca C were chosen under the assumption that computations will
iterate faster over the lower dimensions of an array.

L. If d(Part) = d{Array), the i* dimension of the array is decomposed according to the
i** dimension of the partitioning,

2. If d(Part) < d(Array), the array is decomposed in its first d(Part} dimensions. The
remaining dimensions of the array are not decomposed.

3. If d(Part) > d(Array), the first (d(Array) — 1) dimensions of the array are decom-
posed as in case 1, but the last dimension of the array is decomposed into a number
of sections that is the product of the remaining dimensions of the partitioning,

The following examples illustrate these partitioning rules. The c array adheres to rule
2 and is not partitioned across its third dimension, while the d array obeys rule 3 and is
partitioned into p x ¢ sections. The last example shows that multiple ensembles can be
defined with a single statement, and that once a partitioning has been defined, it can be
used again in subsequent declarations.

ensemble square[pf{q] float b{m][n]; /* rule 1 */
ensemble square(p|(q] float ¢[m][n]{2); [* rule 2 «/
ensemble square|p][q] float dfm]; /= rule 3 «/
ensemble square float e[m|[n], flm][n];

The examples below show how horizontal and vertical strip partitionings can be defined.

ensemble  hstrips[P][1) float g{m][n]; /* horizontal strips x/
ensemble  vstrips(1][P] float h[m][n]; [* vertical strips */
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In practice, these partitionings could be defined as special cases of the block decom-
position by setting the values of p and ¢ appropriately. For example, a horizontal strip
decomposition is defined by using the block decomposition specified above and by setting

p and g as follows (in the configuration and constraint computation section):

po= Py
=1

[mplicit in the above declarations is the choice of a contiguous block partitioning. This
s the default in Orca C, but other decompositions are possible. In a full language arbitrary
user-specified decompositions can be given, including those computed at run-time or read
in from a file. This will allow Orca languages to accommodate computations with irregular
structures such as unstructured meshes.

To indicate the type of decomposition, a modifier is placed before the variable dec-
larations as illustrated below. The contiguous modifier is the defanlt and specifies a
contiguous block partitioning. The interleaved decomposition assigns consecutive ele-
ments of an array to different processes: this partitioning accepts an argument to specify
the granularity of the interleaving, i.e., the number of consecutive elements to assign o
each process. For example, the block3 partitioning specifies an interleaving by blocks of
1, while the block4 partitioning indicates intetleaving by some variable amount that is
bound at runtime.

ensemble block[p]lq]  contiguous float a{m][n];
ensemble block2[pllg] interleaved float b{m][n];
ensemble block3[p][q] interleaved(4) float ¢[m}(n};
ensemble blockd[p]lq] interleaved(x) float d{m][n]; /¢ x is a config parameter */

4.1 Mapping to the Sections

Although Orca C programs consist of three levels of code, the ensembles properly belong to
all levels with each level seeing a different view. The Z and Y levels see a global view of the
data ensembles, while each X level process sees a local portion of the data. Furthermore,
data ensembles in Orca C exist across phases. So logically each phase manipulates some
global state (the data ensembles) that petsists after the phase completes.

When a phase is invoked at the Z level, the necessary ensembles are passed to the X level
through an interface similar to the way parameters are passed to procedures in sequential
imperative Janguages. The semantics are pass by reference. This parameter passing is
helpful in defining the interface to each phase and in restricting the scope of the various
ensembles. Moreover, from the X process viewpoint, this parameter passing is useful in
defining the local dimensions of each data ensemble. The dimensions of each section of a
data ensemble are implicitly defined at the Y level, as described in the previous subsection,
and these dimensions are then passed to the X level through the X process’ declaration of
ensembles. This is illustrated in the next subsection.

In Orea C ensembles have a single partitioning for the entire execution of the program.
This will be relaxed in future versions of Orca. For example, it may be useful for one
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phase to view an ensemble as a 2D array of values, while another views it as a 1D array of

values.

4.2 'The X Level View

In contrast to the Y level where arrays are viewed globally, the X level sees the ensembles
from a local point of view. The interface between the X and 7 levels declares the data
ensembles required by each phase.

For example, for a phase that is invoked at the 7 level as follows
[* other 7 level code =/

xHeat(x, rho, J);
: s /+ other Z level code /

the X level may declare the parameters as below.

xHeat(x[0:s-1](0:t-1], rho[0:s-1){0:t-1), J[0:5-1][0:4-1])
{

[/* body of X level code goes here «f

Several details are worth noting,.

e From the X view, only a local portion of each ensemble is visible. So for example,
each xHeat process sees only an s x ¢ section of data peints for the variable x.

The formal parameters for arrays have both lower and upper array bounds included
in their declaration. This is the mechanism through which the ensemble’s local di-
mensions are passed o the X level.

e The size of the different sections of code may differ. For example, one process may
have s bound to 100 while another has s bound to 99 because the numbers may not
divide evenly. Such differences are transparent to the X level code. The values of s and
t are passed in from the Z level and are read-only parameters at the X level. Because
the size of the sections are parameters, the X level can accommodate decompositions
of any shape, e.g., either strips or squares.

¢ The X level sees a contiguous block of data regardless of the actual decomposition
used, In particular, the indexing of the local arrays does not change with the choice
of data decomposition.
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5 Fluff

Scientific computations often involve local neighbor communication in which one process
requires data from the edge of a neighboring process’ array. This common operation is
simplified in Orca C through the notion of fluff, which is similar to Overlaps [7] and
GuardStrips [12]. Fluff is a software cache that can be used to maintain a current copy
of data between adjacent processes. In Orca C, fluff is allowed for any dimension of an
ensemble array and is simply an extension of the array boundaries. This allows X level
code to access fluff in the same manner that actual array values are accessed.

= i

o 7 =

A Local Section with Fluff
Sections without Fluff

Figure 3: Fluff.

As an example of the use of fluff, consider the Jacobi Iteration, where each process
requires the edge values from its four nearest neighbors. The usnal technique is to have
each process send edge values to neighbors, receive edge values from neighbors, and then
compute the average of each data point using the newly received edge values. (As an
oplimization the computation of interior points can be computed without communication
and can be inserted after the sends.) Without fluff, the programmer must declare a larger
array and adjust the indexing accordingly. In Orca C, the local X level view of the data
is an array large enough to include the fluff. From the global view, the distributed array
does not logically include fluff.

Fluff at the Y Level. Fluff is declared at both the Y and X levels to allow for compile-
time error checking. At the Y level, Orca C restricts fluff to be symmetric in all dimensions.
Future versions of Orca will relax this restriction to allow arbitrary amounts of fluff. The
Y level declaration below states that the square partitioning extends each dimension of
the data ensemble by 1 in each direction. This declaration asserts that maximum allowable
fluff any X level process can access. Note that fluff is a characteristic of a partitioning, so
all ensembles using the square partitioning, such as the b array, have fluff similar to the a
ensemble.

ensemble square(p][q] fluff(1) float am](n];
ensemble square float b[m](n];
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Fluff at the X Level. Fluff is also specified at the X level through the declaration
of array bounds of ensemble arrays. Here, Huff need not be symmetric. For example,
the following process header shows that the x array has fluff of 1 around all four borders
because the local array bounds go from —1 to s and —1 10 ¢ rather than 0 to (s— 1) and 0
to (¢~ 1). By contrast, the rho array only has fluff along two sides. Note that in addition
to specifying the size of fluff, these declarations indicate the alignment of the Auff within
the local array.

xHeat{x[0:s-1][0:t-1], tho[0:s-1](0:4-1], J[0:s-1][0:-1))
float x[-1:s][-1:¢];
float rho{0:s](0:t];

/* body of X level code goes here +/

Exchange. The Exchange statement uses fluff and the data ensembles to provide high
level communication that is less error prone than programmer-specified message sends and
receives. The Exchange statement causes each process to update its neighboring process’
fluff.

The syntax for Exchange is as follows, where <ensemble variable> is any data ensemble.
Note that Exchange may be specified at both the X and Z levels but is conceptually a Z
level operation.

exchange <ensemble variable>;

The semantics are that messages implementing the exchange are initiated no later than
the Exchange statement. Each Process may continue executing asynchronously until the

»

6 Comparison with Related Work

We now compare Orca C with several related languages: Kali [9], Fortran D [6], Vienna
Fortran (4], and MetaMP [12]. We consider these state-of-the-art languages because they
focus on the data decomposition as the expression of parallelism, so it is instructive to
make a comparison with Orca C’s data ensembles. These languages are also of interest
because they represent an approach that is fundamentally different from Orca’s. In Orca,
parallel programs are explicitly created from a parallel algorithm. In these other languages,
parallel programs are obtained through the transformation of a sequential program, though
they differ in the amount of information supplied by the programmer. While the latter
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approach has clean semantics because the languages can guarantee deterministic - that is,
sequential - semantics, the former approach has much greater potential for parallelism.

Data Decomposition, Arrays are commonly used in scientific computations. All of
these languages, including Orca G, only allow arrays to be distributed. But the ensembles
are more general, and future versions of Orca will relax this constraint to general data
slructures.

Arrays in Fortran D are aligned with respect to some abstract partitioning using the
ALIGN statement. A separate DISTRIBUTE statement is used to map partitioned data to
physical processors. Because the ALIGN and DISTRIBUTE statements can be thought of as
executable statements as well as declarations, Fortran D supports remapping of arrays and
allows distributed arrays to be passed as parameters to any procedure. Fach procedure
may define its own data distribution, which may cause an implicit redistribution of data
upon procedure call. Together these features can be potentially very expensive.

Vienna Fortran supports the same data distributions that Orca C does. These are
specified by passing the kevwords BLOCK or CYCLIC as parameters to the DIST statement.
{(CYCLIC distributions are analogous to Orca C’s interleaved distributions.) In Vienna
Fortran a distinction is made between dynamic and static arrays. Only dynamic arrays
can be dynamically redistributed, Arrays may be aligned with respect to each other.

Kali provides BLOCK, CYCLIC, and BLOCK_CYCLIC distributions, as well as irregular distri-
butions. The programmer controls the assignment of loop iterations to processors through
the use of the On clause. There are plans for Kali to support dynamic data distribution
in the future.

Otca C does not currently support dynamic redistribution of arrays.

Parallel Loops. Except for Orca C, the languages discussed here depart from sequen-
tial languages primarily in their support for data decomposition, although some of these
languages do provide mechanisms for specifying parallel loops.

Vienna Fortran provides no form of parallel loops. Fortran D has the FORALL statement
that can be used to specify loops with no loop carried dependencies. To ensure deter-
ministic semantics of updates to common variables by different loop iterations, values are
deterministically merged at the end of the loop. This construct is optional in that the
compiler will attempt to extract parallelism even where FORALL is not used. In contrast
to Fortran D’s optional FORALL loops, Kali requires FORALL loops with the same restric-
tion that each loop can execute independently. Similarly, MetaMP’s splitFor directive is
required to identify parallel loops.

One limitation of all of these mechanisms for paralle] loops is they either assume loop
iterations that can execute independently, or they rely on static data dependency analysis
to identify such loops. It is not always possible or natural to write such loops, and it
is often difficult to perform data dependency analysis across precedure boundaries. The
parallelism of an Orca C program does not rely on the automatic extraction of loop-level
parallelism, so Orca C programs can exhibit more parallelism than those that require loops
with no loop-carried dependencies.
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Explicit Communication. MetaMP provides a set of commonly used communication
operations. Directives are provided to rotate data (the roll directive) and perform global
reduction. Orca C supports fully general communication patterns. Any commonly used
communication structures can be captured in ensemble libraries for reuse. None of the
other languages provide mechanisms for explicit communication among processes.

Virtual Processors, Fortran D, Vienna Fortran, Kali and MetaMP provide no language
support for the notion of virtual processors. In Orca C the number of processes, and hence
the granularity of parallelism, is controlled through the ensembles. This ability to have
more threads than physical processors can be useful in hiding communication latency,
particularly in modern multi-threaded architectures such as the Tera Computer [3] and
the MIT Alewife {1]. Of course, sophisticated hardware is not a requirement for exploiting
multiple threads [5].

Fluff. MetaMP’s guardStrips are similar to Orca’s fluff. It appears that guardStrips must
be symmetric, and guardStrips are explicitly controlled by the update guard directive.
Since the other languages do not support explicit communication, they have no need for
fluff or guardStrips at the language level.

7 Conclusion

Orca C ensembles have clean data decomposition facilities that are comparable to those
found in other languages, and more expressive in terms of control of granularity. A key
point is that while Orca C provides a global view of data (as do other languages), it also
supports the full flexibility of MIMD parallelism. The portability potential of Orca C has
heen shown. The implementation is well underway.
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