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Abstract

As memory performance becomes increasingly impor-
tant to overall system performance, the need to carefully
schedule memory operations also increases. This paper
presents a new approach to memory scheduling that con-
siders the history of recently scheduled operations. This
history-based approach provides two conceptual advan-
tages: (1) it allows the scheduler to better reason about
the delays associated with its scheduling decisions, and (2)
it allows the scheduler to select operations so that they
match the program’s mixture of Reads and Writes, thereby
avoiding certain bottlenecks within the memory controller.
We evaluate our solution using a cycle-accurate simulator
for the recently announced IBM Power5. When compared
with an in-order scheduler, our solution achieves IPC im-
provements of 10.9% on the NAS benchmarks and 63% on
the data-intensive Stream benchmarks. Using microbench-
marks, we illustrate the growing importance of memory
scheduling in the context of CMP’s, hardware controlled
prefetching, and faster CPU speeds.

1 Introduction

As the gap between processor speeds and memory
speeds continues to increase, memory system performance
is becoming increasingly important. To address this prob-
lem, memory controllers typically use internal buffering and
parallelism to increase bandwidth. To date, memory con-
trollers for most general purpose processors simply pass in-
structions to DRAM in FIFO order. While these in-order
schedulers are simple, they can yield poor bandwidth when
memory operations must stall because of hardware hazards.
For example, when a memory bank is accessed, subsequent
accesses to that bank must typically stall for many cycles
until the first access is completed.

Rixner, et al. [12] show that for cacheless media proces-
sors, bandwidth can be significantly improved by reordering
memory operations in much the same way that instructions
are scheduled in a pipelined multiprocessor. In particular,
Rixner et al. propose various simple techniques that are
sensitive to the physical characteristics of a DRAM’s banks,
rows, and columns. In the example of a busy memory bank,
memory operations would be reordered to allow operations
to other banks to proceed, thus increasing throughput.

The simple techniques that have been previously
used [12] suffer from two limitations. First, they are essen-
tially greedy solutions that are unable to consider the longer
term effects of a scheduling decision. For example, if there
are multiple pending operations that do not have bank con-
flicts, the operations are scheduled oldest first. This policy
avoids an immediate bank conflict, but it may lead to an un-
avoidable conflict on the next cycle. Second, the notion of
scheduling for the characteristics of the hardware is insuf-
ficient; a good scheduler should also consider the behavior
of the application.
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Figure 1. The Power5 memory controller.

To understand this second point, consider the execution
of the daxpy kernel on the IBM Power5’s memory con-
troller. As shown in Figure 1, this memory controller sits
between the L2/L3 caches and DRAM; it has two reorder
queues (Read Queue and Write Queue), an arbiter that se-



lects operations from the reorder queues, and a FIFO Cen-
tralized Arbiter Queue, which buffers operations that are
sent to the DRAM. The daxpy kernel performs two reads
for every write. If the arbiter does not schedule memory
operations in the ratio of two reads per write, either the
Read queue or the Write queue will become saturated under
heavy traffic, creating a bottleneck. To avoid such bottle-
necks, the arbiter should select memory operations so that
the ratio of reads and writes matches that of the application.

This paper shows how command history1 can ad-
dress both limitations. By tracking the recently sched-
uled operations—those that have moved from the CAQ to
DRAM—an arbiter can consider the longer term effects of
scheduling decisions. An arbiter can also use such informa-
tion to schedule operations to match some pre-determined
mixture of Reads and Writes. We show howhistory-
based arbiters can be implemented as finite state machines
(FSM’s). The use of FSM’s provides a mechanism for en-
coding cost models that reflect the complexities of modern
memory systems. Moreover, if one FSM encodes a schedul-
ing policy that attempts to minimize latency and another
encodes a policy that attempts to match a given mixture of
Reads and Writes, a third FSM can probabilistically choose
from among the first two to partially satisfy both scheduling
goals.

These history-based arbiters, however, are limited be-
cause they are each tailored to one particular pattern of
Reads and Writes. To support a variety of workloads, we
introduce the notion of anadaptive history-based arbiter,
which adaptively chooses from among multiple history-
based arbiters. This paper evaluates a simple solution that
uses three history-based arbiters, each with a history length
of two. We show that this short history length works sur-
prisingly well.

This paper extends previous work in several ways.

1. We present the notion of adaptive history-based ar-
biters, and we provide algorithms for designing such
arbiters.

2. While most previous memory scheduling work per-
tains to cacheless streaming processors, we show that
the same need to schedule memory operations applies
to general purpose processors. In particular, we eval-
uate our solution in the context of the IBM Power5,
which has a 5D structure (port, rank, bank, row, col-
umn), plus caches.

3. We evaluate our solution using a cycle-accurate sim-
ulator for the Power5. When compared with an in-
order arbiter, our solution improves IPC on the NAS

1In this paper we use the term “memory operation” and “memory com-
mand” synonymously to refer to Reads and Writes to DRAM. We also use
the terms “scheduler” and “arbiter” interchangeably.

benchmarks by a geometric mean of 10.9%, and it
improves IPC on the Stream benchmarks [9] by over
63%. When compared against one of Rixner et al.’s
solution, our solution sees improvements of 5.1% for
the NAS benchmarks and over 18% for the Stream
benchmarks. The performance improvements for the
NAS benchmarks are conservative because they sim-
ulate a single-processor system, whereas the Power5
is a dual-processor SMT system with a single memory
controller. As multiple threads and multiple processors
are used, memory traffic will increase, magnifying the
effects of a good arbiter. To quantify some of these ef-
fects, we illustrate the impact of increased CPU speed,
of hardware-controlled prefetching, and of chip multi-
processors.

4. We show that a history length of two produces good
results. The hardware cost of our solution is minimal,
and in the context of the Power5, our solution achieves
95-98% of the performance of a perfect DRAM that
never experiences a hardware hazard in memory.

5. Finally, we provide insights to explain why our solu-
tion improves the bandwidth of the Power5’s memory
system.

The remainder of this paper is organized as follows. Sec-
tion 2 describes related work. Section 3 provides back-
ground for understanding our paper, describing the rele-
vant portions of the Power5 microarchitecture. Section 4
describes our new solution, which we empirically evaluate
in Section 5. Finally, we conclude in Section 6.

2 Related Work

Most previous work on memory scheduling comes from
work on streaming processors. Such systems do not exhibit
the same complexity as today’s memory hierarchies, and
none of the previous work used a history-based approach to
scheduling.

Rixner et al. [12] explore several simple policies for
reordering accesses on the Imagine stream processor [8].
These policies reorder memory operations by considering
the characteristics of modern DRAM systems. For exam-
ple, one policy gives row accesses priorities over column
access, and another gives column accesses priorities over
row accesses. None of these simple policies is shown to
be best in all situations, and none of them use the com-
mand history when making decisions. Furthermore, these
policies are not easily extended to more complex memory
systems with a large number of different types of hardware
constraints.

Moyer [11] uses compiler transformations to change the
order of the memory requests generated by the processor



to obtain better memory system performance. Loops are
unrolled and instructions are reordered to improve memory
locality. Moyer’s technique applies specifically to stream-
oriented workloads in cacheless systems. McKee [10] [17]
uses a runtime approach to order the accesses to streams in a
stream memory controller. This approach uses a simple or-
dering mechanism: the memory controller considers each
stream buffer in round-robin fashion, streaming as much
data as possible to the current buffer before going to the next
buffer. This approach may reduce conflicts among streams,
but it does not reorder references within a single stream.

Valero et al. [15] describes a technique that dynamically
eliminates bank conflicts on vector processors. Elements
of vectors are created out of order to eliminate memory
bank conflicts. This approach assumes uniform memory
access time. The Impulse memory system by Carter et
al. [2] improves memory system performance by dynami-
cally remapping physical addresses. This approach requires
modifications to the applications and operating system.

3 Background

3.1 A Modern Architecture: The IBM Power5

The Power5 [4, 7] is IBM’s recently introduced succes-
sor to the Power4 [14]. The Power5 chip has 276 mil-
lion transistors and is designed to address both scientific
and commercial workloads. Some improvements in the
Power5 over the Power4 include a larger L2 cache, simul-
taneous multithreading, power-saving features, and an on-
chip memory controller.

The Power5 has two processors per chip, where each
processor has split first-level data and instruction caches.
Each chip has a unified second-level cache shared by the
two processors, and it is possible to attach an optional L3
cache. Four Power5 chips can be packaged together to form
an 8-way SMP, and up to eight such SMP’s can be com-
bined to create 64-way SMP scalability. The Power5 has
hardware data prefetching units that prefetch from memory
to L2, and from L2 to L1.

Each memory controller is shared by two processors.
The Power5 memory controller has two reorder queues: a
Read Reorder Queue and a Write Reorder Queue. Each of
these queues can hold 8 memory references, where each
memory reference is an entire L2 cache line or a portion of
an L3 cache line. An arbiter selects an appropriate com-
mand from these queues to place in the Central Arbiter
Queue (CAQ), where they are sent to memory in FIFO or-
der. The memory controller can keep track of the 12 pre-
vious commands that were passed from the CAQ to the
DRAM.

The Power5 does not allow dependent memory opera-
tions to enter the memory controller at the same time, so

the arbiter is allowed to reorder memory operations arbi-
trarily. Furthermore, the Power5 gives priority to demand
misses over prefetches, so from the processor’s point of
view, all commands in the reorder queues are equally im-
portant. Both of these features greatly simplify the task of
the memory scheduler.

3.2 The Power5 Memory System

The Power5 systems that we consider use DDR2-266
DRAM chips, which are essentially a 5D structure. Two
ports connect the memory controller to the DRAM. The
DRAM is organized as 4ranks, where each rank is an or-
ganizational unit consisting of 4banks. Each bank in turn
is organized as a set of rows and columns. This structure
imposes many different constraints. For example, port con-
flicts, rank conflicts, and bank conflicts each incur their own
delay (see Section 5.4 for details), and the costs of these de-
lays depends on whether the operations are Reads or Writes.
In this system, bank conflict delays are much longer than the
delays introduced by rank or port conflicts.

4 Our Solution

This section describes our new approach to memory con-
troller design, which focuses on making the scheduler both
history-based and adaptive. A history-based arbiter uses the
history of recently scheduled memory commands when se-
lecting the next memory command. In particular, a finite
state machine encodes a given scheduling goal, where one
goal might be to minimize the latency of the scheduled com-
mand and another might be to match some desired balance
of Reads and Writes. Because both goals are important, we
probabilistically combine two FSM’s to produce an arbiter
that encodes both goals. The result is a history-based ar-
biter that is optimized for one particular command pattern.
To overcome this limitation, we introduce adaptivity by us-
ing multiple history-based arbiters; our adaptive arbiterob-
serves the recent command pattern and periodically chooses
the most appropriate history-based arbiter.

4.1 History-Based Arbiters

In this section we describe the basic structure of history-
based arbiters. Similar to branch predictors, which use the
history of the previous branches to make predictions [5],
history-based arbiters use the history of the previous mem-
ory commands to decide what command to send to memory
next. These arbiters can be implemented as an FSM, where
each state represents a possible history string. For example,
to maintain a history of length two, where the only infor-
mation maintained is whether an operation is a Read or a
Write, there are four possible history strings—ReadRead,



ReadWrite, WriteRead, andWriteWrite—leading to
four possible states of the FSM. Here, a history stringxy
means that the last command transmitted to memory wasy
and the one before that wasx.

Unlike branch predictors, which make decisions based
purely on branch history, history-based arbiters make de-
cisions based on both the command history and the set of
available commands from the reorder queues. The goal of
the arbiter is to encode some optimization criteria to choose,
for a given command history, the next command from the
set of available commands. In particular, each state of
the FSM encodes the history of recent commands, and the
FSM checks for possible next commands in some particu-
lar order, effectively prioritizing the desired next command.
When the arbiter selects a new command, it changes state
to represent the new history string. If the reorder queues are
empty, there is no state change in the FSM.

As an illustrative example, we present an FSM for an
arbiter which uses a history length of three. Assume that
each command is either a Read or a Write operation to ei-
ther port number 0 or 1. Therefore, there are four possible
commands, namely Read Port 0 (R0), Read Port 1 (R1),
Write to Port 0 (W0), and Write to Port 1 (W1). The num-
ber of states in the FSM depends on the history length and
the type of the commands. In this example, since the ar-
biter keeps the history of the last three commands and there
are four possible command types, the total number of states
in the FSM is 4�4�4=64. In Figure 2 we show of transi-
tions from one particular state in this sample FSM. In this
hypothetical example, we see that the FSM will first see if
a W1 is available, and if so, it will schedule that event and
transition into a new state. If this type of command is not
available, the FSM will look for an R0 command as the sec-
ond choice, and so on.

4.2 Design Details of History-Based Arbiters

As mentioned earlier, we have identified two optimiza-
tion criteria for prioritization: theamount of deviation from
the command pattern and theexpected latency of the sched-
uled command. The first criterion allows an arbiter to
schedule commands to match some expected mixture of
Reads and Writes. The second criterion represents the
mandatory delay between the new memory command and
the commands already being processed in the memory. We
first present algorithms for generating arbiters for each of
the two prioritization goals in isolation. We then provide
a simple algorithm for probabilistically combining two ar-
biters.

4.2.1 Optimizing for the Command Pattern

Algorithm 1 generates state transitions for an arbiter that
schedules commands to match a ratio ofx Reads andy
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Figure 2. Transition diagram for the current
state R1W1R0. Each available command type
has different selection priority.

Writes in the steady state. The algorithm starts by com-
puting, for each state in the FSM, the Read/Write ratio
of the state’s command history. For each state, we then
compute the Read/Write ratio of each possible next com-
mand. Finally, we sort the next commands according to
their Read/Write ratios. For example, consider an arbiter
with the desired pattern of “one Read per Write”, and as-
sume that the current state of the FSM isW1R1R0. The
first choice in this state should either be aW0 or W1, be-
cause only those two commands will move the Read/Write
ratio closer to 1.

In situations where multiple available commands have
the same effect on the deviation from the Read/Write ratio
of the arbiter, the algorithm uses some secondary criterion,
such as the expected latency, to make final decisions.

4.2.2 Optimizing for the Expected Latency

To develop an arbiter that minimizes the expected delay of
its scheduled operations, we first need a cost model for the
mandatory delays between various memory operations. Our
goal is to compute the delay caused by sending a particular
command,new, to memory. This delay is necessary be-
cause of the constraints betweennew and the previousn
commands that were already sent to memory. We refer to
the previousn commands as1, 2,. . . , n, where1 is the
most recent command sent andn is the oldest command
sent.

We definek cost functions,f1::k(x; y), to represent the



Algorithm 1 commandpatternarbiter(n)
// n is the history string size

1: for all command sequences of sizen do
2: r old:=Read/Write ratio of the command sequence.
3:

4: for each possible next commanddo
5: r new:=Read/Write ratio.
6: end for
7: if r old < ratio of the arbiter,x=y then
8: Read commands have higher priority.
9: else

10: Write commands have higher priority.
11: end if
12: if there are commands with equalr new then
13: Sort them with respect to expected latency.
14: Pick the command with the minimum delay.
15: end if
16:

17: for each possible next commanddo
18: Output the next state in the FSM.
19: end for
20: end for

mandatory delays between any two memory commands,x
and y, that cause a hardware hazard. Here, bothk and
the cost functions are memory system-dependent. For our
system, we have cost functions for “the delay between a
Write to a different bank after a Read”, “the delay between
a Read to the same port after a Write”, “the delay between a
Read to the same port but to a different rank after a Read”,
etc.

We assume that the arbiter does not have the ability to
track the number of cycles passed since the commands1,2, . . . ,n were sent. Therefore, we assume that those com-
mands were sent one cycle apart from each other. In the next
step, we calculate the delays imposed by eachx, x 2 [1; n℄
on new for each function,fi::k, which is applicable to any(x; new) pair. Here, the term “applicable function” refers
to a function whose conditions have been satisfied. We also
definen final cost functions,fosti::n, such thatfosti(new) = max(fj(i; new))� (i� 1)
wherei 2 [1; n℄, j 2 [1; k℄, andfj(i; new) is applicable

We take the maximum offj function values because any
previous command,i, andnew may be related by more
than onefj function. In this formula, the subtracted term(i � 1) represents the number of cyclesi that had been
sent beforenew. Thus, the expected latency that will be
introduced by sendingnew isTdelay(new) = max(fost1::n(new))

Algorithm 2 generates an FSM for an arbiter that uses

the expected latency,Tdelay, to prioritize the commands.
As with the previous algorithm, if multiple available com-
mands have the same expected latency, we use the sec-
ondary criterion—in this case the deviation from the com-
mand pattern—to break ties.

Algorithm 2 expectedlatencyarbiter(n)
// n is the history string size

1: for all command sequences of sizen do
2:

3: for each possible next commanddo
4: Calculate the expected latency,Tdelay.
5: end for
6: Sort possible commands with respect toTdelay.
7: for commands with equal expected latency valuedo
8: Use Read/Write ratios to make decisions.
9: end for

10:

11: for each possible next commanddo
12: Output the next state in the FSM.
13: end for
14: end for

4.2.3 A Probabilistic Arbiter Design Algorithm

Since there may be noa priori way to prioritize one opti-
mization criterion over the other, Algorithm 3 weights each
criterion and produces a probabilistic decision. At runtime,
a random number is periodically generated to determine the
rules for state transitions as follows:

Algorithm 3 probabilisticarbiter
1: if randomnumber< thresholdthen
2: commandpatternarbiter
3: else
4: expectedlatencyarbiter
5: end if

Basically, we interleave two state machines into one, pe-
riodically switching between the two in a probabilistic man-
ner. In this approach, the threshold value is system depen-
dent and should be determined experimentally.

4.3 Adaptive Selection of Arbiters

A schematic of our adaptive history-based arbiter is
shown in Figure 3. The memory controller tracks the com-
mand pattern that it receives from the processors and peri-
odically switches among the arbiters depending on this pat-
tern. Figure 3 depicts the overall process.



queue

...arbiter 2 arbiter narbiter 1

memory

logic
arbiter selection

read

reordered reads/writes

select 1 select 2
select n

reads

writes

write
queue

Figure 3. Overview of dynamic selection of
arbiters in memory controller.

4.3.1 Detecting Memory Command Pattern

Our memory controller assumes the availability of three
counters:Rnt andWnt count the number of reads and
writes received from the processor, andCnt provides the
period of adaptivity. EveryCnt cycles, the ratio of the
values ofRnt andWnt is used to select the most appro-
priate history-based arbiter. The Read/Write ratio can be
calculated using left shift and addition/subtraction opera-
tions; since this computation is performed once everyCnt
cycles, its cost is negligible. To prevent retried commands
from skewing the command pattern, we distinguish between
new commands and retried commands, and only new com-
mands affect the value ofRnt andWnt. The values ofRnt andWnt are set to zero whenCnt becomes zero.

5 Results

5.1 Benchmarks and Microbenchmarks

We first evaluate the performance of the three memory
schedulers using the Stream [9] and NAS benchmarks [1].
The Stream benchmarks, which others have used to measure
the sustainable memory bandwidth of systems [6, 13, 3, 16],
consist of 4 simple vector kernels: Copy, Scale, Sum, and
Triad. The NAS benchmarks are well known scientific
benchmarks, which are fairly data-intensive.

We then use a set of 14 microbenchmarks, which allows
us to explore a wider range of machine configurations, and
which allows us to explore in detail the behavior of our
memory controllers. Each of our microbenchmarks uses a
different Read/Write ratio, and each is namedxRyW , indi-
cating that it hasxRead streams andy Write streams. These

microbenchmarks represent most of the data streaming pat-
terns that we expect to see in real applications.

5.2 Schedulers Studied

We compare three memory arbiters. The first,in-order,
implements the simple FIFO policy used by most general
purpose memory controllers today. If implemented in a
Power5 system, this arbiter would transmit memory com-
mands from the reorder queues to the CAQ in the order in
which they were received from the processors.

The second arbiter implements one of the policies pro-
posed by Rixner et al. [12]. We refer to this as themem-
oryless arbiter because it does not use command history
information. This arbiter avoids long bank conflict delays
by selecting commands from the reorder queues that do not
conflict with commands in DRAM. When there are multiple
eligible commands, the oldest command is chosen.

The third arbiter is ouradaptive history-based scheduler.
Because bank conflicts cause much longer delays than rank
or port conflicts, our scheduler implements the same sim-
ple approach to avoiding bank conflicts as the memoryless
arbiter. Our scheduler then implements the adaptive history-
based technique described in Section 4 to select the most ap-
propriate command from among the remaining commands
in the reorder queues. In other words, our adaptive history-
based approach is used to handle rank and port conflicts,
but not bank conflicts. Conceptually, our history-based ap-
proach could also be used to prioritize bank conflicts, as
well, but to be effective on a system like the Power5, we
would need to use much longer history lengths than we eval-
uate in this paper.

5.3 Simulation Methodology

To evaluate performance, we use a cycle-accurate simu-
lator for the IBM Power5, which has been verified to within
1% of the performance of the actual hardware. This simula-
tor, which is one of several simulators used by the Power5
design team, simulates both the processor and the memory
system in one of two modes. The first mode can simulate
arbitrary applications using execution traces, but it can only
simulate a single-processor system. The second mode can
simulate dual-processor systems that share a memory con-
troller, but it can only simulate microbenchmarks whose be-
havior can be concisely described without execution traces.

We simulate the microbenchmarks in their entirety. To
simulate our benchmarks, which have billions of dynamic
instructions, we use uniform sampling, taking 50 uniformly
chosen samples that each consist of 2 million instructions.



5.4 Simulation Parameters

We simulate a Power5 running at 1.6GHz. The Power5
gives priority to demand misses over prefetches, so the
memory controller does not have to deal with these prior-
ities.

Our simulator models all three levels of the cache. The
L1D cache is 64KB with 4-way set associativity and the L1I
cache is 128KB with 2-way set associativity. The L2 cache
is 3�640KB in size, with 10-way set associativity and a line
size of 128B. The off-chip L3 cache is 36MB.

We simulate the DDR2-266 SDRAM chips running at
266MHz. This DRAM is organized as 4 ranks, where each
rank consists of 4 banks. Bank conflicts incur a 75ns delay
and rank conflicts a 30ns delay.

We use three types of history-based arbiters. The first,1R2W , is optimized for data streams with twice as many
Writes as Reads. The second,1R1W , is optimized for
streams with equal numbers of Reads and Writes. The third,2R1W , is optimized for streams with twice as many Reads
as Writes. These arbiters use history lengths of 2 and con-
sider commands that Read or Write from either of two ports,
so each arbiter uses a 16 state FSM.

The adaptive history-based arbiter combines these three
history-based arbiters by using the2R1W arbiter when the
Read/Write ratio is greater than 1.2, by using the1R1W
arbiter when the Read/Write ratio is between 0.8 and 1.2,
and by otherwise using the1R2W arbiter. The selection of
these arbiters is performed every 10000 processor cycles.
(Our results were not very sensitive to this period, as long
as the period was greater than about 100.)

5.5 Benchmark Results

Figure 4 shows results for the Stream benchmarks. We
see that the adaptive history-based arbiter improves execu-
tion time by 65-70% over the in-order arbiter and by 18-
20% over the memoryless arbiter. Since Copy and Scale
have both two Reads per one Write, their improvements are
the same. Sum and Triad both have three Reads per Write
and thus see the same improvements.

The NAS benchmarks provide a more comprehensive
evaluation of overall performance. The top two graphs in
Figure 5 show that improvements over the in-order method
are between 6.6% and 21.4%, with a geometric mean of
10.9%. Improvements over the memoryless method are be-
tween 2.4% and 9.7%, with a geometric mean of 5.1%. The
bottom two graphs show results when the CPU has 4 times
the clock rate, showing that future systems will benefit more
from these intelligent arbiters. Here, the geometric mean
improvement is 14.9% over the in-order arbiter and 8.4%
over the memoryless arbiter.
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Figure 4. Performance comparison of the
adaptive history-based approach against the
in-order arbiter (left) and the memoryless ar-
biter (right) for the Stream benchmarks.
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Figure 5. Performance comparison for the
NAS benchmarks. The bottom graphs show
results for a processor that is 4 times faster
than the current IBM Power5.



5.6 Microbenchmark Results

To study a broader set of hardware configurations, we
use a set of 14 microbenchmarks, ranging from 4 Read
streams and 0 Write streams, to 0 Read streams and 4 Write
streams. Figure 6 shows that for these microbenchmarks,
the adaptive history-based method yields performance re-
sults of 20-70% compared to in-order method and of 17-
20% compared to memoryless method. The performance
gain over in-order drops from the 60-65% range to the 45-
50% range as the Read/Write ratio drops from 1.5 to 1.0.
The gain over the memoryless approach is consistently in
the 17-20% range across all microbenchmarks.
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Figure 6. Performance comparison on our mi-
crobenchmarks.
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Figure 7. Performance comparison for an ar-
chitecture with no data prefetching.

By comparing Figure 7 with Figure 6, we see that if
we turn off the prefetch unit, the adaptive history-based
method’s benefit over the other two approaches is signifi-
cantly diminished because the lower memory traffic reduces
pressure on the memory controller. Figure 8 shows similar
effects if we move to a one-processor system, again with
prefetching turned off.

Figure 9 shows the performance difference of our three
history-based approaches for each microbenchmark. Our
adaptive selection mechanism chooses the best of these

history-based arbiters in all cases except for the 3r2w
benchmark, which has a 1.5 Read/Write ratio. For the 3r2w
case, our adaptive mechanism will select the third arbiter
instead of the second, yielding a 1% performance loss.
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Figure 8. Performance comparison for a one-
processor system and no prefetching.

In summary, our microbenchmark results show signifi-
cant benefit for the adaptive history-based approach on a
dual-processor system with prefetching. Features that in-
crease memory traffic, such as dual-processors and prefetch
units, increase the impact of good memory scheduling. The
NAS benchmark results presented in Section 5.5 are con-
servative because they simulate a single-processor system
with prefetching, instead of a dual-processor system. Fi-
nally, we see that the ability to choose from among 3 differ-
ent history-based arbiters typically yields a few percentages
of performance gain.
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Figure 9. Performance comparison of our
three history-based arbiters.

5.7 Understanding the Results

We now look inside the memory system to gain a better
understanding of our results. The most direct measure of the
quality of a memory controller is its impact on memory sys-
tem utilization. Figure 10 shows a histogram of the number
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Figure 10. Utilization of the DRAM for the
daxpy kernel.

of operations that are active in the memory system on each
cycle. We see that when compared against the memoryless
arbiter, our arbiter increases the average utilization from 8
to 9 operations per cycle. The x-axis goes up to 12 because
the Power5’s DRAM allows 12 memory commands to be
active at once.
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Figure 11. Comparison of retry rates.

Memory system utilization is also important when eval-
uating our results, because it is easier for an arbiter to pro-
duce performance improvements to a saturated system. We
measured the utilization of the command bus that connects
the memory controller to the DRAM, and we found that
the utilization was about 65% for the Stream benchmarks
and about 13%, on average, for the NAS benchmarks. We
conclude that the memory system was not saturated for our
workloads.

Bottlenecks in the System. To understand better why our
solution improves DRAM utilization, we now examine var-
ious potential bottlenecks within the memory controller.

The first potential bottleneck occurs when the reorder
queues are full. In this case, the memory controller must
reject memory operations, and the CPU must retry the mem-
ory operations at a later time. The retry rate does not cor-
relate exactly to performance, because a retry may occur
when the processor is idle waiting for a memory request.
Nevertheless, a large number of retries hints that the mem-
ory system is unable to keep up with the processor’s mem-
ory demands. Figure 11 shows that the adaptive history-
based method always reduces the retry rate when compared
to the in-order method, but it sometimes increases the retry
rate compared to the memoryless method.
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Figure 12. Comparison of the number of bank
conflicts in the reorder queues.

A second bottleneck occurs when no operation in the re-
order queues can be issued because of bank conflicts with
previously scheduled commands. This bottleneck is a good
indicator of arbiter performance, because a large number
of such cases suggests that the arbiter has done a poor job
of scheduling memory operations. Figure 12 compares the
total number of such blocked commands for our method
and for the memoryless method. This graph only considers
cases where the reorder queues are the bottleneck, i.e., all
operations in the reorder queues are blocked even though
the CAQ has empty slots. We see that except for two mi-
crobenchmarks, our method substantially reduces the num-
ber of such blocked operations.

A third bottleneck occurs when the reorder queues are
empty, starving the arbiter of work. Even when the reorder
queues are not empty, low occupancy in the reorder queues
is bad because it reduces the arbiter’s ability to schedule
operations. In the extreme case, where the reorder queues
hold no more than a single operation, the arbiter has no abil-
ity to reorder memory operations and instead simply for-
wards the single available operation to the CAQ. Figure 13
shows that our method significantly reduces the occurrences
of empty reorder queues, indicating higher occupancy of
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Figure 13. Reduction in the occurrences of
empty reorder queues, which is a measure of
the occupancy of the reorder queues.

these queues.
The final bottleneck occurs when the CAQ is full, forcing

the arbiter to remain idle. Figure 14 shows that the adap-
tive history-based arbiter tremendously increases this bot-
tleneck. The backpressure created by this bottleneck leads
to larger reorder queues, which are advantageous because
they give the arbiter a larger scheduling window.
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Figure 14. Increases in the occurrences
where the CAQ is the bottleneck.

To test this theory, we conducted an experiment in which
we increased the size of the CAQ. We found that as the
CAQ length increased, the CAQ bottleneck decreased, the
reorder queue occupancy fell, and the overall performance
decreased.

In summary, our solution improves bandwidth by mov-
ing bottlenecks from outside the memory controller, where
the arbiter cannot help, to inside the memory controller.
More specifically, the bottlenecks tend to appear at the end
of the pipeline—at the CAQ—where there is no more ability
to reorder memory commands. By shifting the bottleneck,
our solution tends to increase the occupancy of the reorder
queues, which gives the arbiter a larger number of memory
operations to choose from. The result is a smaller number
of bank conflicts and increased bandwidth.

5.8 Evaluating Our Solution

Perfect DRAM Results. We have so far evaluated our so-
lution by comparing against previous solutions. To see how
much room there is for further improvement, we compare
the performance of our new arbiter against a perfect DRAM
in which there are no hardware hazards. We find that for
our benchmarks, our solution achieves 95-98% of the per-
formance of the perfect DRAM.
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Figure 15. Ratio of standard deviations for 16-
different address offsets.

Sensitivity to Alignment. Another benefit of improved
memory scheduling is a reduced sensitivity to data align-
ment. With a poor scheduler, data alignment can cause sig-
nificant performance differences. The largest effect is seen
where a data structure fits on one cache line when aligned
fortuitously but straddles two cache lines when aligned dif-
ferently. In such cases, the bad alignment results in twice
the number of memory commands. If a scheduler can im-
prove bandwidth by reordering commands, it can mitigate
the difference between the well-aligned and poorly-aligned
cases. Figure 15 compares the standard deviations of the
adaptive history-based and memoryless schedulers when
data are aligned on 16 different address offsets. We see that
the adaptive history-based solution reduces the sensitivity
to alignment.

Hardware Costs. To evaluate the cost of our solution, we
need to consider the cost in terms of transistors and power.
The hardware cost of the memory controller is dominated
by the reorder queues, which dwarf the amount of combi-
national logic required to implement our adaptive history-
based arbiter. To quantify these costs, we use the imple-
mentation of the Power5 to provide detailed estimates of
transistor counts. We find that the memory controller con-
sumes 1.58% of the Power5’s total transistors. The size of
one memoryless arbiter is in turn 1.19% of the memory con-
troller. Our adaptive history-based arbiter increases thesize
of the memory controller by 2.38%, which increases the



overall chip’s transistor count by 0.038%. Given the tiny
cost in terms of transistors, we are confident that our solu-
tion has only negligible effects on power.

Queue Length Effects. The results that we have pre-
sented have all used the same queue lengths as the Power5.
As mentioned in Section 5.7, we have studied the effects of
varying the CAQ length and found that the Power5’s length
of four produced the best results. We also experimented
with larger reorder queues, but these had only small effects
on performance. Moreover, longer reorder queues would be
extremely expensive in terms of silicon, because each entry
of the Write Queue holds the addresses and contents of an
L2 cache line (or part of an L3 cache line), and the Read
Queue devotes considerable space to buffers to return the
results of Reads.

6 Conclusions

This paper has shown that memory access scheduling,
which has traditionally been important primarily for stream-
oriented processors, is becoming increasingly important for
general-purpose processors, as many factors contribute to
increased memory bandwidth demands. To address this
problem, we have introduced a new arbiter that incorpo-
rates several techniques. We use the command history—in
conjunction with a cost model—to select commands that
will have low latency. We also use the command his-
tory to schedule commands that match some expected com-
mand pattern, as this tends to avoid bottlenecks within the
reorder queues. Both of these techniques can be imple-
mented using FSM’s, but because the goals of the two
techniques may conflict, we probabilistically combine these
FSM’s to produce a single history-based arbiter that par-
tially satisfies both goals. Finally, because we cannot
know the actual command-patterna priori, we implement
three history-based arbiters—each tailored to a different
command pattern—and we dynamically select from among
these three arbiters based on the observed ratio of Reads and
Writes.

In the context of the IBM Power5, we have found that a
history length of two is surprisingly effective. Thus, while
our solution might appear to be complex, it is actually quite
inexpensive, increasing the Power5’s transistor count by
only 0.038%. Our solution is also quite effective, achiev-
ing 95-98% of the IPC of an idealized DRAM that never
experiences a hardware hazard. In terms of benchmark
performance, our technique improves IPC for the Stream
benchmarks by 63% over in-order scheduling and 19.1%
over memoryless scheduling. For the NAS benchmarks, the
improvements are 10.9% over in-order scheduling and 5.1%
over memoryless scheduling.

Finally, we have looked inside the memory system to
provide insights about how our solution changes the vari-
ous bottlenecks within the system. We find that an internal
bottleneck at the CAQ is useful because it gives the arbiter
more operations to choose from when scheduling opera-
tions. We have also explored the effects of various exter-
nal factors, such as increased clock rate, prefetching, and
the use of multiple processors. As expected, the benefit of
good memory scheduling increases as the memory traffic
increases.
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