
Memory Prefetching Using Adaptive Stream Detection

Ibrahim Hur� Calvin Lin�

ihur@cs.utexas.edu lin@cs.utexas.edu

�Dept. of Electrical and Computer Engr. �IBM Corporation �Dept. of Computer Sciences
The University of Texas at Austin Austin, TX 78758 The University of Texas at Austin
Austin, TX 78712 Austin, TX 78712

Abstract

We present Adaptive Stream Detection, a simple tech-
nique for modulating the aggressiveness of a stream
prefetcher to match a workload’s observed spatial locality.
We use this concept to design a prefetcher that resides on
an on-chip memory controller. The result is a prefetcher
with small hardware costs that can exploit workloads with
low amounts of spatial locality. Using highly accurate sim-
ulators for the IBM Power5+, we show that this prefetcher
improves performance of the SPEC2006fp benchmarks by
an average of 32.7% when compared against a Power5+
that performs no prefetching. On a set of 5 commercial
benchmarks that have low spatial locality, this prefetcher
improves performance by an average of 15.1%. When
compared against a typical Power5+ that does perform
processor-side prefetching, the average performance im-
provement of these benchmark suites is 10.2% and 8.4%.
We also evaluate the power and energy impact of our tech-
nique. For the same benchmark suites, DRAM power con-
sumption increases by less than 3%, while energy usage
decreases by 9.8% and 8.2%, respectively. Moreover, the
power consumption of the prefetcher itself is low; it is es-
timated to increase the power consumption of the Power5+
chip by 0.06%.

1. Introduction

Numerous hardware solutions have been proposed to
hide long memory latencies. Early prefetching tech-
niques [13, 22, 19, 2, 7] focused on exploiting streaming
workloads. While regular forms of spatial locality are easy
to predict, it has traditionally been difficult to exploit irreg-
ular patterns of spatial locality and even more difficult to
exploit low amounts of spatial locality.

Recently, a class of aggressive prefetching techniques

has arisen from the notion of a Spatial Locality Detection
Table [11]. These techniques track accesses to regions of
memory so that spatially correlated data can be prefetched
together [11, 15, 5, 17, 24]. The chief advantage of these
techniques is their ability to exploit irregular forms of spa-
tial locality. Their chief disadvantage is their reliance on
large tables that occupy chip area and consume power.

We propose a new solution, which uses a simple tech-
nique to augment the effectiveness of stream prefetchers.
Our technique is based on two observations. First, memory
intensive workloads with low amounts of spatial locality are
likely to still contain many very short “streams,” if “stream”
can be defined to be as short as two consecutive cache lines.
Second, stream prefetchers could effectively prefetch these
short streams if they only knew when to be aggressive.

To understand this second point, recall that stream
prefetchers look for accesses to � consecutive cache lines,
at which point the ����� cache line is prefetched; prefetch-
ing continues until a useless prefetch is detected. Thus, the
value of � determines the prefetcher’s aggressiveness, and
this value is typically fixed at design time. Even with a
small value of �, stream-based prefetchers do not fare well
on short streams because the stopping criterion is a useless
prefetch. For example, on a workload in which every stream
is of length 2, a � � � policy would successfully prefetch
the second cache line of each stream, but each successful
prefetch would be followed by a useless prefetch, so 50%
of its prefetches would be useless.

Our solution, Adaptive Stream Detection, guides the
aggressiveness of the prefetch policy based on the work-
load’s observed amount of spatial locality, as measured by
a Stream Length Histogram (SLH). An ��� is a dynami-
cally computed histogram that attributes each memory ac-
cess to a particular stream length. For example, if the ���
indicates that 70% of the memory requests were parts of
streams of length 2 and that 30% of the memory requests
were parts of streams of length 1, then an effective strategy



would always prefetch the second cache line of a stream but
never the third line. Thus, Adaptive Stream Detection can
predict when to stop prefetching without incurring a use-
less prefetch. To adapt to changes in phase behavior, new
Stream Length Histograms are computed periodically.

Adaptive Stream Detection provides two benefits. (1) It
extends the notion of a stream to include streams as short
as two cache lines. Thus, while it is inherently a stream-
based approach, it provides benefits for workloads, such as
commercial applications, that are not traditionally viewed
as stream-based. (2) Because it is stream-based, it has
low hardware costs, using small tables that have low static
power leakage.

This paper describes how Adaptive Stream Detection can
be implemented in the memory controller. In this context,
we introduce a second idea, Adaptive Scheduling, that ad-
justs the priority of prefetched commands based on the mea-
sured frequency of conflicts that prefetched commands have
caused. This adaptivity is useful because any fixed priority
may be excessively conservative for some workloads.

This paper makes the following contributions:

� We introduce Adaptive Stream Detection, a probabilis-
tic prefetching technique that adjusts the aggressive-
ness of stream prefetching based on Stream Length
Histograms, which are inexpensive to gather. This
technique addresses the question of what to prefetch.

� We use the idea of Adaptive Stream Detection to de-
sign a prefetcher that resides in the memory controller
and prefetches from DRAM into a small Prefetch
Buffer. This prefetcher uses Adaptive Scheduling to
modulate the relative priority of prefetch commands to
regular commands. We show that a prefetch buffer that
holds 16 cache lines is effective. We also see that this
memory-side prefetcher (MS) complements the IBM
Power5+’s existing stream prefetcher (PS), which per-
forms processor-side prefetching.

� We evaluate Adaptive Stream Detection using the
SPEC2006 floating point suite, the NAS benchmarks,
and a set of five commercial benchmarks. For single
threaded workloads, when we compare our technique
to a stripped down Power5+ with no prefetching (NP),
we improve the performance of the SPEC2006fp,
NAS, and commercial benchmarks by 14.6%, 11.7%,
and 9.3%, respectively. When MS is combined with
PS, forming PMS, its improvements over NP are
32.7%, 24.2%, and 15.1%, respectively. The perfor-
mance improvements for the commercial benchmarks
are noteworthy because these benchmarks exhibit low
amounts of spatial locality. We get similar results for
SMT workloads.

� We evaluate the energy and power impact of our ap-
proach. For our three benchmark suites, we find
that DRAM power consumption increases by 2.7%,
1.6%, and 2.8%, respectively, while DRAM energy
consumption decreases by 9.8%, 7.9%, and 8.2%, re-
spectively. For the four SPEC2006fp benchmarks
that have low memory bandwidth requirements, the
DRAM power impact is negligible: DRAM power in-
creases by an average of 0.12%, while energy con-
sumption decreases by 0.47%.

� We evaluate Adaptive Scheduling and show that it im-
proves upon a set of conservative fixed-priority poli-
cies by about 2.9%.

This paper is organized as follows. The next section
places our work in the context of prior work. Section 3 de-
scribes our solution. We present our experimental method-
ology in Section 4 before presenting our empirical evalua-
tion in Section 5.

2. Related Work

One line of hardware prefetching research has ex-
tended next-line prefetching [22, 13] by adding non-unit
strides [19], by predicting strides [2, 7], and by supporting
irregular strides using Markov predictors [12, 21]. Nesbit
and Smith [18] introduce the Global History Buffer to im-
prove prefetch effectiveness and reduce table sizes. None
of these prefetchers has successfully exploited low amounts
of spatial locality.

Another line of research focuses on detecting and
exploiting spatial locality without tracking individual
streams [11, 15, 17, 5]. Instead, variations of the Spatial
Locality Detection Table, introduced by Johnson et al. [11],
track accesses to individual regions of memory so that spa-
tially correlated data can be prefetched together. A problem
with these approaches is the need for large tables to detect
locality. Somogyi et al. [24] show how much smaller tables
can be used by correlating spatial locality with the program
counter in addition to parts of the data address. As a re-
sult, Spatial Memory Streaming can use tables as small as
64KB. Moreover, Somogyi et al. show performance im-
provements for commercial workloads, indicating that their
technique can handle locality patterns that span large re-
gions of memory. By contrast, Adaptive Stream Detection
cannot prefetch as aggressively across irregular locality pat-
terns but instead attempts to use a much smaller amount of
hardware to prefetch the very small streams that likely make
up these larger patterns.

Scheduled Region Prefetching (SRP) [16] prefetches
large regions of memory, such as 4KB at a time, and in-
troduces mechanisms for reducing the opportunity cost of
prefetches. Prefetches to open banks are given priority,



prefetched data are brought into the LRU position of the
L2 sets, and prefetched commands are given low priority
in the memory controller. In particular, the SRP priori-
tizer receives feedback from the memory system and is-
sues prefetch commands only if the channels are idle and
there is no pending request from the L2 cache. By contrast,
Adaptive Scheduling uses feedback from the memory sys-
tem to select from among five different prioritization poli-
cies, where its most conservative policy is roughly equiva-
lent to the SRP prioritization policy. Adaptive Scheduling
can improve performance because for some workloads, the
most conservative policy unnecessarily inhibits prefetches.
For example, there may be pending demand requests that
will not conflict with a prefetch command because they tar-
get different memory banks.

One issue with SRP is the high memory bandwidth pres-
sure that it incurs because of its large regions. Wang et
al. [26] solve this problem by using the compiler to help
select the region size. Our solution instead uses a modest
amount of hardware to prefetch at a much finer granularity.

Others have studied memory-side prefetching [1, 4, 27,
28, 23] and have shown that memory-side prefetching is
largely orthogonal to processor-side prefetching [4, 8]. Un-
like our approach, previous methods do not monitor the sta-
tus of the memory system, so they can increase latencies for
regular memory accesses.

3. Our Solution

This section describes our new prefetcher, which resides
in the memory controller. This prefetcher addresses two
major questions: (1) How can we reduce the number of
unnecessary prefetch requests? (2) How can we reduce
the opportunity cost of prefetches? Adaptive Stream De-
tection addresses the first issue, and Adaptive Scheduling
addresses the second. To provide context, we first briefly
describe the Power5+’s memory controller. After explain-
ing the basic idea behind Adaptive Stream Detection, we
describe the mathematical details of how ���’s are used,
discuss implementation issues, and present the organization
of our prefetcher. Finally, we present details of Adaptive
Scheduling.

The Power5+ Memory Controller. As shown in Fig-
ure 1, the Power5+ memory controller sits between the
L2/L3 caches and DRAM. As memory commands enter
the memory controller, they are placed in Reorder queues.
On each cycle, the scheduler selects a command from the
Reorder queues, which is then sent to the Centralized Ar-
biter Queue (CAQ), which in turn transmits commands to
DRAM in FIFO order. Note that the Power5+’s processor-
side prefetcher emits commands that bring data into the L2

Read/Write

Controller
Memory

Arbiter

(CAQ)

Centralized

DRAM

from processors
Reads/Writes

Queues
Reorder

Scheduler

Queue

Figure 1. The IBM Power5+ Memory System.

and L1 caches, and these commands appear in the memory
controller indistinguishable from any other command.

���� ������	
 ���
� �
�
�����

Adaptive Stream Detection uses Stream Length His-
tograms, ��� , to capture spatial locality and guide
prefetch decisions. For example, Figure 2 shows an ���
for one epoch of the GemsFDTD benchmark from the
SPEC2006 suite. In an ��� , the height of the bar at lo-
cation � represents the number of Read commands that are
part of a stream of length �. Depending on the detected
stream length of the current Read request, the prefetcher
checks the ��� and determines how many, if any, sequen-
tial cache lines to prefetch.

In the example ��� of Figure 2, we see that 21.8% of
all Read requests belong to streams of length 1, 43.7% of
the Reads are part of streams of length 2, etc. The right-
most bar indicates that 1.2% of all Read requests were part
of streams of length 16 or more. Given this information,
when a Read request, ��, arrives and is the first element
of a new stream, a prefetch request should be issued be-
cause �� is more likely to be part of a stream of length 2
or longer (78.2% probability) than to be part of a stream
of length 1 (21.8%). On the other hand, if a Read request,
��, is the second line of a stream, a prefetch should not
be issued because there is a 43.7% probability that �� is
part of a stream of length 2, which is greater than the 34.5%
likelihood that it is part of a longer stream. With similar
reasoning, prefetches should be issued for any Read request
whose current stream length is 3 or greater than 6. This ex-
ample shows that the use of the ��� allows a prefetcher
to make rather sophisticated prefetching decisions based on
the length of an individual stream.

The prefetcher can also use the ��� to decide whether
to generate multiple prefetches—although we do not evalu-



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Stream Length

0

10

20

30

40

50

Fr
eq

ue
nc

y 
(%

)

Figure 2. Stream Length Histogram (SLH) for
an arbitrary epoch of the GemsFDTD bench-
mark.

ate this idea in this paper. For example, when �� is part of
a stream of length 1, the prefetcher decides whether to gen-
erate two consecutive prefetches by adding the probabilities
of the first two bars and comparing the sum with the rest of
the histogram. If the sum of the first two bars is less than
the sum of the other bars, and if the prefetcher has already
decided to prefetch one line, it generates a prefetch for the
second line as well.

Because memory access behavior typically varies over
time, our solution periodically creates an ��� after every �
Read requests, where � is known as an epoch. Thus, in every
epoch, our method constructs a new��� for use in the next
epoch. Figure 3 shows how epochs can vary widely over
time. To keep track of increasing or decreasing streams, we
need one ��� for each direction.

���� ����� ��
 ��� �� �
�
�� ��������

Our probabilistic approach to prefetching makes deci-
sions by comparing the likelihood that a Read request will
be the last element of a stream against the likelihood that it
will be part of a longer stream. In this subsection, we derive
inequalities that guide these prefetch decisions. Our discus-
sion also establishes the transition from the ��� concept
to its implementation that we present later in Section 3.4.

Definitions. To describe our method, we define two func-
tions, ��	�� and 
 ��, which can be used to compute an
��� , as follows:

��	���: the number of Reads that are part of streams of
length � or longer, where � � � � � and � is the longest
stream that we track. For any � � �, ��	��� � �.


 ��� ��: the sum of probabilities that a Read is part of any
stream of length �, where � � � � � and � � �� � � �. We

can define 
 ��� �� in terms of ��	�� as follows:


 ��� �� � ���	���� ��	�� � ������	��� (1)

The value of the ��� bar of an ��� equals 
 ��� ��.

Prefetch Decision. To determine whether to issue a
prefetch, we check whether the following condition is sat-
isfied for a Read request, ��, that is the ��� element of a
stream:


 ��� �� � 
 ��� �� �� (2)

This inequality states that the probability that the most re-
cent Read request, ��, is part of a stream of length � is
smaller than it being a part of a stream of length longer than
�. We can simplify the inequality (2) as follows:


 ��� �� � 
 ��� �� �� (3)

�
��	���� ��	��� ��

��	���
�

��	��� ��� ��	��� ��

��	���
(4)

� ��	��� � �� ��	��� �� (5)

Our technique uses the inequality (5) to make next line
prefetch decisions. We provide, without proof, a general-
ized version of (5) to prefetch � consecutive lines after ��:

��	��� � �� ��	��� �� (6)

���� ��
�
���
� �
����

The organization of our prefetcher is shown in Figure 4,
where the gray boxes represent our additions to the mem-
ory controller. Read commands enter the memory controller
and are sent to both the original memory controller and to
the Stream Filter. The Stream Filter keeps track of Read
streams and generates the ��� . This information from the
Stream Filter is then fed to the Prefetch Generator, which
decides whether a prefetch command should be issued, and
if so, places the prefetch command in the Low Priority
Queue (LPQ), where the Final Scheduler can consider it,
along with other commands in the LPQ and CAQ, when se-
lecting commands to issue to DRAM. Any prefetched data
are then stored in the Prefetch Buffer.

The Prefetch Buffer is checked twice. It is first checked
before Read commands are placed in the CAQ, so that Read
commands can be satisfied by the Prefetch Buffer, in which
case the latency of going to DRAM is saved and the Read
command is squashed. The Prefetch Buffer is checked again
when the Final Scheduler selects a Read command from the
CAQ to send to memory; this check is useful because the
desired data may have arrived in the Prefetch Buffer while
the Read command was resident in the CAQ.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Stream Length

0

10

20

30

40

50

60

70

80

90

100
Fr

eq
ue

nc
y 

(%
)

For all epochs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Stream Length

For an arbitrary epoch

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Stream Length

For another arbitrary epoch

Figure 3. Stream Length Histograms (SLH) for the GemsFDTD benchmark from the SPEC2006fp suite
show that the SLH’s vary widely at different points in time. Here the epoch length is 2000 reads.

original
Power5+
memory
controller

update check status

check status

from processors

Reads Reads/Writes

prefetched data

Final Scheduler

Conflict,
Queue
Status

DRAM

Stream
Filter

Centralized
Arbiter
Queue
(CAQ)

Low

Read/Write
Reorder
Queues

Scheduler

MEMORY
CONTROLLER

Queue
Priority

Prefetch
Buffer

(LPQ)

Prefetch
Generator

Figure 4. Overview of our prefetcher.

Stream Filter. To maintain information about Read
streams, the Stream Filter uses one slot to track each Read
stream. Each slot maintains (1) the last address accessed for
this stream, (2) the length of the stream, (3) the stream’s di-
rection, and (4) the stream’s lifetime, which indicates when
the stream should be evicted. These slots are used as fol-
lows:

� If the Read, ��, is not part of a stream and if there is a
vacant slot in the Prefetch Filter, the last access field is
set to the address of the Read request, the length field
is initialized to 1, the lifetime is initialized to a prede-
termined value, and the direction is set to Positive.

� If �� is not part of a stream and there is no available
slot, no prefetch will be generated after ��, but the
��� structure is updated as if a stream of length 1
had been detected.

� If �� is the most recent element of a previously de-
tected stream, the stream length is incremented by 1,
the last access is set to the address of ��, and the life-
time of the stream is incremented by a predetermined
value.

� The direction of the stream is set to Negative if the
length of the previous stream is 1 and the address of
�� is smaller than the last address of the stream.

� At every processor cycle, the lifetime fields are decre-
mented by one. A stream is evicted from a slot when
its lifetime expires. At this point, the ��� structure is
updated using the length value in the Stream Filter.

� At the end of each epoch, all streams are evicted from
the Stream Filter.

Prefetch Buffer. The Prefetch Buffer holds data that are
fetched from memory by the memory-side prefetcher. We
assume that this buffer is a set associative cache with an
LRU replacement policy. When there is a write request to
an address in the Prefetch Buffer, we invalidate the entry in
the buffer. We also invalidate the entry if a regular Read
request matches the address, because in such cases the data
will likely be moved to the L1 or L2 cache, so it is unlikely
to be useful in the Prefetch Buffer again.

���� ���

������� �� ������	
 ���
�
�
�
�����

We now present details for implementing Adaptive
Stream Detection. For simplicity, we restrict our explana-
tion to streams with increasing addresses only, and we only
discuss prefetching for one cache line. It is straightforward
to generalize this approach to streams with decreasing ad-
dresses and multiple line prefetching.

Rather than implement the ��� explicitly, we construct
the information in the ��� using two tables of length



�. These Likelihood Tables, LHTcurr and LHTnext, cor-
respond to the lht() function discussed previously. A given
epoch uses and updates information from LHTcurr and
gathers information for the start of the next epoch in LHT-
next. LHTnext is updated using the information from the
Stream Filter. When an entry of length � in the Stream Fil-
ter is invalidated, LHTnext[i] is incremented by �, for all �,
where � � � � �. At the end of an epoch, LHTnext is mod-
ified using the remaining valid entries in the Stream Filter;
the contents of LHTnext are moved to LHTcurr; and LHT-
next is re-initialized. Each entry of the tables is a ��	

�
���

bit counter, where � is the maximum epoch length.
LHTcurr is used to make prefetch decisions for the

current epoch. This table has one comparator for each
pair of consecutive table entries, i.e., LHTcurr[i] and
LHTcurr[i+1], for � � � � �. At the beginning of an
epoch, the contents of LHTcurr are used to construct the
��� . As the epoch progresses, this information is modi-
fied using the observed stream lengths of the current epoch.
When an entry of length � in the Stream Filter is invali-
dated, the value of LHTcurr[i] is decremented by �, for all
�, where � � � � �.

When the Stream Filter observes that a Read request
is part of a stream of length �, prefetch requests are gen-
erated using the output of the comparison of LHTcurr[k]
and LHTcurr[k+1], as in inequality (5). Instead of multi-
plying LHTcurr[k+1] by 2, for any �, the comparator for
the (LHTcurr[k], LHTcurr[k+1]) pair takes the left shifted
value of LHTcurr[k+1] as input.

���� ������	
 ���
� ����

Clearly, speculative prefetch commands should be given
lower priority than regular commands. But because mem-
ory systems are becoming increasingly complex, and be-
cause the Final Scheduler must make decisions whose ef-
fects may not be seen until the future, it is not obvious what
policy provides the best performance. For example, a con-
servative policy that always gives prefetch commands lower
priority than regular commands may unnecessarily block
prefetch commands behind regular commands that cannot
issue due to conflicts in the memory system. Thus, rather
than dictate a particular policy at design time, Adaptive
Scheduling uses feedback to dynamically select from one of
five policies in order of decreasing conservativeness: Only
issue a command from the LPQ (1) if the CAQ is empty and
the Reorder Queues are empty, (2) if the CAQ is empty and
the Reorder queues have no issuable commands, (3) if the
CAQ is empty, (4) if the CAQ has at most 1 entry and the
LPQ is full, (5) if the first LPQ entry has an earlier times-
tamp than the first CAQ entry.

To choose from among these policies, the memory con-
troller tracks the number of times that a regular command

in the Reorder Queues cannot proceed to the CAQ because
it conflicts in the memory system with a previously issued
prefetch command. As the occurrences of these conflicts
grows (or shrinks), the policy becomes more (or less) con-
servative. The policy is adjusted using the same epoch size
that is used to compute Stream Length Histograms. Thus,
this approach determines the priority of prefetch commands
based on a measure of memory system performance, rather
than on some instantaneous property such as occupancy of
a queue.

4. Experimental Methodology

���� !
�����"�

Our evaluation uses the SPEC2006fp benchmarks, the
NAS benchmarks, and a set of IBM internal commercial
benchmarks. The SPEC2006fp benchmarks are the latest
versions of the SPEC floating point benchmarks. We do
not use the SPEC2006int suite because with the Power5+’s
large caches, these programs have low memory pressure.
The NAS benchmarks [3] are a group of eight programs de-
rived from computational fluid dynamics applications; we
use serialized versions of the class B benchmarks. Our
commercial benchmarks represent commercial server appli-
cations, namely tpc-c, trade2, cpw2, sap, and notesbench.
Tpc-c is an online transaction processing workload; cpw2
is a Commercial Processing Workload that simulates the
database server of an online transaction processing environ-
ment; trade2 is an end-to-end web application that models
an online brokerage; sap is a database workload; and notes-
bench is a tool that evaluates the performance of a set of
systems which are running Lotus Notes.

���� �� ���
� ����


We evaluate performance in the context of the IBM
Power5+ [6, 14], which is the latest member of the
Power4 [25] line of processors. The Power5+ chip has more
than 275 million transistors. The Power5+ has one mem-
ory controller and two processors per chip, where each pro-
cessor supports two SMT threads and has split L1 D and I
caches. The chip has a unified L2 cache shared by the two
processors, along with an optional L3 cache.

We simulate a Power5+ running at 2.132GHz. Our sim-
ulator models all three levels of the cache. The L1D cache
is 32KB with 4-way set associativity and the L1I cache
is 64KB with 2-way set associativity. The L2 cache is a
3�640KB shared cache, with 10-way set associativity and
a line size of 128B. The off-chip L3 cache is 36MB. We
simulate the DDR2 SDRAM chips running at 533MHz.

The Power5+ [14] has an aggressive processor-side
prefetching unit [25] that prefetches from memory to L2



and from L2 to L1. The prefetcher implements a sequen-
tial prefetching policy that waits to issue prefetches until
it detects two consecutive cache misses. There are 12 en-
tries in the stream detection unit, and eight streams can be
prefetched concurrently. When the steady state is reached,
each stream brings one additional line into the L1 cache,
and one additional line into the L2 cache.

���� �� ������ #
���������

To evaluate performance, we use a cycle-accurate sim-
ulator for the IBM Power5+, which has been verified to
within 1% of the performance of the actual hardware. This
simulator, one of several used by the Power5+ design team,
is on the order of 1 million lines of C and C++ code, and
it uses execution traces to simulate both the processor and
the memory system. To simulate SPEC and NAS bench-
marks, which have billions of dynamic instructions (some
of the SPEC2006fp benchmarks have trillions of instruc-
tions), we use uniform sampling, taking 50 uniformly cho-
sen samples that each consist of 2 million instructions. For
commercial benchmarks, we use special hardware to col-
lect traces. The Power5+ simulator is integrated with Mem-
sim [20], a DRAM simulator that jointly models power and
performance of the main memory subsystem. In this simu-
lation environment, Memsim models all the memory system
activity while synchronizing with the Power5+ simulator at
every processor cycle.

5. Experimental Results

We evaluate Adaptive Stream Detection along several
dimensions. We present overall performance and power
results for all three benchmark suites. To save space,
we then use a subset of the benchmarks to illustrate ad-
ditional points, choosing the two best-case and the two
worst-case benchmarks—in terms of PMS performance
improvement—from the SPEC and commercial bench-
marks.

���� ����$��
 %����

We evaluate a prefetcher that is configured as follows:
Each thread has a Stream Filter with 8 slots and LHTnext
and LHTcurr tables that each hold 16 entries. Because
streams are tracked in both the positive and negative di-
rections, LHTnext and LHTcurr each require 32 counters
per thread. In addition to these per-thread resources, the
prefetcher has one 16 entry Prefetch Buffer (2KB) and an
LPQ with the same number of entries—3—as the CAQ. The
current Power5+ memory controller occupies about 1.61%
of the entire chip area, with the dominant portion of the
memory controller being control logic. Our extensions to

the memory controller increase the area of the memory con-
troller by about 6.08%, resulting in a 0.098% increase in the
total chip area.

���� !
�����" &
� ���

We now compare simulation results for four configura-
tions: no-prefetching (NP), processor-side prefetching only
(PS), memory-side prefetching only (MS), and processor-
and memory-side prefetching together (PMS). In PMS, only
the memory-side prefetcher uses Adaptive Stream Detec-
tion. In the following graphs, we present three different
comparisons: (1) PMS vs. NP (2) MS vs. NP, and (3) PMS
vs. PS.

bw
av

es
 

ga
m

es
s

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
A

D
M

le
sl

ie
3d

na
m

d

de
al

II

so
pl

ex

po
vr

ay

ca
lc

ul
ix

G
em

sF
D

T
D

to
nt

o

lb
m

w
rf

sp
hi

nx
3

A
ve

ra
ge

0

10

20

30

40

50

60

70

80

Pe
rf

or
m

an
ce

 G
ai

n 
(%

)

PMS vs NP
MS vs NP
PMS vs PS

Figure 5. Performance improvements for the
SPEC2006fp Benchmarks.

bt cg ep ft is lu m
g sp

A
ve

ra
ge

0

10

20

30

40

50

Pe
rf

or
m

an
ce

 G
ai

n 
(%

)

PMS vs NP
MS vs NP
PMS vs PS

Figure 6. Performance improvements for the
NAS Benchmarks.

We see that the PMS configuration performs best, and the
benefits from memory-side and processor-side prefetching
are largely complementary but not completely orthogonal.

For the SPEC2006fp benchmarks (Figure 5), we find
that the performance benefit of PMS over NP is between



0-68.6%, with an average of 32.7%. MS improves perfor-
mance over NP by an average of 14.6%, and PMS improves
over PS by an average of 10.2%. For the NAS benchmarks
(Figure 6), the PMS approach sees an average improvement
of 24.2% over NP and 8.1% over PS. For the commercial
benchmarks (Figure 7), the PMS approach sees an average
improvement of 15.1% over NP and 8.4% over PS.

tp
cc

tr
ad

e2
 

cp
w

2

sa
p

no
te

sb
en

ch

A
ve

ra
ge

0

5

10

15

20

Pe
rf

or
m

an
ce

 G
ai

n 
(%

)

PMS vs NP
MS vs NP
PMS vs PS

Figure 7. Performance improvements for the
commercial benchmarks.

SMT Results. We have repeated the above experiments
on a system that uses two SMT threads on the same proces-
sor, but for space reasons we omit these graphs. For these
experiments, we leave the Prefetch Buffer size (16 cache
lines) unchanged, but we double the size of the Stream Fil-
ter and the number of LHT tables, so that each thread can
track its own set of streams. We find that SMT performance
improvements are about the same as the single-threaded re-
sults. For example, PMS improves performance over PS by
10.7%, 9.2%, and 7.5%, respectively, for the SPEC2006fp,
NAS, and commercial benchmarks. The improvements for
PMS over NP are 28.5%, 20.4%, and 11.1%, respectively.

We find it critical to replicate the locality identification
hardware—in our case the Stream Filter—for each thread.
For our solution, this hardware is small, as opposed to many
other solutions [17, 5, 24] for which large tables would have
to be replicated.

5.2.1. Power and Energy Effects

In Figures 8, 9, and 10, we compare PMS to PS in terms
of DRAM power usage and energy consumption. We find
that PMS increases power consumption, on the average, by
2.7%, 1.6%, and 2.8% for SPEC2006fp, NAS, and com-
mercial benchmarks, respectively. For the same bench-
marks, PMS reduces energy consumption by 9.8%, 7.9%,
and 8.2%. For the four benchmarks that are not mem-

bw
av

es
 

ga
m

es
s

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
A

D
M

le
sl

ie
3d

na
m

d

de
al

II

so
pl

ex

po
vr

ay

ca
lc

ul
ix

G
em

sF
D

T
D

to
nt

o

lb
m

w
rf

sp
hi

nx
3

A
ve

ra
ge

0

5

10

15

20

25

(%
)

Power Increase
Energy Reduction

Figure 8. DRAM Power and Energy compari-
son for the SPEC2006fp benchmarks.

bt cg ep ft is lu m
g sp

A
ve

ra
ge

0

5

10

15

20

25

 (
%

)

Power Increase
Energy Reduction

Figure 9. DRAM Power and Energy compari-
son for the NAS benchmarks.

tp
cc

tr
ad

e2
 

cp
w

2

sa
p

no
te

sb
en

ch

A
ve

ra
ge

0

5

10

15

20

25

(%
)

Power Increase
Energy Reduction

Figure 10. DRAM Power and Energy compar-
ison for the commercial benchmarks.



ory intensive—gamess, namd, povray, and calculix— the
power increase is negligible. Again, for SMT workloads,
the DRAM power and energy results are similar to the sin-
gle threaded case.

Other Power Costs. Of course, the implementation of the
prefetcher itself also consumes power. We do not have
benchmark-specific analyses of this power usage, but an
analysis of the Power5+ chip and an area-based estima-
tion of the MS prefetcher provides the following figures.
The memory controller on the Power5+ consumes about
1% of the chip’s power. The MS prefetcher increases
the power of the memory controller by approximately 6%,
which is 0.06% of the chip’s total power. As a reference,
the Power5+ chip typically consumes roughly four times
the power as the DRAM chips for our workloads.

By contrast, if we were to add a 64KB table for detect-
ing spatial locality, as suggested by other approaches, we
would add four such tables—one for each thread—for the
Power5+. We believe that each 64KB table would consume
up to 25% of the power of a 64KB L1 I-cache (Loads consti-
tute roughly 25% of all instructions), which for the Power5+
is about 0.6% of the chip’s power. To support four such ta-
bles would increase the chip’s active power by about 2.4%.
Moreover, as leakage power becomes more important to fu-
ture systems, the power effects of large tables will become
more significant.

���� �
����
� &
� ���

Importance of Adaptive Stream Detection and Adaptive
Scheduling. Figure 11 shows that both Adaptive Stream
Detection (ASD) and Adaptive Scheduling contribute to
performance gain. In this figure, the first bars in each clus-
ter represent normalized execution times for our PMS ap-
proach. The next five bars compare the PMS against the
five scheduling policies that we discussed in Section 3.5.
We see that the Adaptive Scheduling improves performance
upon these fixed policies between 2.3% and 3.6%. We con-
clude that the impact of Adaptive Stream Detection is much
more significant than that of Adaptive Scheduling.

Figure 11 also provides a head-to-head comparison of
Adaptive Stream Detection against both next-line prefetch-
ing (second bar from the right) and the Power5’s processor-
side prefetcher (rightmost bar) when all are implemented in
the memory controller. We see that Adaptive Stream De-
tection provides performance that is 8.4% better than the
next-line prefetcher. Somewhat surprisingly, in this context
the Power5-style prefetcher yields worse performance than
the next-line prefetcher.

Figure 12 shows that a significant portion of streams are
of length five or shorter. These short streams are where
Adaptive Stream Detection sees the most benefit. A next-

bw
av

es
 

m
ilc

G
em

sF
D

T
D

to
nt

o

tp
cc

tr
ad

e2 sa
p

no
te

sb
en

ch

0.50

0.75

1.00

1.25

1.50

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

ASD + Adaptive Scheduling (best)
ASD + scheduling method 1 (most conservative)
ASD + scheduling method 2
ASD + scheduling method 3
ASD + scheduling method 4
ASD + scheduling method 5 (least conservative)
no ASD + next-line prefetcher + adaptive scheduling
no ASD + P5-style prefetcher + adaptive scheduling

Figure 11. Impact of Adaptive Stream Detec-
tion and Adaptive Scheduling.

line prefetcher generates useless prefetches for all streams
of length one, and we see that the percentage of such
streams is quite high for these benchmarks. There is also a
significant number of streams of length 2-5, which is where
a Power5-style stream-based prefetcher sees the worst per-
formance: For these streams the useless prefetch that it is-
sues before detecting the end of a stream represents a non-
trivial fraction of the total prefetches. Finally, observe that
even the four commercial benchmarks, which have poor
spatial locality, have a significant percentage of streams of
length 2-5: roughly 37% for tpc-c, 49% for trade2, 40% for
sap, and 62% for notesbench. These percentages help ex-
plain why Adaptive Stream Detection is beneficial even for
workloads with low spatial locality.

bw
av

es
 

m
ilc

G
em

sF
D

T
D

to
nt

o

tp
cc

tr
ad

e2 sa
p

no
te

sb
en

ch

0

10

20

30

40

50

60

70

80

90

100

(%
)

stream length 1
stream length 2
stream length 3
stream length 4
stream length 5

Figure 12. Stream Length Histograms of eight
benchmarks. Streams of lengths between 1
and 5 constitute 78–96% of all streams.



Prefetch Efficiency. Figure 13 presents three measures of
the effectiveness of Adaptive Stream Detection: (1) the per-
cent of useful prefetches, (2) the prefetch coverage, that is,
the percent of Read commands (including processor-side
prefetches) that get its data from the Prefetch Buffer, and
(3) the percentage of the regular memory commands—both
Reads and Writes—that are delayed because of memory-
side prefetches. These values pertain only to prefetches
generated by the memory-side prefetcher, not the processor-
side prefetcher. We see that the percentage of useful
prefetches is between 82% and 91%. The coverage is be-
tween 19% and 34%, and only 1-3% of regular commands
are delayed by the memory-side prefetch commands.

bw
av

es
 

m
ilc

G
em

sF
D

T
D

to
nt

o

tp
cc

tr
ad

e2 sa
p

no
te

sb
en

ch

0
10
20
30
40
50
60
70
80
90

100
110
120

(%
)

useful prefetches 
coverage
delayed regular commands

Figure 13. Effectiveness of our prefetching
approach.

Sensitivity to Prefetch Buffer and Stream Filter Size.
Figures 14 and 15 show, for our PMS approach, the perfor-
mance effect of the size of the Prefetch Buffer and Stream
Filter. In our simulations, we use a configuration with a
16-block prefetch buffer and an 8-entry stream filter. We
find that increasing the size of the Prefetch Buffer or Stream
Filter beyond this configuration improves performance but
with diminishing returns.

Accurately Constructing Frequency Histograms. The
success of Adaptive Stream Detection depends on the ac-
curacy of the computed Stream Length Histograms, which
are computed using the Stream Filter. Because the Stream
Filters have finite size, the computed ��� is actually an
approximation of a complete ��� . We have found that
this approximation of the ��� closely matches the actual
��� , as shown in Figure 16, which is a sample epoch in
the GemsFDTD benchmark.

bw
av

es
 

m
ilc

G
em

sF
D

T
D

to
nt

o

tp
cc

tr
ad

e2 sa
p

no
te

sb
en

ch

0.5

1.0

1.5

Pe
rf

or
m

an
ce

 8 blocks
16 blocks
32 blocks
1024 blocks

Figure 14. Sensitivity of PMS to prefetch
buffer size.

bw
av

es
 

m
ilc

G
em

sF
D

T
D

to
nt

o

tp
cc

tr
ad

e2 sa
p

no
te

sb
en

ch

0.5

1.0

1.5

Pe
rf

or
m

an
ce

4 entry
8 entry
16 entry
64 entry

Figure 15. Sensitivity of PMS to stream filter
size.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Stream Length

0

10

20

30

40

50

Fr
eq

ue
nc

y 
(%

)

actual
our approximation

Figure 16. Accuracy of calculating Stream
Length Histograms.



Interaction with the Memory Scheduler. The impact of
a prefetcher can be sensitive to the choice of memory sched-
uler (Scheduler in Figures 1 and 4) that is used. For the re-
sults presented in this paper, we use the Adaptive History-
Based memory scheduler (AHB) [9, 10], but to investi-
gate the interaction between memory scheduling algorithms
and our new prefetching technique, we also study two less
sophisticated memory schedulers, in-order and memory-
less [9], which provide reduced DRAM bandwidth com-
pared to the AHB scheduler. When a simple in-order sched-
uler is used, the performance gain of our prefetcher is re-
duced by about 5%. For the better memoryless scheduler,
the performance gain of our prefetcher is reduced by about
1%. These results indicate that the benefit of our prefetch-
ing approach increases as other bottlenecks in the memory
subsystem are reduced.

6. Conclusions

We have introduced a new stream-based prefetching
technique that is effective for streams of any length, includ-
ing extremely short streams. The key idea is to monitor the
amount of spatial locality in a program’s execution to adjust
the aggressiveness of a basic stream prefetcher. By cap-
turing such spatial locality in a Stream Length Histogram,
our prefetcher can probabilistically decide when to start and
stop prefetching based on the recently observed behavior. A
secondary contribution is the notion of Adaptive Schedul-
ing, which adapts the aggressiveness of the prefetcher based
on the observed number of conflicts between prefetch com-
mands and regular commands. Previous techniques [16]
have monitored specific aspects of the memory system, but
we show that such fixed policies can be overly conservative.

Using extremely accurate simulators for a modern mi-
croprocessor and its memory system, we have shown that
Adaptive Stream Detection and Adaptive Scheduling pro-
vide significant performance improvements, even for com-
mercial workloads that have low spatial locality. This so-
lution also has low DRAM power costs and modestly im-
proves DRAM energy consumption. If implemented in the
Power5+, our solution increases the area of the chip by less
than 0.1%. Compared to other prefetching strategies, the
hardware cost of our approach is minimal. Moreover, be-
cause its spatial locality detection component is small, the
cost advantage of Adaptive Stream Detection improves—
relative to other approaches that require large tables—as the
number of hardware threads increases.

Conceptually, we have shown that simple stream-based
prefetching can be effective, even for commercial work-
loads that exhibit low amounts of spatial locality. As future
work, we will consider applying Adaptive Stream Detection
to processor-side prefetching.

Acknowledgments. We thank Alper Buyuktosunoglu for
his helpful expertise on power consumption. We thank
Doug Burger and E Lewis for their comments on an early
draft of this paper. We thank the entire IBM Power5 team, in
particular, Men-Chow Chiang, Cheryl Chunco, Steve Dod-
son, John Griswell, Douglas Logan, John McCalpin, Gary
Morrison, Stephen J. Powell, and Karthick Rajamani. This
work was supported by NSF grant ACI-0313263, an IBM
Faculty Partnership Award, DARPA contract F33615-03-C-
4106, and DARPA contract NBCH30390004.

References

[1] T. Alexander and G. Kedem. Distributed prefetch-
buffer/cache design for high-performance memory systems.
In HPCA ’96: Proceedings of the 2nd International Sym-
posium on High Performance Computer Architecture, pages
254–263, 1996.

[2] J.-L. Baer and T.-F. Chen. Effective hardware-based data
prefetching for high-performance processors. IEEE Trans-
actions on Computers, 44(5):609–623, 1995.

[3] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter,
L. Dagum, R. Fatoohi, S. Fineberg, P. Frederickson,
T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrish-
nan, and S. Weeratunga. The NAS parallel benchmarks
(94). Technical report, RNR Technical Report RNR-94-007,
March 1994.

[4] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang,
E. Brunvand, A. Davis, C.-C. Kuo, R. Kuramkote,
M. Parker, L. Schaelicke, and T. Tateyama. Impulse: Build-
ing a smarter memory controller. In HPCA ’99: Proceedings
of the 5th International Symposium on High Performance
Computer Architecture, pages 70–79. IEEE Computer Soci-
ety, 1999.

[5] C. F. Chen, S.-H. Yang, B. Falsafi, and A. Moshovos. Accu-
rate and complexity-effective spatial pattern prediction. In
HPCA ’04: Proceedings of the 10th International Sympo-
sium on High Performance Computer Architecture, pages
276–287. IEEE Computer Society, 2004.

[6] J. Clabes, J. Friedrich, M. Sweet, J. DiLullo, S. Chu,
D. Plass, J. Dawson, P. Muench, L. Powell, M. Floyd,
B. Sinharoy, M. Lee, M. Goulet, J. Wagoner, N. Schwartz,
S. Runyon, G. Gorman, P. Restle, R. Kalla, J. McGill, and
S. Dodson. Design and implementation of the Power5 mi-
croprocessor. In Proceedings of the 41st Annual Conference
on Design Automation, pages 670–672, 2004.

[7] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic.
Memory-system design considerations for dynamically-
scheduled processors. In ISCA ’97: Proceedings of the 24th
Annual International Symposium on Computer Architecture,
pages 133–143, New York, NY, USA, 1997. ACM Press.

[8] C. Hughes and S. Adve. Memory-side prefetching for linked
data structures. Technical Report UIUCDCS-R-2001-2221,
University of Illinois at Urbana-Champaign, 2001.

[9] I. Hur and C. Lin. Adaptive history-based memory sched-
ulers. In Proceedings of the 37th Annual ACM/IEEE Inter-
national Symposium on Microarchitecture, pages 343–354,
December 2004.



[10] I. Hur and C. Lin. Adaptive history-based memory sched-
ulers for modern processors. IEEE Micro, 26(1):22–29,
2006.

[11] T. L. Johnson, M. C. Merten, and W.-M. W. Hwu. Run-
time spatial locality detection and optimization. In Proceed-
ings of the 30th Annual ACM/IEEE International Sympo-
sium on Microarchitecture, pages 57–64, Washington, DC,
USA, 1997. IEEE Computer Society.

[12] D. Joseph and D. Grunwald. Prefetching using markov pre-
dictors. In ISCA ’97: Proceedings of the 24th Annual Inter-
national Symposium on Computer Architecture, pages 252–
263, New York, NY, USA, 1997. ACM Press.

[13] N. P. Jouppi. Improving direct-mapped cache perfor-
mance by the addition of a small fully-associative cache
and prefetch buffers. In ISCA ’90: Proceedings of the 17th
Annual International Symposium on Computer Architecture,
pages 364–373, New York, NY, USA, 1990. ACM Press.

[14] R. Kalla, B. Sinharoy, and J. Tendler. IBM Power5 chip: A
dual-core multithreaded processor. IEEE Micro, 24(2):40–
47, 2004.

[15] S. Kumar and C. Wilkerson. Exploiting spatial locality in
data caches using spatial footprints. In ISCA ’98: Proceed-
ings of the 25th Annual International Symposium on Com-
puter Architecture, pages 357–368, Washington, DC, USA,
1998. IEEE Computer Society.

[16] W. F. Lin, S. K. Reinhardt, and D. Burger. Reducing DRAM
latencies with an integrated memory hierarchy design. In
HPCA ’01: Proceedings of the 7th International Sympo-
sium on High Performance Computer Architecture, pages
301–312, Los Alamitos, CA, USA, 2001. IEEE Computer
Society.

[17] W. F. Lin, S. K. Reinhardt, D. Burger, and T. R. Puzak. Fil-
tering superfluous prefetches using density vectors. In ICCD
’01: Proceedings of the International Conference on Com-
puter Design: VLSI in Computers & Processors, pages 124–
132, Washington, DC, USA, 2001. IEEE Computer Society.

[18] K. J. Nesbit and J. E. Smith. Data cache prefetching using a
global history buffer. In HPCA ’04: Proceedings of the 10th
International Symposium on High Performance Computer
Architecture, pages 96–105, 2004.

[19] S. Palacharla and R. E. Kessler. Evaluating stream buffers as
a secondary cache replacement. In ISCA ’94: Proceedings
of the 21st Annual International Symposium on Computer
Architecture, pages 24–33, Los Alamitos, CA, USA, 1994.
IEEE Computer Society Press.

[20] K. Rajamani. Memsim users’ guide, IBM research report.
Technical Report RC23431, October 2004.

[21] S. Sair, T. Sherwood, and B. Calder. A decoupled predictor-
directed stream prefetching architecture. IEEE Transactions
on Computers, 52(3):260–276, March 2003.

[22] A. Smith. Sequential program prefetching in memory hi-
erarchies. IEEE Transactions on Computers, 11(12):7–12,
December 1978.

[23] Y. Solihin, J. Lee, and J. Torrellas. Using a user-level mem-
ory thread for correlation prefetching. In ISCA ’02: Pro-
ceedings of the 29th Annual International Symposium on
Computer Architecture, pages 171–182, 2002.

[24] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and
A. Moshovos. Spatial memory streaming. In ISCA ’06:

Proceedings of the 33th Annual International Symposium
on Computer Architecture, pages 252–263, New York, NY,
USA, 2006. ACM Press.

[25] J. M. Tendler, J. S. Dodson, J. S. F. Jr., H. Lee, and B. Sin-
haroy. Power4 system microarchitecture. IBM Journal of
Research and Development, 46(1):5–26, 2002.

[26] Z. Wang, D. Burger, K. S. McKinley, S. K. Reinhardt, and
C. C. Weems. Guided region prefetching: a cooperative
hardware/software approach. In ISCA ’03: Proceedings
of the 30th Annual International Symposium on Computer
Architecture, pages 388–398, New York, NY, USA, 2003.
ACM Press.

[27] C.-L. Yang and A. R. Lebeck. Push vs. pull: data movement
for linked data structures. In International Conference on
Supercomputing, pages 176–186, 2000.

[28] L. Zhang, Z. Fang, M. Parker, B. Mathew, L. Schaelicke,
J. Carter, W. Hsieh, and S. McKee. The Impulse memory
controller. IEEE Transactions on Computers, 50(11):1117–
1132, November 2001.


