
The Ariadne Debugger:

Scalable Application of Event-Based Abstraction

1

Janice Cuny,

2

George Forman,

3

Alfred Hough,

4

Joydip Kundu,

2

Calvin Lin,

3

Lawrence Snyder,

3

and David Stemple

2

Revised June 1993

1 Introduction

Massively parallel computations are di�cult to debug. Users are often overwhelmed by large amounts of trace

data and confused by the e�ects of asynchrony. Event-based behavioral abstraction provides a mechanism

for managing the volume of data by allowing users to specify models of intended program behavior that

are automatically compared to actual program behavior [2, 3, 5, 14, 16]. Transformations of logical time

ameliorate the di�culties of coping with asynchrony by allowing users to see behavior from a variety of

temporal perspectives [7, 15, 19, 21]. Previously, we combined these features in a debugger that automatically

constructed animations of user-de�ned abstract events in logical time [14]. However, our debugger, like

many others, did not always provide su�cient feedback nor did it e�ectively scale up for massive parallelism.

Our modeling language required complex recognition algorithms which precluded informative feedback on

abstractions that did not correspond to observed behavior. Feedback on abstractions that did match behavior

was limited because it relied on graphical animations that did not scale well to even moderate numbers of

processes (such as 64). We address these problems in a new debugger, called Ariadne.

5

Ariadne uses a simple language to specify behavioral abstractions as patterns of events in logical time.

These patterns are detected in traces of program behavior by collections of small �nite-state recognizers which

allow substantive feedback on match failures. There are three salient features of Ariadne: The �rst is the

ability to provide feedback on failures, the second is the scalability of its patterns and non-graphical output,

and the third is the conciseness of its modeling language. These features, however, are accompanied by some

loss of expressivity. The loss of expressivity means that patterns are often too coarse, matching behaviors

in unintended ways. Ariadne compensates for this by providing functions that return the characteristics

of matched behaviors. As an example, a user might match a number of multicasts in an execution trace

and then use functional queries to determine which processes actually wrote values or where those values

were sent. Ariadne's combination of pattern matches and functional queries allows the user to investigate

an execution trace thoroughly.

Section 2 provides an overview of our approach and Section 3 provides several sample debugging

sessions illustrating its capabilities.

2 Our Approach

Ariadne is a post mortem debugger for massively parallel, MIMD message-passing systems. It is designed for

correctness debugging, and it supports the user in investigating global interprocess communication patterns.

Ariadne operates on traces produced by parallel programs.

6

Within these traces, processes, identi�ed

by integer process ids (PIDs), execute sequences of primitive events. The debugger currently supports four

primitive event types: Read, Write, Multicast, and Phase Marker. Reads, Writes, and Multicasts denote

interprocess communication, and Phase Markers denote the ends of logical phases of computation. The

traces are stored internally in an execution history graph where the nodes represent events and the edges

1

Partial support for this work was provided by the O�ce of Naval Research under contractN00014-89-J-1368, by the National

Science Foundation under grant CCR-9023256, and by the Defense Advanced Research Projects Agency under DARPA project

DAAL02-91-C-0051.

2

Department of Computer Science, University of Massachusetts, Amherst, MA 01003

3

Department of Computer Science and Engineering FR-35, University of Washington, Seattle, WA 98195

4

Amerinex Arti�cial Intelligence Inc., Amherst, MA 01002

5

In Greek mythology, Ariadne provided Theseus with the thread that enabled him to �nd his way through the Labyrinth to

slay the Minotaur.

6

Currently our traces are taken from a simulator or generated by hand.

represent communication events; from these traces we can derive Lamport's happened before relation [17]. A

number of debuggers provide visualizations of execution history graphs [9, 11, 12, 21] but such visualizations

do not scale well for massively parallel systems. Ariadne allows the user to view the graph but it does not

rely on visualization. Instead, it supports interactive, textual explorations of the graph.

Here we briey describe three aspects of this support: the modeling language, the facilities for manip-

ulating logical temporal orderings, and the functions that are available for investigating the characteristics

of pattern matches and mismatches.

2.1 The Ariadne Modeling Language

As mentioned above, previous attempts at using event-based abstraction in debugging have been limited

by the complexity of the modeling language. Ariadne's language is quite simple. It employs a three level

description of communication patterns in terms of chains, p-chains, and pt-chains.

� Chains are patterns representing \local views" of communication. They are described by extensions

of regular expressions. When they are matched against an execution history graph, all events in the

chain must occur exactly in the order speci�ed with the exception of communication events that are

not physically realized because of \edge e�ects" on process array boundaries [1].

� p-Chains are patterns representing the concurrent execution of a chain by a set of processes. They are

described by binding a chain to a process set. When a p-chain is matched against a behavior, a copy

of its chain is matched on each element of its process set (events can be shared across, but not within,

chains).

� pt-Chains are patterns representing the logical, temporal composition of a set of p-chains. They are

matched in a two step process: �rst events matching the p-chains are located in the graph and then

the speci�ed logical relations between those events are veri�ed. When a pt-chain has been successfully

matched, it returns an abstract event which is a structure containing the matched instances of events;

these instances are removed from the trace and are unavailable for further matching unless explicitly

restored.

These three de�nitional levels appear to form a natural mechanism for describing parallel systems,

as evidenced by their use in other contexts such as the XYZ levels of Phase Abstractions [24] and the

LaRCS speci�cation language [22]. The matching algorithm for our language is straightforward: a pt-chain

is recognized by a �nite state machine that invokes copies of other �nite state machines to recognize chains

on speci�c processes. This matching can be done e�ciently, avoiding the costliness of pattern matching

approaches [3, 13] and the expensive implementations of previous languages [16]. At the same time, our

matching algorithm can provide precise information on the reasons for a match failure.

2.2 Logical Time Manipulation in Ariadne

Programmers are often confused by the results of asynchronous executions because they can not foresee all

possible interleavings of events. In fact, most of these interleavings are irrelevant: the programmer does

not care about the arbitrary orderings of events by physical time. Instead, the programmer is concerned

with the logical ordering of events. At the primitive event level, this ordering is captured by Lamport's

happened before relation. Other debuggers have used temporal logic to express assertions about happened

before [6, 10] but they do not use behavioral abstraction. We extend the relation to abstract events, de�ning

three relations: precedes, parallels, and overlaps [15]. Informally, if A and B are abstract events, then

A precedes B (denoted A ! B) i� there is some dependency from an event in A to an event in B but

no dependency from an event in B to an event in A,

A parallels B (denoted AjjB) i� there is no dependency from an event in A to an event in B and no

dependency from an event in B to an event in A, and

A overlaps B (denoted A$ B) i� there is both a dependency from an event in A to an event in B and

a dependency from an event in B to an event in A.

Similar extensions have been proposed [8, 16, 18] but we have found our de�nitions to be more appropriate

for debugging. In particular, our precedes relation captures the notion that just some part of a complex

event happens before some part of another event; other de�nitions require a total ordering which is rarely

found in the programs we have examined.

Abstract events may interact in complex ways and often the programmer wishes to focus on particular

aspects of that interaction, excluding all other aspects. Thus, for example, when debugging a program that

used a parallel queue, we were surprised to �nd that the overlaps relation held between Insert and Delete

operations on the same queue location. This interdependence was the result of logical orderings imposed

by the mechanisms used to resolve competition for queue locations; these orderings had nothing to do with

the correctness of the implementation. When we asked the debugger to ignore all orderings except those

imposed by accesses to queue locations, we were able to correctly interpret the behavior of the program [7].

Ariadne, like our previous debugger, allows the user to selectively ignore some logical orderings and thus

manipulate logical time to create di�erent perspectives on program behavior [15].

2.3 Ariadne Queries

In the design of our language, we traded expressivity for simplicity, so we cannot always describe the intended

behaviors precisely. To compensate, Ariadne provides a set of functions that return characteristics of a match.

The user can explore a match with queries such as

Did all matching events occur in parallel?

Which processes were the destinations of a Write in this match?

Which processes matched the �rst Read of the pattern?

Why did the match fail on process 12?

At this time, Ariadne provides only rudimentary feedback. Our current work is aimed at expanding its

repertoire. Although simple, Ariadne has proved e�ective in �nding a variety of parallel program bugs. We

have found it exible in allowing the user to examine program behavior from di�erent viewpoints. The next

section describes several Ariadne debugging sessions illustrating its modeling language and functionality.

3 Sample Ariadne Debugging Sessions

In this section, we illustrate the power of our modeling language, the use of logical time, and our query

facilities. We describe four sample debugging sessions using the Ariadne prototype.

7

3.1 Permutation

Our �rst example involves a simple permutation of values, stored one per process: each process computes

its receiving process, sends its value to the appropriate destination, and reads a new value. The program we

debugged worked correctly on small processor arrays but failed on an array of 512 processes.

Summary of Debugging Session. In examining an execution history graph from the 512 process system,

we �rst tried to match the expected pattern for a permutation (that is, a Write followed by a Read on

each process). The pattern was not found and we were told that only processes with PIDs less than 256

completed their W R chain. In examining the behavior of the remaining processes, we discovered that all

of the processes wrote their values to the lower 256 processes. This pointed us to an error in the address

calculations.

7

The Ariadne prototype is only partially implemented. The matching faciltities and many of the query functions have been

implemented but the syntax we use here is not yet available in the prototype. In addition, several recent modi�cations to the

language including the use ofWRT clauses as �lters and the shu�e operator on the chain level have not yet been implemented.

The examples in this paper, with the exception of the triangulation session, have been run on the prototype although in a few

cases, we had to hand compute values returned by query functions.

Debugging Session. We began by de�ning chain and p-chain patterns to be used in matching.

Chains are described by a slight extension to regular expressions. Our expressions, over primitive

event types, use operations of concatenation (denoted by adjacency), alternation (+), shu�e (|), and Kleene

Star (*).

8

For this example, we modeled the activity of a process with the pattern

W R

which describes a Write followed by a Read on a single process. For future reference, we also named the

components of the pattern and the pattern itself. The complete chain de�nition was thus

? PermutationChain = send: W receive: R

where send and receive name the event matched by W and R respectively. The Ariadne prompt { ? { is

used in this paper to distinguish between lines of user input and debugger output. p-Chains are described

by binding a chain to a set of processes. In this case, PermutationChain was bound by

? Permutation = PermutationChain ONALL PROCS

to the set of all processes (denoted PROCS). The keyword ONALL indicates that a copy of the chain must

originate on each member of that set.

pt-Chains are used to describe the temporal composition of p-chains. In this example, we are looking

for a single instance of Permutation and thus the speci�cation is trivial. We ask for a match with

? PermuteEvent = match Permutation

If the match had succeeded, PermuteEvent would have been set to the resulting abstract event. In this

case, however, it failed; PermuteEvent was set to ? and the following feedback was given

Match failed: Search failure.

Looking for Permutation.

Found 256 chains on f0..255g; using 256 processes.

This indicates that the search failed while looking for the p-chain Permutation and that during the search,

256 complete chains were recognized, one initiating on each of the processes numbered 0 through 255. The

last part of the message gives the number of processes that had primitive events matched by the completed

chains.

This information told us that no process above 255 did both a Write and a Read. To investigate

further, we asked for additional information about the behavior of a speci�c process using the matchchain

command. Matchchain attempts to recognize a single chain on a single process and provides feedback on

the reason for a failure. In this case, it reported

? matchchain PermutationChain ON 256

Match failed: Chain failure.

Expecting an R but encountered the Right Cursor.

The Right Cursormarks the right end of the portion of the execution history graph that we are examining.

Thus this response indicated that process 256 wrote a value but did not read one. Since this did not seem

to help in locating the error, we tried another tactic.

We broke the pattern into two simple pieces, �rst matching all of the Writes and then matching all

of the Reads. The dialogue went as follows:

? PWrite = W ONALL PROCS

? WriteEvents = match PWrite

Match succeeded.

Found 512 p-chains on f0..511g; using 512 processes.

? PRead = R ONALL PROCS

? ReadEvents = match PRead

Match failed: Search failure.

Looking for PRead.

Found 256 chains on f0..255g; using 256 processes.

8

Note that the shu�e operator is expensive to implement. We included it to model the behavior of guarded input commands;

thus in practice, we would expect that only a few items will get shu�ed at a time. We allow its use only on the chain level.

This is more helpful. It indicates that all Writes occurred as expected but no process above 255 received a

value. Where did the missing values go? We found out by asking

? destinations (WriteEvents)

This is our �rst example of a function returning the characteristics of a match. Each such function takes

an abstract event as its argument and recursively searches the structure of that event. In the case of the

destinations function, the structure is searched for WriteEvents and the set of destinations for those

events is returned. The feedback was

Values written to 256 processes: f0..255g.

indicating that all of the values written by the 512 processes were directed at the lower 256 processes. Clearly

there was some problem in the address calculation code. In fact, the variable holding the destination PID

was mistakenly allocated to be an 8-bit quantity; larger values were truncated. Thus, only processes whose

identi�er was less than 256 could complete correctly.

If the same address truncation had occurred in a program for compression rather than permutation,

it would have been harder to detect. A compression is very much like a permutation except that not all of

the processes write or read values. During compression, the nonzero elements of an array (stored one value

per process) are moved to the beginning of that array. Only processes with nonzero data values Write and

only processes at the beginning of the array that are to receive a value Read. Thus, the chain de�nition

used above, W R, would not work because it is a process-centered chain that follows the activity of a single

process. Instead, we must use a data-centered pattern that follows the path of a communication. This is

described by the pattern

? CompressionCh = send: W @ receive: R

The @ moves the context of the match { that is it changes the process and the location for matching { to

the receiving process. Thus this pattern matches a Write on the initiating process and then follows that

communication edge to continue matching on the process that is its destination.

Not all of the processes execute the CompressionCh pattern (only those initially holding nonzero

values), so we can not determine a priori the set of processes for binding. Instead we use

? Compression = CompressionCh ONSOME PROCS

where the keyword ONSOME indicates that a successful match need only occur on a nonempty subset

of the given process set. Now, however, when we do the match, it succeeds despite the presence of the

truncation error:

? CompressionEvent = match Compression

Match succeeded.

Found 256 p-chains on f1,12,24..33,37,45,47,56,58..65,78,89..112,129..137,

139,141,143..149,156,158,160..189,196,197..234,241,245..258, 267,269,276,

280..298,301,314,324,356,358,367..391,413,415,433..456,470..494 g;

using 362 processes.

Note that the process set is not consecutive because chains are only found on those processes that initially

have nonzero values. This result looks correct; there is no indication that some values were written but never

read. We could detect this sort of error only by asking if anything remained in the trace after the match.

(Remember that a match removes the matching events from the execution history graph.) This can be done

with

? Left = match REMAINDER

where REMAINDER is a prede�ned pattern that matches anything. In our example, where the speci�c

trace we were using had 290 processes with nonzero PIDs, the result was

Match succeeded.

Found 34 p-chains on f15..18,79,115..126,190..194,335,495..498,501..507g;

using 34 processes.

meaning that 34 \extra" events were found that had not been matched by the Compression chains. What

were these events? We can �nd out with

? eventtypes (Left)

34 Writes

0 Multicasts

0 Reads

0 Phase Markers

where eventtypes is again a function that returns a match characteristic. In this case, it counts the number

of primitive events of each type. The answer indicated that all of the unmatched events were Writes. We

now are in the same position that we reached in the permutation example: we know that only processes

below 256 completed and that some of the values that were written were never read. The destinations

function would lead us to the error in the same manner as above.

3.2 Gaussian Elimination

Our next example comes from a parallel Gaussian elimination program. The program operated on an input

matrix stored one row per process. In reducing that input to an upper triangular matrix, it executed a

number of iterations (one for each process), each beginning with the broadcast of a pivot row. The program

produced incorrect results when run on large systems of equations; we report here on an instance with 256

equations, running on a 256 processor system.

Summary of Debugging Session. In tracking down the bug, we �rst determined that all 256 broadcasts

occurred and that each process performed exactly one broadcast. We then attempted to ascertain that

each broadcast logically preceded the next, but this turned out to be untrue, leading us to the error: the

programmer had omitted necessary barrier synchronizations between broadcasts.

Debugging Session. We de�ned a broadcast chain as

? BroadcastChain = senders: M @ receivers: R

In this case, because the send operation was a multicast rather than a single write, the read in the pattern

matches all of the Reads associated with that M, enabling us to uniformly handle single writes, multicasts,

and broadcasts.

The p-chain speci�cation created a separate broadcast event for each process. Using a for-loop, we

de�ned an array of Broadcast p-chains:

? for (i=0; i <= P-1; i++) do Broadcast[i] = BroadcastChain ONALL fig od

where P is a de�ned constant giving the number of processes in the system. Each of these p-chains will

match a process performing a single write that is read by all other processes.

To ascertain that the correct number of broadcasts were performed, we attempted to match a set of

P broadcasts with

? BCseries = match (Broadcast[])^P

The missing index in Broadcast[] indicates that any element can be used, making it a shorthand for

(Broadcast[0] + Broadcast[1] + ... + Broadcast[255])

where + means alternation in our expressions. The match was successful, resulting in

Match succeeded.

Found 256 p-chains on f0..255g; using 256 processes.

Since BCseries matches a p-chain, it could potentially match all P occurrences on the same process, so we

have to look at the output carefully. In this case, the Broadcast events occurred on 256 processes and thus,

that each process must have initiated one. We then used

? owners (BCseries WRT freceiversg)

256 owners: on processes f0..255g.

owners is again a function that determines the characteristics of a match. In this case, its argument is an

abstract event that is modi�ed by aWRT clause acting as a �lter. WRT freceiversgmakes only events of

type receivers (as de�ned in the chain pattern) visible to the search; thus this query determines the set of

processes executing receives in BCseries. It told us that every process executed a receive. We determined

the total number of receives with

? count (BCseries WRT freceiversg)

65,280 occurrences: on processes f0..255g.

which told us that every process read every broadcast (255�256 = 65; 280). We now knew that the correct

number of events occurred and so we attempted to verify that the correct logical relation { precedes { had

held between them.

The Broadcast events have already been removed from the trace because they were successfully

matched above. We could check for the precedes relation in two ways. We could restore the Broadcasts

to the trace and rematch them with

? restore (BCseries)

? OrderedBCseries = match < Broadcast[] * >

where the angular brackets indicate that the precedes must hold between matched events. Alternatively,

we could use a predicate over abstract events

9

? e precedes (BCseries)

In either case the relation precedes is checked in the matched abstract event using its search order; the

result is

Precedes failed.

Broadcast[38] overlaps Broadcast[243].

It tells us that the �rst 135 broadcasts occurred correctly but the 135th overlapped with the 136th meaning

that precedes did not hold between them. This must mean that some process { either 38 or 243 { read

the broadcast values out of order. This observation led us to the bug: a missing synchronization between

broadcasts.

3.3 Delaunay Triangulation

This example demonstrates that Ariadne can model complex behaviors. The program is a parallel version

of Bowyer's algorithm to construct a Delaunay Triangulation [4]. In Bowyer's algorithm, points are inserted

into an existing mesh one at a time; in our version, they are inserted in parallel. Each point is managed by

its own process which communicates with surrounding processes looking for triangles with circumcircles

10

that contain its point. The triangles located in this search are \locked" to prevent concurrent access by

other insertions, and the polygonal region they form is modi�ed to add the new point. To avoid deadlock,

conicting requests for locks on triangles are resolved by aborting one of the insertions.

Summary of Debugging Session When our program ran, it completed but the triangles it formed did

not meet the Delaunay criteria. The sequences of insertions appeared to be correct. We hypothesized that

despite the locking mechanism, some of the insertions interfered with each other. We checked this by looking

for insertions that overlapped. We found three such pairs and, in examining the processes that executed

those insertions, we determined that our locking mechanism essentially locked the sides of triangles but not

their vertices.

Debugging Session In the current version of Ariadne, we do not have access to the contents of a message

or its type. It is not practical to include the contents of all messages in every trace, but it is possible to use

a replay mechanism [20, 23] to acquire additional trace information. We expect to include access to such

information in future versions of our debugger. For purposes of this example, we achieved the same a�ect by

modifying the program so it sends di�erent message types on di�erent, named channels. Thus, for example,

the request for a lock is sent on port req and the response to that request is sent either on ok or on no.

The debugger detects this use of ports. Within patterns, port names are appended to communication events

with an underscore; matched instances of these events must have the correct port names.

9

The pre�x e on precedes indicates that this is a predicate over a single abstract event, other versions of this same predicate

operate over sequences of events.

10

The circumcircle of a triangle is the circle that can be drawn through all of the vertices of that triangle.

For expository reasons, we model only the part of the behavior relevant to the error, that is, we model

only point insertions. These insertions begin with some number of attempts to lock relevant triangles:

11

the

initiating process sends a multicast requesting the relevant locks on req, the recipients respond on either ok

or no, and the initiating process collects the responses. A simple form of this pattern might be

M_req @ R (W_ok @ R + W_no @ R)

where the control of matching begins on the initiating process with the multicast and splits at the �rst @ to

proceed independently on each of the receiving processes.

This simple expression, however, is not su�cient because we must also model subsequent behavior

on the initiating process. In the case of an unsuccessful attempt, the initiating process subsequently sends

an \abort" message and then retries the lock attempt; in the case of a successful attempt, it subsequently

attempts to get all relevant triangles to commit to the update. Thus, we must return the control of matching

to the initiating process. We indicate this by marking the point of the split with the symbol <@ (replacing

the @) and the point of the return with the symbol @>. Thus a lock attempt is de�ned as

LockAttempt = M_req <@ R (W_ok @ R + W_no @ R) @>

Similarly, we de�ne an abort, an unsuccessful attempt to commit, and a successful attempt to commit

Abort = M_abort <@ R @>

CommitNo = M_com <@ R W_committed @ R @>

CommitYes = M_com <@ R start:W_committed @ R @>

where the CommitYes includes a tag on events that essentially marks the beginning of the critical region

for the insert. The initial, unsuccessful attempts are matched by

Unsuccessful = ((LockAttempt Abort) * LockAttempt CommitNo Abort) *

and the ultimately successful attempt by

Successful = (LockAttempt Abort) * LockAttempt CommitYes

Once the locking attempt succeeds, the initiating process performs the actual insertion of its point by sending

a multicast on port add and waiting for acknowledgments on port done. The pattern is

Addition = M_add <@ R end:W_done @ R @>

where the tag end is used to mark the end of the critical region for this insert. The entire chain and the

needed p-chains are as follows

? Insert = Unsuccessful Successful Addition

? for (i=0; i <= P-1; i++) do AddPoint[i] = Insert ONALL {i} od

We successfully matched the expected behavior with the command:

? Triangulation = match (AddPoint[]) *

This led us to conclude that all of the needed transactions had occurred. We hypothesized that there must

have been some interference between insertions. To check this, we used the following query, looking just at

the \successful" portion of the matched additions.

? e_non_overlaps(Triangulation WRT fstart,endg)

Assertion Failed.

AddPoint[17] overlaps AddPoint[13]

AddPoint[55] overlaps AddPoint[54]

AddPoint[100] overlaps AddPoint[98]

The feedback on the failure of this assertion led us to investigate the pairs of points that had overlapping

insertions. We discovered that processes in each pair shared common triangle vertices. This led us to an

error in our locking mechanism: in e�ect, we were locking the sides of the triangle but not their vertices.

Ariadne was designed as a testbed for investigating the utility and limitations of various types of match

feedback. The above examples demonstrate successful uses of its current features. In the next section, we

give an example of a program for which it was not successful.

11

Processes recompute the set of relevant triangles immediately before each lock attempt but that behavior is not modeled

here.

4 The Limitations of Textual Feedback

In this example, we consider a program that implements a dictionary search in which queries are pipelined

from a host to a database of key-ordered records stored in a hypercube. Queries are routed within the cube

to the proper node using binary search. More than one query is active at a time. The program as written

contained a routing error.

We consider an 8 processor cube with processes having PIDs 0 through 7 and a host process with PID

8. We model the behavior of the program as a series of queries, each query starting at the host, traversing

the cube and eventually returning to the host. The chain query uses two features we have not encountered

thus far: the de�nition of a set of processes (Cube) and the limitation of a communication event to a set of

processes (denoted by # followed by a process set).

? Cube = f0..7g

? QueryChain = W#f8g @ R#Cube (W#Cube @ R#Cube) * W @ R#f8g

? Query = QueryChain ON f8g

? match Query *

Match Succeeded.

Found 2 p-chains on f8g; using 8 processes.

The match succeeds but it does not give us any information about the error. Further investigations using

Ariadne did not help. We had better success in debugging this program with our previous animating

debugger, Belvedere [14].

In using Belvedere, we also de�ned an abstract event that matched the entire set of messages associated

with a query; the query itself was much more complex (Belvedere uses the EDL modeling language [3]).

Initially, the animation was incomprehensible, as shown in Figure 1a because the Query events overlapped

in logical time: each query follows data-dependent paths through the cube, arriving in di�erent orders

at di�erent processes. To separate the events, we created a perspective on the animation that included

only dependencies caused by Write events on the host process (this is the same functionality provided by

Ariadne's WRT clauses). Two snapshots from these perspective views are shown in Figure 1b � c. They

portray the same execution trace that we used above with Ariadne. Now, however, the erroneous behavior

is easy to spot: in Figure 1c, a query crosses a dimension of the cube twice.

As the programmers of this code, we knew that message transmissions should follow the path of a

binary search. Once half of the remaining cube is eliminated by a comparison, the search should never go

back to that subtree by crossing the same dimension of the cube again. Investigations of this behavior, led

us to discover a routing error in the initial calculations of the return path for a query.

(c)(b)(a)

1

3

4

5

6

7
888

11

222

33

44

5 5

66

77

0 0 0

Figure 1: Snapshots from the an animation of the Dictionary Search. Concurrent abstract events (a); a

perspective view of an abstract events showing the path taken by an individual request (b); and a perspective

view of a second query showing an extra communication from the front to the back plane of the cube (c).

The routing error was immediately apparent from the animation but we could not �nd it with Ariadne.

It is not possible to concisely describe a query that �nds this anomaly; worse, it is unlikely that the pro-

grammer would even think to ask such a query. The anomaly was detected as a deviation in a visual pattern.

This example serves as an indicator that we will not be able to completely avoid graphical output. In an

independent e�ort, we are developing scalable graphical representations of massively parallel computations

and eventually, we expect to combine the two e�orts.

5 Conclusion

We have introduced a new approach to the application of event-based abstraction to massively parallel

computing. Previous methods were limited by their modeling languages: Su�ciently expressive languages

required very complex matching algorithms that admitted only very limited feedback on the extent of a

match. In some cases, the feedback was graphically presented in ways that did not scale to massively parallel

systems. Our approach uses a simple modeling language that describes global patterns of communication in

terms of parallel compositions of local patterns. This produces concise, scalable de�nitions and it allows for

more informative feedback. We compensate for the loss of expressivity by allowing the user to interactively

explore the extent to which a model matches the execution trace. We do not rely on graphical renderings

and thus our techniques work well for even moderately large numbers of processes. We have implemented a

prototype called Ariadne and have illustrated the e�ectiveness of this approach by presenting sample Ariadne

debugging sessions involving actual parallel programs.

Ariadne was designed as a testbed for exploring the scalable application of event-based behavioral

abstraction. We are currently evaluating the expressivity of its language and functional queries. In addition,

because programmers are reluctant to learn new modeling languages for the sake of debugging, we are

considering graphical languages that might make the description of patterns less onerous. We are also

designing techniques for producing graphical displays of program behavior that would scale well. Finally,

because Ariadne will eventually have to be intergrated into a more complete debugging system, we are

investigating extensions to aspects of program behavior other than communication.

6 Acknowledgements

We thank a number of people for their contributions to this work. The Ariadne Development Team designed

and implemented the prototype: Ruth Anderson, Sung-Eun Choi, Je�rey Dean, Donald A. Lobo, Ton Anh

Ngo, and W. Derrick Weathersby. Lee Delaney and Patrick Donohue tracked down some of its lingering

bugs. Bruce Leban commented on earlier versions of the paper.

References

[1] G. Alverson, W. Griswold, D. Notkin and L. Snyder. A exible communication abstraction for nonshared

memory parallel computing. Proceedings of Supercomputing '90, 1990.

[2] F. Baiardi, N. De Fransesco and G. Vaglini. Development of a debugger for a concurrent language. In

IEEE Transactions on Software Engineering, SE-12(4):547{553, Apr. 1986.

[3] P. C. Bates. Debugging Programs in a Distributed System Environment. PhD thesis, University of

Massachusetts, Amherst, MA 01003, 1986. Also COINS Technical Report 86{05.

[4] A. Bowyer. Computing Dirichlet Tesselations. The Computer Journal, 24(2), pages 162{166, Feb. 1981.

[5] B. Bruegge and P. Hibbard. Generalized path expressions: A high level debugging mechanism. In Pro-

ceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium in High-Level Debugging,

pages 34-44, 1983.

[6] R. Cooper and K. Marzullo. Consistent detection of global predicates. In Proceedings of the ACM/ONR

Workshop on Parallel and Distributed Debugging, pages 167{174, 1991.

[7] J. E. Cuny, A. Hough, and J. Kundu. Logical time in visualizations produced by parallel programs.

Proceedings of Visualization '92, pages 186{193 (1992).

[8] C. J. Fidge. Partial orders for parallel debugging. SIGPLAN Notices, 24(1), pages 183{194, 1989.

[9] R. J. Fowler, T. J. Leblanc, and J. M. Mellor-Crummey. An integrated approach to parallel program

debugging and performance analysis on large-scale multiprocessors. SIGPLAN Notices, 24(1), pages

163{173, 1989.

[10] G. S. Goldszmidt, S. Katz, and S. Yemini. High level language for debugging concurrent programs.

ACM Transactions on Computer Systems, 8(4), pages 311{336, Nov. 1990.

[11] P. K. Harter, D. M. Heimbigner and R. King. IDD: an interactive distributed debugger. In Proceedings

of the 5th International Conference on Distributed Computing Systems, pages 498{506, 1985.

[12] M. Heath and J. Etheridge. Visualizing the performance of parallel programs. IEEE Software, 8(5):29{

39, 1991.

[13] D. Hembold and D. Luckham. Debugging Ada tasking programs. IEEE Software, 2(2), pages 47-57,

Mar. 1985.

[14] A. A. Hough. Debugging Parallel Programs Using Abstract Visualizations. PhD thesis, University of

Massachusetts, Amherst, MA 01003, 1991. Also COINS Technical Report 91{53.

[15] A. A. Hough and J. E. Cuny. Perspective views: A technique for enchancing visualizations of parallel

programs. In 1990 International Conference on Parallel Processing, pages II 124{132, Aug. 1990.

[16] W. Hseush and G. E. Kaiser. Modeling concurrency in parallel debugging. In Proceedings of the Second

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 11{20, March

1990.

[17] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of the

ACM, 21(7):558{565, 1978.

[18] L. Lamport. The mutual exclusion problem: Part I-A theory of interprocess communication. Journal

of the Association for Computing Machinery, 33(2):313-326, April 1986.

[19] R. J. LeBlanc and A. D. Robbins. Event-driven monitoring of distributed programs. In Proceedings of

the 5th International Conference on Distributed Computing Systems, pages 515{522, 1985.

[20] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel programs with instant replay. IEEE

Transactions on Computers, C-36(4):471{482, Apr. 1987.

[21] T. J. LeBlanc, J. M. Mellor-Crummey, and R. J. Fowler. Analyzing parallel program executions using

multiple views. Journal of Parallel and Distributed Computing, 9:203{217, 1990.

[22] V. M. Lo, S. Rajopadhye, M. A. Mohamed, S. Gupta, B. Nitzberg, J. A. Telle, X. X. Zhong. LaRCS: A

language for describing parallel computations for the purpose of mapping. Technical Report CIS-TR-

90-16, University of Oregon Dept. of Computer Science, 1990.

[23] B. Miller and J.-D. Choi. A mechanism for e�cient debugging of parallel programs. SIGPLAN Notices,

24(1), pages 141{150, 1989.

[24] L. Snyder. The XYZ abstraction levels of Poker-like languages. Languages and Compilers for Parallel

Computing, David Gelernter and Alexandru Nicolau and David Padua(eds.), MIT Press, pages 470{489,

1990.

