
Copyright

by

Oswaldo Luis Olivo

2016

The Dissertation Committee for Oswaldo Luis Olivo
certifies that this is the approved version of the following dissertation:

Automatic Static Analysis of Software Performance

Committee:

Calvin Lin, Supervisor

Işil Dillig, Supervisor

Thomas Dillig

Shuvendu Lahiri

Vitaly Shmatikov

Automatic Static Analysis of Software Performance

by

Oswaldo Luis Olivo, B.S., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2016

Dedicated to my parents.

Acknowledgments

I would like to thank my advisors Calvin Lin and Işil Dillig for their

technical contributions, professional advice, and overall support during grad-

uate school.

Thomas Dillig, Shuvendu Lahiri and Vitaly Shmatikov for taking the

time to serve on my committee and providing useful comments about my work.

My undergraduate advisor from Universidad Simón Boĺıvar, Prof. Ascánder

Suárez, for introducing me to the world of academic research.

My technical friends for helpful and enjoyable discussions that con-

tributed to making my research projects a reality. It was a pleasure to collab-

orate with Roopsha Samanta, Sarfraz Khurshid, Shiyu Dong, and Lingming

Zhang.

My many friends outside of grad school for helping me avoid burnout.

My parents, Luis and Margarita, and my sister Maŕıa Elisa, for their

understanding of the demands of grad school and their unconditional support.

v

Automatic Static Analysis of Software Performance

Oswaldo Luis Olivo, Ph.D.

The University of Texas at Austin, 2016

Supervisors: Calvin Lin
Işil Dillig

Performance is a critical component of software quality. Software per-

formance can have drastic repercussions on an application, frustrating its users

, breaking the functionality of its components, or even rendering it defenseless

against hackers. Unfortunately, unlike in the program verification domain,

robust analysis techniques for software performance are almost non-existent.

In this thesis we formalize important classes of performance-related

bugs and security vulnerabilities, and implement novel static analysis tech-

niques for automatically detecting them in widely used open-source applica-

tions. Our tools are able to uncover 92 performance bugs and 47 security

vulnerabilities, while analyzing hundreds of thousands of lines of code and

reporting a modest amount of false positives.

Our work opens a new avenue for research: the development of rigorous

automatic analyses for effective software performance understanding, inspired

by traditional research in functional verification.

vi

Table of Contents

Acknowledgments v

Abstract vi

List of Tables x

List of Figures xi

Chapter 1. Introduction 1

1.1 Challenges . 2

1.2 Contributions . 5

Chapter 2. Defining Performance Bugs 7

2.1 Performance Bugs . 7

2.2 Defining Redundant Traversal Bugs 12

Chapter 3. Detecting Performance Bugs 15

3.1 Core Ideas for Detecting Redundant Traversals 15

3.2 Static Analysis . 21

3.2.1 Language . 21

3.2.2 Computing Traversal and Write Footprints 23

3.2.3 Detecting Redundant Traversal Bugs 31

3.3 Implementation . 33

3.4 Experimental Evaluation . 36

3.4.1 Discussion . 37

Chapter 4. Defining Denial-of-Service Vulnerabilities 43

4.1 Denial-of-Service Vulnerabilities 43

4.2 Defining Second Order Denial-of-Service Vulnerabilities 45

vii

Chapter 5. Detecting Denial-of-Service Vulnerabilities 47

5.1 Static Analysis . 47

5.1.1 Phase I Analysis . 49

5.1.2 Phase II Analysis . 55

5.2 Attack Vector Generation . 57

5.2.1 Backwards Symbolic Execution 58

5.2.2 Using Constraints to Generate Inputs 60

5.2.3 Constraint Solving . 62

5.3 Implementation . 64

5.4 Evaluation . 66

5.4.1 Exploit in HotCRP . 70

5.4.2 Exploit in osCommerce 72

Chapter 6. Defining Side-Channel Vulnerabilities 81

6.1 Side-Channel Vulnerabilities 81

6.2 Non-Interference . 83

6.3 Defining Side-Channel Vulnerabilities 84

6.4 Assumptions . 88

Chapter 7. Detecting Side-Channel Vulnerabilities 90

7.1 Detecting Side-Channel Vulnerabilities 90

7.1.1 Key Ideas . 90

7.1.2 Formalization . 93

7.2 Implementation . 99

7.2.1 Scanner Basics . 99

7.2.2 Detection Module . 100

7.2.3 Error Diagnostic Module 102

7.2.4 Exploit Generation Module 103

7.3 Evaluation . 106

7.3.1 Response-size Side-Channel Vulnerability in OpenClinic 108

7.3.2 Timing Side-Channel Vulnerability in ZeusCart 110

7.3.3 Feedback from Developers 114

viii

Chapter 8. Related Work 116

8.1 Performance Bugs . 116

8.2 Denial-of-Service Attacks . 119

8.3 Side-Channel Attacks . 123

Chapter 9. Conclusion 127

Appendices 128

Appendix A. Web Applications in PHP 129

A.0.1 Background on PHP Scripts 129

A.0.2 Relational Databases . 131

Index 159

Vita 160

ix

List of Tables

3.1 Experimental results: Performance Bugs Detected. 36

5.1 DoS vulnerability detection results. “TP” indicates true posi-
tives (i.e., real vulnerabilities), and “FP” denotes false positives. 66

5.2 Impact of DoS attacks for different numbers (n) of entries in-
serted into the database during the first phase. TO means that
the application becomes unresponsive for more than one hour.
This data only includes a subset of the uncovered vulnerabilities. 67

7.1 Side-channel vulnerability detection results. 106

7.2 Summary of timing results for positive and negative queries.
Times are in milliseconds. 108

x

List of Figures

2.1 A previously unknown performance bug in the JFreeChart ap-
plication that was identified by Clarity. 9

2.2 Check if myList contains an element from mySet 12

2.3 Different implementation of code in Figure 2.2. 13

3.1 Language used for formal development. 21

3.2 Summary of notation used in formalization 23

3.3 Analysis rules for computing traversal and write footprints. The
notations A1〈A2〉 and Φ[v/A] are defined in Equations 3.1 and 3.2,
and operator 	 is defined in Equation 3.3. 25

3.4 Summary of performance bug detection. As before, S̃ denotes
traverse statements in S replaced by skip. 32

5.1 Schematic illustration of our approach. Here, squiggly arrows
indicate flows between different resources. 48

5.2 Language used for describing our analysis 48

5.3 Phase I static analysis . 53

5.4 Inference rules describing the second phase of static analysis . 76

5.5 Helper rules for SELECT . 77

5.6 Illustration of attack vector generation 77

5.7 Backward symbolic execution rules for generating attack vector
constraints. Statements whose preconditions are not met (or
are not shown in the figure) are assumed to be no-ops. 78

5.8 Code snippet showing merging of user accounts functionality in
HotCRP. 79

5.9 Code snippet showing user registration functionality in osCom-
merce . 80

7.1 Language used for describing our analysis 92

7.2 Helper rules for determining taint values of expressions E and
predicates C . 95

xi

7.3 Analysis rules for asymptotic side-channel vulnerability detection. 97

7.4 Response-size vulnerability in OpenClinic. 111

7.5 Simplified Javascript exploit for OpenClinic’s response size side-
channel vulnerability . 112

7.6 Timing side-channel vulnerability in ZeusCart. 113

7.7 Simplified Javascript exploit for ZeusCart’s timing side-channel
vulnerability . 115

xii

Chapter 1

Introduction

Society is becoming increasingly dependent on software. We rely on

computer programs for entertainment purposes such as browsing the Web,

playing games or watching videos, as well as more critical tasks such as medical

surgery, industrial automation, and banking. Emerging technologies such as

mobile devices and the Internet-of-Things are a strong indicator that software

will continue to form an integral part of our daily lives. Thus, ensuring the

quality of software is a critical goal in modern times.

Functionality bugs are clearly important, so techniques for testing and

verification of software functionality have been studied and developed for

decades in both academia and industry. However, software quality is com-

prised of other aspects beyond functionality such as performance, security,

maintainability, usability, and these components can have an influence on each

other. In particular, problematic performance can have subtle effects on dif-

ferent dimensions of software quality. Inefficient performance can hang the

application and break its functionality, or at least frustrate its users and af-

fect its usability. Performance that is controllable by an attacker, even with

the absence of implementation inefficiencies, can constitute a denial-of-service

1

vulnerability. A performance difference while servicing a request depending on

private information, say a short execution path and a long execution path, can

leak private information to a hacker. These are just a few examples of the dras-

tic consequences of problematic performance, and its different manifestations

beyond slow program execution.

There is a need for automated techniques to achieve effective perfor-

mance understanding, recognizing the different manifestations of problematic

performance and their effect on the other components of software quality. This

thesis provides the necessary groundwork to make progress towards that goal,

by defining classes of important performance-related bugs and vulnerabilities

and describing practical detection techniques.

1.1 Challenges

A key challenge in static performance analysis is defining the perfor-

mance properties to verify. While functional static analyses typically rely on

checking for undesirable values in a program’s state (null pointer dereference,

array access out of bounds, among others), it is harder to specify undesir-

able performance in a similar manner. In general it’s not apparent whether

a program’s performance can be improved, since it depends on user inputs,

the execution environment, and what constitutes unnaceptable performance

for one feature of the application might be optimal for another one. Another

complication is that problematic performance has very different manifesta-

tions: a denial-of-service vulnerability might be caused due to performance

2

controlled by an attacker, while a privacy leak might result from a perfor-

mance difference in terms of private information. In summary, problematic

software performance goes beyond the traditional notion of slow execution.

Even with the fundamental definitions of performance bugs and vulner-

abilities in place, there remains the technical challenge of implementing precise

and scalable static analyses for their detection. Given that static analyses lack

information that is only available at runtime, they tend to overapproximate the

behavior of the program, which can lead to false positives (reported warnings

that do not represent real problems). It is imperative that static analyses min-

imize the number of false positives, preserve automation as much as possible

(by not relying excessively on user annotations) and find important issues in

realistic applications. Existing techniques for performance analysis are mostly

dynamic. They rely on program testing and profiling, and require subsequent

human judgment to detect and eliminate performance problems. But find-

ing the right inputs that trigger performance issues is extremely laborious,

and these approaches rely excessively on human judgment to detect problem-

atic performance. Static approaches involving worst-case execution time have

been shown to suffer from scalability or precision issues for realistic programs,

while still relying on human judgment in similar spirit to dynamic approaches.

Additionally, there’s been substantial effort spanning the fields of algorithms,

computer architecture, and compilers to improve performance in terms of pro-

gram running time. But they cover a limited aspect of performance —the need

to make programs run faster— and are unable to assess the more subtle di-

3

mensions of performance and its influence on other factors of software quality.

For example, performance bugs involve the notion of features of the program

being replaced by a more efficient implementation; denial-of-service vulnera-

bilities on whether an attacker can abuse the performance of an application

and potentially fully control the performance of the application; side channel

attacks leverage the existence of a fast path and a slow path, depending on pri-

vate data, which can leak sensitive information to an attacker. These kind of

problems go beyond the symptoms of slow performance, have effects on other

aspects of software quality including functionality and security, and cannot be

fixed by simply making local, low-level changes. Instead they might involve

code refactoring across different classes and procedures, imposing limitations

of what a feature can process, or ultimately warrant the removal of features

from the application. These scenarios lie outside of the scope of state-of-the

compiler optimizations and software evolution techniques.

The main idea underlying our techniques is to perform an approximate

asymptotic complexity analysis on the program, leveraging existing static anal-

ysis techniques such as weakest precondition computation and taint analysis.

We use these techniques to detect potential redundant computations, oppor-

tunities for an attacker to control the application’s performance and launch a

denial-of-service attack, or a performance imbalance involving secret informa-

tion that can result in privacy leaks. In particular, we rely on taint analysis to

keep track of user input data and secret application data throughout the pro-

gram and infer the effects of tainted data in the program’s performance. Our

4

analyses are able to scale due to the effective use of existing lightweight static

analysis techniques in performing a limited form of asymptotic complexity

analysis.

1.2 Contributions

In this thesis we present novel techniques for systematically analyzing

software performance. We formalize important classes of performance-related

bugs and security vulnerabilities in a manner that is amenable to detection. We

have used our tools to automatically uncover 92 performance bugs and 47 secu-

rity vulnerabilities in open source Java packages from Google and the Apache

Foundations, among others, along with e-commerce, bidding and medical web

applications in PHP. The performance bugs have the potential to severely

affect the functionality and usability of the applications due to decreased re-

sponse times of their components, while 37 of the security vulnerabilities can

be exploited to cause denial-of-service attacks against web servers, and 10 vul-

nerabilities represented the leak of sensitive data such as purchase histories,

bidding histories and medical information about patients. Apart from the de-

tection algorithms, we have implemented exploit generation tools to facilitate

a more detailed assessment of the applications.

The rest of the thesis is organized as follows:

• Chapter 2 describes asymptotic redundant collection traversals, a class

of performance bugs.

5

• Chapter 3 presents a static analysis for detecting the performance bugs

from chapter 2, and experimental results.

• Chapter 4 cover second-order denial-of-service vulnerabilities, a class of

security vulnerabilities that can be leveraged against application avail-

ability.

• Chapter 5 presents a static analysis for detecting the vulnerabilities from

chapter 4, and experimental results.

• Chapter 6 describes asymptotic resource-usage side-channel vulnerabil-

ities, a class of security vulnerabilities that can be leveraged to against

application privacy.

• Chapter 7 presents a static analysis for detecting the vulnerabilities from

chapter 6, and experimental results.

• Chapter 8 discusses related work.

• Chapter 9 concludes.

6

Chapter 2

Defining Performance Bugs

2.1 Performance Bugs

A functionality bug occurs when a piece of software crashes or produces

an incorrect result. Fortunately, research in program analysis has produced

significant advances in the automated detection of such bugs [14, 93, 6, 27, 28].

By contrast, a performance bug arises when a program produces the correct

result but a simple functionality-preserving change can provide a substantial

performance improvement [104]. Performance bugs are significant because

they can render a program unusable; they can also be exploited by malicious

users to create denial-of-service attacks. Unfortunately, performance bugs are

more difficult to detect than functionality bugs for several reasons:

• First, it is difficult to know whether a program’s performance can be

expected to improve, since it depends on user inputs, on the many details

of the program’s execution environment, and on some notion of how a

“good” solution should perform.

• Second, while functionality bugs can be tested using assertions or various

automated testing tools [73, 157, 28], the detection of performance bugs

7

typically requires a human to monitor the program and make a judgment

call on its performance.

• Third, performance bugs often manifest themselves only with large in-

puts, so the small input hypothesis [127], which forms the basis of most

software testing methodologies, does not hold.

For these reasons, performance bugs remain a nebulous and evasive problem,

and most existing tools for detecting performance problems either rely on rule-

based pattern matching of syntactic program constructs or on some degree of

runtime analysis and human intervention.

This thesis presents a new static analysis—and its implementation in

a tool called Clarity—for automatically detecting an important class of

asymptotic performance bugs. We say that a code snippet has an asymp-

totic performance bug if its computational complexity is O(f(n)) but the same

functionality can be implemented by code with complexity O(g(n)) such that

g(n) is O(f(n)) but f(n) is not O(g(n)). Although the detection of arbi-

trary asymptotic performance bugs is beyond the scope of program analysis1,

we have identified a restricted but prevalent class of asymptotic performance

bugs that we call redundant traversal bugs. A redundant traversal bug arises

if a program fragment repeatedly iterates over a data structure, such as an

array or list, that has not been modified between successive traversals of the

1Observe that identifying arbitrary asymptotic performance bugs requires knowing a
“best” algorithm for implementing a given functionality.

8

1. public boolean render(Graphics2D g2, Rectangle2D
2. dataArea, int index, ...) {
3. ...
4. XYDataset dataset = getDataset(index);
5. XYItemRenderer renderer = getRenderer(index);
6. ...
7. int sCount = dataset.getSeriesCount();
8. int series;
9. for (series=sCount-1; series >= 0; series--) {
10. int first = 0;
11. int last = dataset.getItemCount(series) - 1;
12. ...
13. for (item=first; item <= last; item++) {
14. renderer.drawItem(dataset, series, item,...);
15. }
16. ...
17. }
18. ...
19. }
20. public void drawItem(XYDataSet dataset,
21. int series, int item, ...) {
22. ...
23. OHLCDataset highLowData = (OHLCDataset)dataset;
24. itemCount = highLowData.getItemCount(series);
25. double xxWidth = dataArea.getWidth();
26. for(int i=0; i< itemCount; i++) {
27. ...
28. if(last != -1) {
29. xxWidth=Math.min(xxWidth,Math.abs(pos-last));
30. }
31. }
32. }

Figure 2.1: A previously unknown performance bug in the JFreeChart appli-
cation that was identified by Clarity.

9

data structure. Since such computation can be memoized and re-used across

loop iterations, redundant traversal bugs typically result in at least an O(n)

performance degradation, where n is the size of the data structure. Further-

more, such performance bugs are typically easy to fix and often only require

the addition of a parameter to a method, the addition of a field to an object,

or the use of a slightly different data structure.

Motivating Example. As an example of a redundant traversal bug, con-

sider the program snippet shown in Figure 2.1. This code is taken from version

1.0.17 of the JFreeChart software and exhibits a previously unknown perfor-

mance bug uncovered by Clarity. In particular, the render method (lines

1–19) plots a series of data items in the form (x, y) and invokes the drawItem

method on line 14 to draw a single point within a given series. Here, the

method invocation on line 14 is a virtual call with many possible targets, one

of which is the drawItem method of CandlestickRenderer (lines 20–32).

The performance problem in this example arises because the drawItem

method iterates over all points within the series in order to draw a single data

point. In particular, the code traverses all data points to compute a value

called xxWidth, which corresponds to the minimum gap between adjacent

x-coordinates in the series. However, since the data set is not modified be-

tween successive calls to drawItem, the recomputation of xxWidth in each

call to drawItem is redundant and needlessly traverses a potentially large

list of data items many times. Hence, this code fragment exhibits a serious

10

performance bug that can be fixed either by passing xxWidth as an argument

to drawItem or by storing it as a field. Not only does such a fix result in a

theoretical asymptotic performance improvement of O(n), but it produces an

order of magnitude performance improvement in practice.2

While it may seem surprising that such a blatant performance bug

exists in a mature software project like JFreeChart, there are several reasons

why this bug could be missed during development and testing. First, the

impact of this performance bug is proportional to the size of the data series

and requires data points to be drawn in the shape of candlesticks. Hence, test

cases that either use small data series or render objects in a different shape,

such as a square, will not reveal the performance bug. Second, the heavy-

use of object oriented abstractions obscures the performance bug, making it

difficult to spot the problem during manual code inspection. In particular,

observe that the drawItem() method is virtual, and the performance bug

only occurs in the CandlestickRenderer implementation. Similarly, the

collection that is traversed is hidden behind an interface, so to identify the

exact data structure, another virtual method call must be resolved. Finally,

there is a function call depth of three between the loop that traverses the data

structure and the access of the actual item in the data structure.

2For example, using the existing test harnesses from SourceForge, we observe speedups
of 8× to 11× when we fix this performance bug and modify the test harness to render each
data item in the shape of a candlestick.

11

boolean containsAny1(HashSet<Foo> mySet,
ArrayList<Foo> myList) {

for(Foo f: mySet)
if(myList.contains(f))

return true;
return false;

}

Figure 2.2: Check if myList contains an element from mySet

2.2 Defining Redundant Traversal Bugs

Definition 1. (Traversal) We say that a code snippet S traverses a data

structure δ if it performs a computation whose average-case complexity is Ω(n),

where n denotes the number of elements in δ.

For instance, consider the contains methods provided by various data

structures in the Java Collections Framework. According to Definition 1, the

contains method of ArrayList performs a traversal of the data structure,

as its average-case complexity is O(n). On the other hand, while HashSet’s

contains method has worst-case complexity O(n), it is not considered a

traversal because its average-case complexity is O(1).

Definition 2. (Traversal Footprint) The traversal footprint of a code snip-

pet S, written TraversalFP(S), is the set of data structures traversed by S.

Definition 3. (Write Footprint) The write footprint of code S, written

WriteFP(S), is the set of data structures that S modifies.

12

boolean containsAny2(HashSet<Foo> mySet,
ArrayList<Foo> myList) {

for(int i=0; i < myList.size(); i++) {
Foo elem = myList.get(i);
if(mySet.contains(elem))

return true;
}
return false;

}

Figure 2.3: Different implementation of code in Figure 2.2.

Definition 4. (Redundant Traversal Bug) A loop L exhibits a redundant

traversal bug if there exists a data structure δ such that:

1. δ ∈ TraversalFP(L) and δ 6∈WriteFP(L)

2. δ is traversed Ω(m) times in L, where m is the number of times that L

executes

In other words, a redundant traversal bug arises if a loop-invariant data

structure is traversed a linear number of times within the loop. We believe that

this definition captures the intuitive notion of redundancy, as the computation

that is performed by traversing the data structure can be done once and re-

used across all loop iterations.

Example 1. Figures 2.2 and 2.3 show the implementation of two methods

called containsAny1 and containsAny2 that determine if the intersection

of myList and mySet is non-empty. While containsAny1 and containsAny2

13

are functionally equivalent, containsAny1 has a performance bug accord-

ing to Definition 4 while containsAny2 does not. In particular, since the

contains method of ArrayList traverses the data structure, myList is

part of the traversal footprint of the loop. By contrast, the contains method

of HashSet does not perform a traversal; so, the traversal footprint of the

loop from Figure 2.3 is empty. Thus, containsAny1 contains an asymp-

totic performance bug because its average-case complexity is O(n ·m), whereas

the average-case complexity of containsAny2 is O(n) for a list of size n and

set of size m.

The need for the second condition of Definition 4 is illustrated by the

following example.

Example 2. Consider the following code snippet, where the computeAvg

method traverses its input:

int calculate(ArrayList<ArrayList<int>> a) {
int avgSum = 0;
for(int i=0; i < a.size(); i++)

avgSum += computeAvg(a.get(i));
return avgSum;
}

Here, condition (1) of Definition 4 is satisfied because each element of a is

part of the traversal footprint but not the write footprint of the loop. However,

this code does not have a performance bug because a different element of a is

traversed in each loop iteration. Hence, condition (2) is violated.

14

Chapter 3

Detecting Performance Bugs

3.1 Core Ideas for Detecting Redundant Traversals

This section explains the key challenges underlying the static detec-

tion of redundant traversal bugs and outlines the core ideas behind our static

analysis.

First, based on condition (1) of Definition 4, we see that a sound static

analysis for detecting redundant data structure traversals must be able to

perform the following task:

Given code snippet S, overapproximate the emptiness
of the set θ ≡ TraversalFP(S)−WriteFP(S)

Since θ is defined to be the difference of TraversalFP(S) and WriteFP(S),

a sound static analysis for detecting redundant traversal bugs must overap-

proximate the traversal footprint but underapproximate the write footprint.

Furthermore, since our analysis will track data structures in terms of program

expressions, we need over- and under-approximating preconditions of program

expressions with respect to a given program fragment. For this purpose, we

define the following notions of necessary and sufficient preconditions :

Definition 5. (Necessary precondition) A set of expressions {e1, . . . , en}

15

is called a necessary precondition of an expression e with respect to a code

snippet S, written pre+(e, S), if, for any constant c, the following Hoare triple

is valid:

{e1 6= c ∧ . . . ∧ en 6= c} S {e 6= c}

In other words, for e to have value c after S, it is necessary that some el-

ement in pre+(e, S) has value c before S; hence, we refer to the set {e1, . . . , en}

as a necessary precondition of e with respect to S. Now, we also define a dual

notion of sufficient preconditions :

Definition 6. (Sufficient precondition) A set of expressions E is called a

sufficient precondition of expression e with respect to code S, written pre−(e, S),

if, for all constants c and all e′ ∈ E, the following Hoare triple is valid:

{e′ = c} S {e = c}

In other words, for e to have value c after S, it is sufficient that elements

in pre−(e, S) have value c before S. Thus, sufficient conditions underapproxi-

mate the weakest precondition of an expression e with respect to code S.

Example 3. Consider the following code snippet S:

if(*) x := y else x := z;

Here, we have pre+(x, S) = {y, z} and pre−(x, S) = ∅. In particular, for x to

be equal to a certain value c after S, it is necessary that either y or z have

16

value c before S. However, the sufficient precondition for x is ∅ because neither

y = c nor z = c before S guarantees that x = c after S.

Now, given a statement S and a sub-statement π nested inside S, we

will use the notation S−[π] to denote the code that comes before π in S. For

instance, if S is the code:

x:=y; if(x>10) x++; y--; else x := 0

and π is the statement y--, then S−[π] is:

x:=y; assume(x>10); x++;

The following theorem explains why necessary and sufficient precondi-

tions are useful for checking condition (1) of Definition 4.

Theorem 1. Let S be a code snippet containing two sets of statements Π1 and

Π2 such that:

1. Each statement πi ∈ Π1 traverses a data structure referred to by program

expression ei

2. Each π′j ∈ Π2 modifies a data structure referred to by e′j

Then, TraversalFP(S)−WriteFP(S) = ∅ if:

(
⋃
πi∈Π1

pre+(ei, S
−[πi])−

⋃
π′
j∈Π2

pre−(e′j, S
−[π′j])) = ∅ (∗)

17

Proof. Suppose TraversalFP(S)−WriteFP(S) 6= ∅ but (∗) holds. Then there

must be some statement π that traverses a data structure δ that is referred to

by expression e and δ is not modified in S. Let pre+(e, S−[π]) = {e1, . . . , en}.

By definition of necessary precondition, this implies that e1 = δ ∨ . . .∨ ek = δ

before S. Now, since condition (∗) holds, every ei is in the set pre−(e′j, S
−[π′j])

for some statement π′j modifying data structure referred to by expression e′j.

By definition of sufficient precondition, this means that {ei = δ} S−[π′j] {e′j =

δ}. But this implies that δ must also be modified, i.e., a contradiction.

Theorem 1 is useful because it provides a method for statically checking

condition (1) of Definition 4. In particular, to determine whether TraversalFP(S)−

WriteFP(S) may be empty, we compute necessary preconditions E of all pro-

gram expressions that are traversed and sufficient preconditions E ′ of all ex-

pressions that are modified. If E − E ′ is empty, then Theorem 4 implies that

all expressions that are traversed are also modified; hence, we can rule out a

potential redundant traversal bug. This is a key insight underlying our static

analysis, and we will compute necessary preconditions of data structures that

are traversed and sufficient preconditions for expressions that are modified in

Section 3.2.

We now turn to the problem of statically checking condition (2) from

Definition 4. That is, given a loop-invariant data structure δ that is traversed

within the loop, is δ traversed at least a linear number of times? In our

18

analysis, we will check this linearity requirement by over-approximating the

following slightly stronger condition:

Given a loop L and a data structure δ, is δ traversed
in all iterations of L?

The above criterion is stronger than checking whether δ is traversed

Ω(m) times in the loop. However, since our static analysis is path-insensitive,

soundly answering the above question overapproximates condition (2) of Def-

inition 4 for all practical purposes.

Example 4. Consider the following code snippet, where n is a positive integer
and traverse performs list traversal:

for(i=0; i<n; i++) {if(i%2 == 0) traverse(myList);}

Here, myList is not traversed in all iterations, but it is traversed Ω(n) times.

However, a sound static analysis that treats the test i%2 == 0 as a non-

deterministic choice will conclude that myList may be traversed in all itera-

tions.

The following theorem is useful in determining whether a data structure

δ may be traversed in all loop iterations:

Theorem 2. Let e be a program expression, and let E be a necessary precon-

dition of e with respect to code snippet S. Then, the following Hoare triple is

valid for any constant c:

{e = c ∧
∧
ei∈E

e 6= ei} S {e 6= c}

19

Proof. First, note that the following implication is valid:

e = c ∧ (
∧
ei∈E

e 6= ei)⇒ (
∧
ei∈E

ei 6= c)

Now, by definition of necessary precondition, we have:

{(
∧
ei∈E

ei 6= c)} S {e 6= c}

Hence, the theorem holds by precondition strengthening.

Simply put, this theorem states that the value of an expression e has

different values before and after executing S provided that e is distinct from

every ei ∈ pre+(e, S). To see the relevance of this theorem, suppose that e

is a program expression that may be traversed in the loop. Now, if the value

of e changes between any two consecutive loop iterations, then two different

data structures δ and δ′ are traversed; hence, δ is not traversed in all loop

iterations. Thus, the key question to answer is whether the value of e can

change between different loop iterations. Fortunately, we can answer this

question using Theorem 2. Specifically, let E be the necessary precondition of

e with respect to the loop body S. Based on Theorem 2, if we can prove that

e is distinct from every ei ∈ E, then we know that the same data structure is

not traversed in all loop iterations.

Example 5. Consider again the code from Example 2, where computeAvg

traverses the input array. Here, the loop traverses program expression a[i],

but the necessary precondition of a[i] with respect to the loop body is {a[i+1]}.

20

Program P := τ1 v1; . . . τn vn; S
Type τ := Int | Collection〈τ1, τ2〉
Statement S := skip | v := e | v.traverse()

| v1 := v2.get(v3) | v1.putρ(v2, v3)
| S1;S2 | if(?) then S1 else S2

| while(?) doρ S
Expression e := int | v | e1 ⊕ e2 (⊕ ∈ {+,−,×})

Figure 3.1: Language used for formal development.

Thus, assuming a[i] and a[i+1] do not alias, we can determine that con-

dition (2) of Definition 4 is violated.

3.2 Static Analysis

We now use the ideas introduced in Section 3.1 to describe our static

analysis for detecting performance bugs.

3.2.1 Language

To formally describe our analysis, we use the small imperative language

shown in Figure 7.1. This language contains two types of variables, namely,

scalars of type Int and references of type Collection. We model collections as

key-value stores that support insertion and retrieval of values associated with

a given key. Hence, a variable of type Collection〈τ1, τ2〉 models a key-value

store where keys are of type τ1 and values are of types τ2. Observe that both

keys and values may be of type Collection; hence, it is possible to nest an

arbitrary number of data structures within another one.

21

In the language shown in Figure 7.1, statements include skip, assign-

ments of the form v := e, and the following three collection-manipulating

operations:

• A statement v.traverse() traverses collection v, where traversal encom-

passes any operation that is consistent with Definition 1.

• A statement v1 := v2.get(v3) retrieves the value v1 of key v3 in the data

structure pointed to by variable v2.

• A statement v1.putρ(v2, v3), where ρ denotes a program point, associates

value v3 with key v2 in the data structure referenced by variable v1.

In addition, statements also include sequences S1;S2, if statements, and

while loops. Since our analysis does not interpret conditionals (i.e., is path-

insensitive), we model conditionals using non-deterministic choices indicated

as ? in Figure 7.1. Furthermore, we assume that while loops are annotated

with a program point ρ which denotes the program location right before the

first instruction in the loop body.

To simplify the formalization of our analysis, we omit function calls

from this language and assume that the only way to traverse a data structure

is by calling v.traverse(). In Section 3.3, we explain the inference of methods

that traverse data structures as well as our interprocedural analysis.

22

Symbolic exp π := c | v | π1〈π2〉
Read footprint Φ := 2π

Write footprint Ψ := 2π

Alias environment E := ρ× π → (2π, 2π)

Figure 3.2: Summary of notation used in formalization

3.2.2 Computing Traversal and Write Footprints

We now describe our static analysis for over- and under-approximating

each statement’s traversal and write footprints. Our analysis is a backwards

dataflow analysis and is presented in Figure 3.3 using judgments of the form:

E,Φ,Ψ ` S : Φ′,Ψ′

This judgment means that under the aliasing relations given by environment E,

if Φ and Ψ denote the traversal and write footprints after statement S, then Φ′

and Ψ′ over- and under-approximate the traversal and write footprints before

S respectively. That is, assuming the correctness of E,Φ and Ψ, the set Φ′

over-approximates all collections that are traversed in or after S in terms of

program expressions before S. Similarly, the set Φ′ under-approximates all

collections that must be modified in terms of program expressions before S.

As summarized in Figure 3.2, our analysis tracks traversal and write

footprints using sets of symbolic expressions π. Symbolic expressions π can be

constants c, variables v, or expressions of the form π1〈π2〉, which represents

the value associated with key π2 in a data structure represented by expression

π1. For example, if the traversal footprint Φ of some statement S includes

23

an expression v〈3〉, then the data structure stored at index 3 of the collection

referenced by variable v may be traversed by statement S.

Since variables of type Collection are references in our language, our

analysis must take possible aliasing relations into account if it is to soundly

compute traversal and write footprints. Thus, our analysis rules utilize an

aliasing environment E which maps each expression to its set of aliases. How-

ever, since our goal is to under-approximate write footprints, we need must

alias facts as well as may alias information, so the aliasing environment E has

signature ρ× π → (2π, 2π), which maps each expression π and program point

ρ to π’s may- and must-aliases at program point ρ. In what follows, we will

assume that such an aliasing environment E has been computed by performing

may- and must-alias analyses prior to our footprint computation.

Let us now consider the analysis rules shown in Figure 3.3. In partic-

ular, rule (2) describes the analysis of assignments of the form v := e. Here,

we replace any variable v used in Φ and Ψ by expression e because e is both

a necessary and sufficient precondition for v with respect to statement S. For

instance, for a statement v1 := v2, traversal footprint Φ = {v1, y} and write

footprint Ψ = {x〈v1〉}, our analysis computes Φ′ = {v2, y} and Ψ′ = {x〈v2〉}.

Rule (3) describes the analysis of traversals of the form v.traverse. In

this case, we simply add variable v to the traversal footprint Φ; the write

footprint Ψ remains unchanged.

Rule (4) describes the analysis of retrieval (i.e., load) operations of the

24

(1)
E,Φ,Ψ ` skip : Φ,Ψ

(2)
Φ′ = Φ[e/v] Ψ′ = Ψ[e/v]

E,Φ,Ψ ` v := e : Φ′,Ψ′

(3)
Φ′ = Φ ∪ {v}

E,Φ,Ψ ` v.traverse() : Φ′,Ψ

(4)

Φ′ = Φ[v2〈v3〉/v1]
Ψ′ = Ψ[v2〈v3〉/v1]

E,Φ,Ψ ` v1 := v2.get(v3) : Φ′,Ψ′

(5)

E(ρ, v1) = (A+
1 ,A

−
1) E(ρ, v2) = (A+

2 ,A
−
2)

Φ′ = Φ[v3/A
+
1 〈A+

2 〉] ∪ (Φ	A−1 〈A−2 〉)
Ψ′ = Ψ[v3/A

−
1 〈A−2 〉] ∪ (Φ	A+

1 〈A+
2 〉)

E,Φ,Ψ ` v1.putρ(v2, v3) : Φ′,Ψ′ ∪ {v1}

(6)

E,Φ,Ψ ` S2 : Φ′,Ψ′

E,Φ′,Ψ′ ` S1 : Φ′′,Ψ′′

E,Φ,Ψ ` S1;S2 : Φ′′,Ψ′′

(7)

E,Φ,Ψ ` S1 : Φ1,Ψ1

E,Φ,Ψ ` S2 : Φ2,Ψ2

E,Φ,Ψ ` if(?) then S1 else S2 : Φ1 ∪ Φ2,Ψ1 ∩Ψ2

(8)

Φ′ ⊇ Φ Ψ ⊇ Ψ′

E,Φ′,Ψ′ ` S̃ : Φ′,Ψ′

E,Φ,Ψ ` while(?) do S : Φ′,Ψ′

Figure 3.3: Analysis rules for computing traversal and write footprints. The
notations A1〈A2〉 and Φ[v/A] are defined in Equations 3.1 and 3.2, and oper-
ator 	 is defined in Equation 3.3.

25

form v1 := v2.get(v3). Similar to the assignment rule, we replace variable v1 in

the traversal and write footprints with the expression v2〈v3〉, which denotes the

value associated with key v3 in the collection referenced by v2. Observe that

v2〈v3〉 is both a necessary and sufficient precondition for v1 with respect to the

statement v1 := v2.get(v3): In particular, the value of v1 is equal to constant c

after this statement if and only if v2〈v3〉 = c before executing v1 := v2.get(v3).

The most involved part of the analysis is Rule (5) for analyzing insertion

(i.e., store) operations. To build intuition, let us first consider the statement

S = v1.put(v2, v3) and an expression x〈y〉 ∈ Φ. There are two cases to

consider:

• If x must alias v1 and y must alias1 v2, then the necessary precondition

for x〈y〉 is just {v3} since, for any value c, condition v3 6= c before S

guarantees x〈y〉 6= c after S.

• On the other hand, if x may alias v1 and y may alias v2 (but either

may-alias relation is not also a must-alias relation), then the necessary

precondition for x〈y〉 is the set {x〈y〉, v3}. Observe that neither condition

x〈y〉 6= c nor v3 6= c before S on its own guarantees x〈y〉 6= c after S, as

the value of x〈y〉 may—but does not have to– be affected by S. However,

if we know x〈y〉 6= c ∧ v3 6= c before S, we can guarantee that x〈y〉 6= c

after S.

1Here, since y and v2 may be scalars, we overload the term “alias” to also mean equality
for scalars.

26

Now, let us also consider the analogous case where x〈y〉 ∈ Ψ. Again,

there are two cases to consider:

• If x must alias v1 and y must alias v2, then the sufficient precondition

for x〈y〉 is just {v3} since, for any value c, condition v3 = c before S

guarantees x〈y〉 = c after S.

• Otherwise, if x may alias v1 and y may alias v2, then the sufficient

precondition for x〈y〉 is the empty set, as there is no program expression

whose value before S is guaranteed to be the same as the value of x〈y〉

after S.

As this example illustrates, the computation of traversal and write foot-

prints for store operations requires aliasing information for pointers (and equal-

ity information for scalars). With this intuition in mind, we now explain Rule

(5) from Figure 3.3. As expected, we first need to look up the set of may-

and must-aliases (A+
1 ,A

−
1) of v1 as well as those of v2 (A+

2 ,A
−
2). Now, any

expression of the form x〈y〉 may be affected by the statement v1.put(v2, v3) if

x is an alias of v1 and y is an alias of v2. Given set of symbolic expressions A

and A′, we use the notation A〈A′〉 to represent:

JA〈A′〉K =
⋃
π∈A

⋃
π′∈A′

π〈π′〉 (3.1)

Hence, in Rule (5), A+
1 〈A+

2 〉 yields the set of expressions that may be

affected by the update, while A−1 〈A−2 〉 represents expressions that must be

27

overwritten.

Now, let us focus on the computation of the traversal footprint Φ′ in the

second line of Rule (5). Here, for a set A = {π1, . . . , πn}, we use the notation

Φ[v/A] as shorthand for:

Φ[v/{π1, . . . , πn}] = Φ[v/π1, . . . , v/πn] (3.2)

Hence, the set Φ[v3/A
+
1 〈A+

2 〉] is the same as Φ except that every (sub-)

expression that may correspond to v1〈v2〉 has been replaced with v3. However,

since we want to over-approximate the footprint, Φ′ must also contain any

expression π such that (i) π ∈ Φ and (ii) no prefix of π is in the set A−1 〈A−2 〉,

because such an expression π is not guaranteed to be killed by the store op-

eration. To capture all expressions in Φ that are preserved by the statement

v1.put(v2, v3), we define an 	 operation on expression sets as follows:

π ∈ (A1 	A2)⇔ π ∈ A1 ∧ ∀π′ ∈ A2.(π
′ 6= prefix(π)) (3.3)

In other words, A1 	 A2 preserves exactly those expressions π in A1

where π is not an extension of some expression in A2. Hence, the overall effect

is two-fold:

• Φ′ contains v3 if Φ contains some expression x〈y〉 where x and y may

alias v1 and v2 respectively

28

• Φ′ contains any expression π ∈ Φ such that π is not guaranteed to be

modified by the statement v1.put(v2, v3)

We now explain the computation of the write footprint Ψ′, which is de-

scribed in the third line of Rule (5). First, observe that Ψ′ contains v3 iff there

exists some x〈y〉 ∈ Ψ such that x and y must alias v1 and v2. Furthermore,

we kill all expressions in Ψ of the form x′〈y′〉 where x′ and y′ may alias v1 and

v2, respectively. Finally, since the statement v1.put(v2, v3) modifies collection

v1, the write footprint before this statement includes variable v1.

Example 6. Consider the following code snippet where x and y are vari-

ables of type Collection〈Int,Collection〈Int〉〉 and z, w are variables of type

Collection〈Int, Int〉:

1. y.put(0, w); Φ1 = {x〈0〉, w} Ψ1 = {y, w}
2. z := x.get(0); Φ2 = {x〈0〉} Ψ2 = {w}
3. w.put(2, 5); Φ3 = {z} Ψ3 = {w}
4. z.traverse(); Φ4 = {z} Ψ4 = ∅

The annotations Φi and Ψi show the traversal and write footprints right be-

fore statement Si under the assumption that x and y may alias (but are not

guaranteed to).

We now consider the last two rules in Figure 3.3. When analyzing if

statements in Rule (7), we take the union of the traversal footprints Φ1 and

Φ2 obtained from the two branches. On the other hand, since we need to

underapproximate the write footprint, we take the intersection of Ψ1 and Ψ2.

rather than their union.

29

The final rule (8) describes the analysis of while loops2. In this rule,

we use the notation S̃ to denote the resulting statement when all traversal

statements in S are replaced by skip. In particular, to avoid reporting the

same warning for both inner and outer loops, our analysis ignores traversals in

nested loops when computing the traversal footprint associated with an outer

loop.

Now, continuing with rule (8), the traversal and write footprints Φ′ and

Ψ′ must satisfy the following properties:

• Φ′ must be a superset of Φ since any expression that is traversed after

the loop may also be traversed before the loop (observe that the loop

may execute zero times).

• Ψ′ must be a subset of Ψ since only those expressions that are modified

after the loop are guaranteed to be modified before the loop.

• Φ′ and Ψ′ must be inductive with respect to loop body S̃.

Example 7. Consider the following code snippet:

1. while(?) do i = i+ 1; if(?) then a = b else b = a;
2. a.traverse(); b.put(2, 5);

Right before line 2, we have the traversal and write footprints Φ2 = {a},Ψ2 =

{b}. On the other hand, the traversal and write footprints before line 1 are

Φ1 = {a, b} and Ψ1 = ∅.

2This rule is only needed when detecting performance bugs in loops that contain at least
one nested loop.

30

3.2.3 Detecting Redundant Traversal Bugs

We now explain how the computed traversal and write footprints are

used to detect redundant traversal bugs. Figure 3.4 summarizes our perfor-

mance bug detection algorithm using the judgments from Figure 3.3. As ex-

pected, our analysis only reports warnings when analyzing loops. Specifically,

as shown on the first line of the Err rule, we first compute the traversal

and write footprints Φ,Ψ associated with the loop body. Now recall from

Section 3.1 that the loop contains a redundant traversal bug if there exists

a π ∈ Φ such that (i) π is traversed in all loop iterations, and (ii) π is loop

invariant (i.e., is not modified within the loop).

To determine if condition (i) holds, we use Theorem 2 from Section 3.1

to check whether π is distinct from every expression π′ ∈ pre+(π, S). More

specifically, in the All rule, NC corresponds to pre+(π, S), and the check

A+ ∩ NC = ∅ stipulates that π does not alias any expression in pre+(π, S).

Hence, by Theorem 2, if the predicate traversal all(Sρ, π) evaluates to true,

then π may be traversed in all loop iterations.

Now, we still need to check that π is not modified within the loop. For

this purpose, we use the Inv rule, which checks if some must-alias of π is in

the write footprint Ψ. If not (i.e., A+ ∩ Ψ = ∅), this implies that π may be

loop invariant, so our analysis reports a potential performance bug.

Example 8. Consider the following code snippet:

while(?) do t := a.get(i); t.traverse(); i := i+ 1;

31

E, {π}, ` S̃ : NC,
E ` (ρ, π) : (A+,A−)

A+ ∩NC 6= ∅
E ` traverse all(Sρ, π)

(All)

E ` (ρ, π) : (A+,A−)
A− ∩Ψ = ∅

E,Ψ ` loop inv(Sρ, π)
(Inv)

E, ∅, ∅ ` S : Φ,Ψ
π ∈ Φ

E ` traverse all(Sρ, π)
E,Ψ ` loop inv(Sρ, π)

E ` while(?) doρ S Error
(Err)

Figure 3.4: Summary of performance bug detection. As before, S̃ denotes
traverse statements in S replaced by skip.

Here, the traversal footprint Φ for the loop body is {a〈i〉}, and the write foot-

print Ψ is ∅. Since the necessary precondition of a〈i〉 is Φ′ = {a〈i+ 1〉}, the

All rule fails (assuming a〈i〉 and a〈i+ 1〉 do not alias), so our analysis does

not report a performance bug.

Example 9. Consider the following code snippet:

1. if(?) then b := a; else skip;
2. while(?) do a.traverse(); b.put(2, 4);

Here, we have Φ = {a} and Ψ = {b}. The necessary precondition of a with

respect to the loop body is {a}, so using the All rule, we determine that a

may be traversed in all loop iterations. Furthermore, since a and b are not

guaranteed to alias, the Inv rule succeeds, so our analysis reports a redundant

32

traversal bug. However, if we changed line 1 to b := a, then our analysis would

not report a performance bug, since a and b are now guaranteed to alias.

3.3 Implementation

We have implemented our proposed analysis in a tool called Clarity,

which is written in Java and consists of approximately 8,000 lines of code.

Clarity is implemented in the Soot compiler framework [171] and uses the

Jimple intermediate representation. Clarity relies on Soot for CFG and

callgraph construction and issues a warning if any possible target of a vir-

tual method call contains a performance bug. We have also implemented our

own summary-based pointer analysis for computing may and must aliases by

adapting the ideas described by Dillig et al. [63].

In this section, we focus on two important aspects of the implementa-

tion: (1) the identification of data structure traversals and (2) interprocedural

analysis.

Identifying Data Structure Traversals. Our implementation uses a com-

bination of automatic inference and a small amount of manual annotations to

identify data structure traversals. In particular, we manually annotate 28

methods that (a) are implemented by the Java collections library and (b) have

average-case complexity that is at least linear in the size of the data structure.3

3The annotated methods represent a tiny fraction of the analyzed methods.

33

For instance, as we saw in Section 3.1, the contains method of ArrayList

is annotated as a traversal, while HashSet’s contains method is not.

In addition to such manual annotations, Clarity performs automated

inference to identify code snippets that traverse data structures through iter-

ators or loops. However, our current implementation does not detect data

structure traversals in recursive functions. Hence, if a Java application im-

plements its own tree traversal algorithm, Clarity will not be able to detect

performance bugs that arise from redundant traversals of this custom tree data

structure.

To detect data structures that are traversed in loops, our static analysis

also maintains a so-called read footprint. In particular, a data structure δ

is added to the read footprint for code snippet S if S may access δ. For

instance, using the notation from Section 3.2, if a code snippet accesses an

element of array a, we simply add a to the read footprint R and compute R’s

necessary precondition during our backwards analysis. When we encounter

a loop, we then check whether an element a ∈ R is accessed multiple times

using Theorem 2. This analysis is similar to the check that tests whether a

data structure is traversed multiple times (see the All rule in Figure 3.4). If a

given data structure may be accessed in multiple loop iterations, we then add

it to the traversal footprint Φ. The following example illustrates this analysis:

Example 10. Consider the following code snippet:

while(?) do t := l.get(i); sum := sum + t; i := i+ 1;

34

While analyzing the loop body, we add variable l to R. Then, when analyzing

the while loop, we check whether l may be accessed in all loop iterations by

testing whether the necessary precondition for l includes itself. Since it does

in this case, l is added to the traversal footprint Φ of the while loop.

Interprocedural Analysis. Since the key idea underlying our technique is

to compute traversal and write footprints, our analysis is amenable to modular

reasoning. In particular, our interprocedural analysis computes a procedure

summary for each method that tracks its read, traversal, and write footprints

as well as transfer functions that give the necessary and sufficient preconditions

for each data structure used in that method.

When we encounter a call to method m, we simply retrieve m’s sum-

mary and instantiate its read, write, and traversal footprints by applying the

appropriate formal-to-actual mapping. The instantiated callee footprints are

then added to the corresponding footprints of the caller. In addition, the sum-

mary for each procedure also contains transfer functions that describe side

effects of the callee. These transfer functions correspond to necessary and suf-

ficient preconditions of program expressions with respect to the callee’s body.

Hence, for each expression e in the caller’s read, write, and traversal footprints,

we apply the appropriate transfer function to obtain the new footprints before

the method call.

35

Table 3.1: Experimental results: Performance Bugs Detected.

Name LoC LoC w/ Number of Analysis Reported Previously False
libraries Methods Time (sec) Bugs Unknown Bugs Positives

Charts4j 21,396 28,667 715 122 0 0 0
Janino 39,832 305,660 7,149 556 3 3 0
Apache Collections 58,186 58,186 3,759 180 19 10 4
Ode4J 83,207 83,207 4,048 128 0 0 0
Java3D 115,859 146,376 1,875 335 0 0 0
Guava (Google Core) 129,745 129,745 12,338 338 55 44 1
LWJGL (Game Library) 202,902 267,248 10,740 1,584 10 10 0
Apache Ant 205,371 265,828 10,029 1,325 2 2 0
JFreeChart 226,623 362,584 9,162 602 3 3 0

Total 1,083,121 1,647,501 59,815 5,470 92 72 5

3.4 Experimental Evaluation

We evaluate Clarity by applying it to nine mature and widely-used

open source code bases (see Table 5.4). We conduct our experiments on an

x86 64 Ubuntu 12.04 desktop machine with 8 GB of RAM and a dual-core 3

GHz processor. We evaluate our approach using the following metrics: (1) the

number of performance bugs detected by Clarity, (2) the number of false

positives reported, and (3) the impact of fixing these bugs.

Table 5.4 summarizes the results of our experimental evaluation, with

the benchmarks listed in order of increasing code size. Our benchmarks range

from 21,396 to 226,623 lines of Java source code and contain between 715 and

12,338 methods (including external library calls). Since Clarity also analyzes

the external libraries called by each application, the actual number of lines of

code analyzed by the tool can be much larger (see third column of Table 5.4).

We see that even though Clarity performs a non-trivial interprocedural static

36

analysis, the running time of the tool is quite reasonable, with LWJGL taking

the longest at 26.4 minutes. Note that the reported times include pointer

analysis as well as the time required to analyze library code.

Most significantly, we see that Clarity reports a total of 92 perfor-

mance bugs, with only five of these being false positives. Furthermore, among

the 92 true positives, 72 are previously unreported according to the Source-

Forge development logs. The numbers in this table include only unique per-

formance bugs; that is, performance bugs that are inherited by a sub-class are

not counted multiple times.

Finally, to evaluate Clarity’s performance impact, we repair each of

the identified performance bugs, for example, by adding additional fields to

classes, passing extra parameters to methods, or transforming data structures

(e.g., lists into sets). We then compare the execution time of the original

and repaired programs on input sizes ranging from a few thousand to a few

hundred thousand elements. In this evaluation, we observe speedups in the

range 2.5-548.2× on inputs sizes of 50,000 and speedups between 6.6-3,350×

on input sizes of 100,000. This empirical comparison between the original

and modified programs confirms that the redundant traversals identified by

Clarity indeed correspond to asymptotic performance problems.

3.4.1 Discussion

We now explain the most commonly reported performance bugs and

share some observations about the nature of the performance bugs detected

37

by Clarity.

RetainAll Performance Bug. The RetainAll bug occurs in code that re-

moves all elements in a collection A that are not also present in another col-

lection B (often passed as a parameter). The inefficiency occurs when B has

a slow containment checking method that is invoked a linear number of times.

This bug can typically be fixed by converting the parameter collection B to

a set, either within the algorithm or at its call site, or by more complicated

means such as keeping an iterator on the parameter collection and advancing

it accordingly to avoid redundant checks. In addition to appearing in doubly-

nested loops, this bug can also appear in other ways, such as the pruning of

multi-maps, removal of data points from a plot, and intersection of build re-

sources while compiling a Java application. In fact, we observe some variant of

the RetainAll bug in four code bases, namely, Apache Ant, Guava, JFreeChart,

and Apache Collections.

ContainsAll Performance Bug. The ContainsAll bug is similar to Re-

tainAll and occurs in code that checks whether a collection contains all the

elements in some other collection, which is often a method parameter. As in

the RetainAll bug, we see that the flexibility of generic types for collection

parameters can lead to severe performance degradation. We found several

instances of this performance bug in Guava and Apache Collections.

38

FilterPredicate Bug. This bug occurs when a containment predicate P is

attached to a collection C, and elements can only be added to C if they satisfy

P . Typically, the root cause of the performance problem is an inefficient data

structure used in the implementation of the predicate. We see several instances

of this bug in the Guava libraries.

TransformPredicate Bug. This type of performance bug is similar to the

FilterPredicate bug. It appears when an inefficient predicate is used to identify

elements that should be removed from a collection. Again, we find several

occurrences of this type of performance bug in the Guava libraries.

ExtremeVal Bug. The ExtremeVal performance bug occurs when the max-

imum or minimum value of a list of elements is computed multiple times,

even though the list does not change. An instance of this type of bug is the

JFreeChart example from Figure 2.1.

PatternMatching Bug. This bug occurs when checking a set of elements

against a set of patterns. The redundant traversals could be avoided by com-

bining the set of patterns into one pattern, simplifying it, and then checking

the elements against this pattern. An instance of this bug arises in Apache

Ant when testing if files in a directory satisfy a regular expression describing

an include-path.

39

False Positives. Four of the false positives in our experiment arise from im-

precise virtual method call resolution. For example, in some cases, Clarity

believes that the target of a virtual method call may be LinkedList::contains

even though it can only be HashMap::contains. The fifth false positive

arises when Clarity believes that a data structure is traversed multiple times

in a loop that can be traversed only once. In this case, the code has a non-

trivial loop invariant that Clarity cannot reason about.

Nature of Performance Bugs. We now discuss some observations about

the nature of performance bugs uncovered by Clarity.

First, while the majority of the bugs detected by Clarity are con-

ceptually quite simple, they are not easily identifiable through either manual

code review or simple static analysis. Due to the heavy use of abstraction in

Java, the collection that is traversed is often hidden behind an interface, so

identifying data structures that are accessed requires virtual method call res-

olution. Furthermore, the loop where the performance bug arises is typically

defined in a different class or method from the code that actually traverses the

data structure. Hence, the detection of such bugs requires fairly sophisticated

interprocedural static analysis.

Second, even though there are conceptual similarities between the per-

formance bugs identified by Clarity, different code snippets exhibiting con-

ceptually similar bugs can be syntactically very different. For example, a

performance bug that is classified in the RetainAll category appears in a

40

method called createConsolidatedPieDataset, which tries to create a

new dataset with keys above a certain threshold. Meanwhile, another instance

of the RetainAll bug appears in the Apache collections in a method called

retainAll and looks very different from the JFreeChart instance of the Re-

tainAll bug. Thus, despite conceptual similarities among various performance

bugs detected by Clarity, these bugs cannot be detected by performing syn-

tactic pattern matching on program constructs.

Finally, our empirical evaluation sheds light on the difficulty of detect-

ing these performance bugs during testing. First, several performance bugs

identified by Clarity arise in rarely executed program paths. For instance,

recall the performance bug from Figure 2.1, which is triggered when the user

renders items in the shape of a candlestick. Since this shape is unlikely to

be a popular choice, it is unlikely to be triggered during testing. Second, as

observed in our empirical performance comparison between the original and

repaired programs, the true cost of a performance bug may not be apparent

unless tested with large inputs. Since most test suites are designed with the

small input hypothesis in mind, they are unlikely to reveal these performance

problems.

Feedback from developers. The Apache Software Foundation developers

have acknowledged the performance bugs in Apache Collections and Apache

Ant, and have either fixed the bugs or changed the documentation to warn

users of the performance implications for some input values. The Google

41

developers have decided not to fix the bugs due to software maintainability

considerations.

42

Chapter 4

Defining Denial-of-Service Vulnerabilities

4.1 Denial-of-Service Vulnerabilities

Web applications form the backbone of the modern Internet and pro-

vide a plethora of useful services, including banking, commerce, education,

blogging, and social networking. Since web applications do not require the

user to install any software beyond a standard web browser, they are enor-

mously popular. Unfortunately, this growing popularity has also made web

applications a desirable target for many kinds of security exploits, including

denial-of-service (DoS) attacks.

DoS attacks, which can render websites inaccessible and can cause sig-

nificant financial damage to website owners, come in two flavors. Network-

based DoS attacks require an attacker to flood a target server with many

requests, thereby saturating server resources and rendering the target web ser-

vice unavailable. In contrast, application-level DoS attacks take advantage of

an underlying vulnerability in the web application and either cause the server

to crash or exhaust its computational resources. These application-level DoS

attacks are typically more dangerous and cannot be prevented using standard

network-level defense mechanisms [130, 4].

43

In this thesis, we address the issue of application-level DoS attacks

that cause excessive CPU usage. In particular, we identify a new type of DoS

attack, which we refer to as Second Order DoS attacks, because like recent

work on second-order XSS and SQLI vulnerabilities [54], these attacks consist

of two phases: In the first step, the attacker uses a bot to pollute the database

with junk entries. In the second step, the attacker performs some expensive

computation over the junk entries in the database, rendering the application

unavailable for a considerable amount of time.

These second-order DoS attacks are made possible by the presence of

lurking security vulnerabilities in web applications. Specifically, the first phase

of the attack is feasible because the application does not employ an appropriate

defense mechanism, such as a CAPTCHA, that prevents users from inserting

database entries through a bot. Similarly, the second part of the attack is pos-

sible because the application does not sanitize the retrieved database entries

(e.g., by bounding their size). Furthermore, such DoS attacks cannot be pre-

vented using standard network-based defense mechanisms: Since the inserted

database entries are typically small in size and temporally separated, second-

order DoS attacks use low-bandwidth and can evade detection by techniques

that monitor anomalous network traffic.

44

4.2 Defining Second Order Denial-of-Service Vulnera-
bilities

In this section, we first give a precise definition of second-order DoS

vulnerabilities and then discuss some common mechanisms that programmers

employ for avoiding such security holes.

Definition 7. (Second-Order DoS Vulnerability)

Let P be a program using a database table R, and let VR be a view of R. We

say that P contains a second-order DoS vulnerability if:

1. The quantity |VR| can be controlled by a bot

2. The worst-case resource usage of P is Ω(|VR|)

As explained in this definition, there are two necessary conditions that

enable a second-order DoS attack. First, the application must allow a bot to

control the result size of some query on database table R. Second, the resource

usage of the application must be at least linear in the size of this attacker-

controlled view of R. If the application satisfies both of these conditions, then

an attacker can insert junk entries into R in a way that drives |VR| to ∞ in

the limit. Furthermore, since the worst-case resource usage of the application

is proportional to |VR|, the attacker can then craft inputs that trigger this

excessive resource usage behavior.

In practice, there are several ways to avoid second-order DoS vulnera-

bilities in web applications. The most common way to protect against second-

order DoS attacks is to perform some sort of Turing test before inserting any

45

user input into the database. Hence, in this context, CAPTCHAs and other

similar mechanisms (e.g., text message verification) provide a form of saniti-

zation that prevents bots from polluting a database.

However, performing a Turing test is not the only way to defend web

applications against second-order DoS attacks. For example, another form

of sanitization is to require administrator credentials or to bound the size

of a view VR before performing computation whose resource usage behavior

depends on |VR|. For example, consider a web application that iterates over a

collection obtained using the following database query:

$res = SELECT * FROM Papers WHERE Author=$author

Here, if the application disallows the insertion of more than 10 papers

by the same author into the database, then the worst-case resource usage of the

application will be bound by a constant and will therefore not be susceptible

to a second-order DoS attack.

46

Chapter 5

Detecting Denial-of-Service Vulnerabilities

5.1 Static Analysis

In this section, we describe our algorithm for statically detecting DoS

vulnerabilities. As shown schematically in Figure 5.1, our approach consists

of two consecutive static taint analyses:

• Phase I: The goal of the first phase is to identify tainted database

attributes. We say that an attribute K of some database table R is

tainted if |σϕK
(R)| can be controlled by a bot, where ϕK is a condition

involving attribute K. Hence, our first static analysis determines which

user inputs can reach which attributes of a database table without being

sanitized. In this context, a sanitizer is a piece of code that prevents a

bot from arbitrarily increasing the size of σϕK
(R).

• Phase II: In the second phase of our analysis, we start with tainted

database attributes inferred in Phase I and then perform taint propaga-

tion to identify query results whose sizes may be arbitrarily large. Our

analysis then issues a warning if the number of executions of a loop is

controlled by such a tainted query result.

47

Phase I

User
input

(DB, attr)

Phase II

(DB,
attr)Loop

Query
result

Figure 5.1: Schematic illustration of our approach. Here, squiggly arrows
indicate flows between different resources.

Binop ⊕ ∈ {+,−,==, ! =, <,>, ...}
Expr e := c | v | e1 ⊕ e2 | e1[e2] | count(e)
Cond Φ := K = v | Φ1 AND Φ2 | Φ1 OR Φ2

Stmt S := v := e | S1;S2 | f(e1, . . . , ek)
| if (e) then S1 else S2

| foreach (v1 as v2) S
| INSERT (v1, ..., vn) INTO R

| v := SELECT (K1, ...,Kn)
FROM R WHERE Φ

Figure 5.2: Language used for describing our analysis

In the rest of this section, we will use the simplified language of Fig-

ure 7.1 to formally describe our static analyses. In particular, we consider a

simple PHP-like language that has built-in support for database operations,

such as INSERT and SELECT. Expressions in our simplified language include

constants (1, “xyz”, {1, 2, 3}, . . .), variables, and binary operations e1 ⊕ e2

where ⊕ ∈ {+,−, ∗,=,≤, ...}. In addition, we allow array reads e1[e2] to

model reading from PHP superglobals, such as $ GET and $ POST. Finally, the

48

expression count(e) yields the size of collection e.

Continuing with the grammar of Figure 7.1, statements include as-

signments v := e, composition S1;S2, if statements, and loops of the form

foreach(v1 as v2) S where v1 is a collection (i.e., array or map), and v2 is bound

to each element v1. In what follows, we will use function calls f(e1, . . . , ek)

to model various kinds of sanitizers. To simplify our presentation, we only

consider the two most important database operations, namely INSERT and

SELECT1. Database insertion operations have the syntax

INSERT (v1, . . . , vk) INTO R

where R is the name of a database table and (v1, . . . , vk) is a tuple to be

inserted into R. Selection operations have the syntax:

SELECT (K1, . . . ,Kn) FROM R WHERE Φ

Here, each Ki is the name of an attribute of table R and Φ is a condition

used for filtering relevant tuples in R. Note that condition Φ is a boolean

combination of atomic predicates of the form K = v where K is the name of

an attribute and v is a variable.

5.1.1 Phase I Analysis

As mentioned earlier, the first phase of our algorithm performs static

taint analysis to identify tainted database attributes. Here, taint sources cor-

1Our actual implementation handles most MYSQL commands, not just INSERT and
SELECT.

49

respond to user inputs, and sinks are database insertions. Our analysis distin-

guishes between two classes of sanitizers:

• Full sanitizers: Such sanitizers protect the application against bots.

Examples of full sanitizers include Turing tests (e.g., CAPTCHAs or

SMS verification) as well as administrative credential checks. We refer to

these checks as full sanitizers because they sanitize every input received

by the application henceforth.

• Conditional sanitizers: These checks sanitize a particular variable v

for some attribute K of database table R. Specifically, if v is conditionally

sanitized for (R,K), this means that the value stored in variable v cannot

occur an unbounded number of times in attribute K of table R. The

following PHP function exemplifies such a conditional sanitizer:

cond_sanitize(v) {
$rows = SELECT * FROM Contacts where name = $v;
if(count($rows) == 0) return true;
return false;

}

This function returns true iff attribute name of table Contacts does not

already contain value v. Since this function is used to prevent insertion

of duplicate names in the Contacts table, it sanitizes v for context

(Contacts, name). These kinds of conditional sanitizers are ubiquitous

in real code.

50

Since our analysis needs to differentiate between full and conditional

sanitizers, our taint analysis is somewhat non-standard. We describe our Phase

I static analysis in Figure 5.3 using judgments of the form:

b,Γ ` S : b′,Γ′,Λ

Here, b is a boolean value, referred to as a bot checker, indicating whether we

have encountered a full sanitizer in the code analyzed so far. Environment

Γ, called the conditional taint environment, maps each program variable to a

propositional formula φ and is used to reason about conditional sanitization.

Specifically, formula φ is used to represent all contexts under which a variable

is tainted and is formed according to the following grammar:

φ := true | RK | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2

Here, RK is a boolean variable representing context (R,K). Hence, if Γ(v) =

RK, this means that v is tainted under context (R,K). On the other hand,

if Γ(v) = ¬RK ∧ ¬R′K′ , then v is tainted in all contexts except (R,K) and

(R′,K′).

Going back to the judgment b,Γ ` S : b′,Γ′,Λ, we use a set Λ to

keep track of tainted database attributes (R,K). Hence, the judgment b,Γ `

S : b′,Γ′,Λ means the following: Assuming we analyze statement S in an

environment where b indicates the presence/absence of a full sanitizer and Γ

indicates conditional taint information, the analysis of statement S produces

a new bot checker b′, a new conditional taint environment Γ′ and a set Λ of

51

tainted database attributes. Thus, for a program P , if our analysis produces

the judgment

false, [] ` P : b,Γ,Λ

then the set Λ gives us all the tainted database attributes inferred by phase I.

Let us now consider the rules from Figure 5.3 in more detail. According

to the first rule labeled Input, a call to function user input is a taint source;

hence variable v is unconditionally tainted after this statement. The next two

rules describe taint propagation for assignments v := e and cause variable v

be to become tainted under the same contexts as e.

The next two rules, labeled Stz 1 and Stz 2, describe the analysis of full

and conditional sanitizers, respectively. According to Stz 1, the analysis of

full sanitizers simply sets the bot checker to true.2 The second rule labeled Stz

2 analyzes conditional sanitizers that bound the number of occurrences of v

that can appear in attribute K of table R. Since variable v is now sanitized for

context (R,K), we only propagate taint for v when ¬RK is true. Even though

we model conditional sanitizers using the function call cond sanitizer(v,R,K),

our analysis automatically infers PHP/SQL expressions that perform such

conditional sanitization. By contrast, our analysis requires manual annotations

for full sanitizers (please see Section 5.3).

2The careful reader may wonder why we do not analyze full sanitizers by simply setting
Γ to be the empty map. While this strategy can be made sound, it would be imprecise
because the program may apply full sanitization before asking the user for input.

52

(Input)
Γ′ = Γ[v 7→ true]

b,Γ ` v := user input() : b,Γ′, ∅

(Asn. 1)
e 6∈ dom(Γ)

b,Γ ` v := e : b,Γ, ∅

(Asn. 2)
e ∈ dom(Γ)

b,Γ ` v := e : b,Γ[v 7→ Γ(e)], ∅

(Stz. 1)
b,Γ ` full sanitizer() : true,Γ, ∅

(Stz. 2)
Γ′ = Γ[v 7→ (Γ(v) ∧ ¬RK)]

b,Γ ` cond sanitizer(v,R,K) : b,Γ′, ∅

(Insert)

Attributes(R) = (K1, . . . ,Kn)
Λ = {(R,Ki) | b = false ∧ Γ(vi) 6⇒ ¬RKi

}
b,Γ ` INSERT (v1, ..., vn) INTO R : b,Γ′,Λ

(Seq)

b,Γ ` S1 : b1,Γ1,Λ1

b1,Γ1 ` S2 : b2,Γ2,Λ2

b,Γ ` S1;S2 : b2,Γ2,Λ1 ∪ Λ2

(If)

b,Γ ` S1 : b1,Γ1,Λ1

b,Γ ` S2 : b2,Γ2,Λ2

Γ′ = Γ1 t Γ2

Λ′ = Λ1 ∪ Λ2

b,Γ ` if(e) then S1 else S2 : b1 ∧ b2,Γ′,Λ′

Figure 5.3: Phase I static analysis

The rule labeled Insert describes the analysis of database insertions,

which correspond to taint sinks. To understand this rule, suppose that we are

performing an insertion into database table R which has attributes K1, . . . ,Kn.

53

Now, if we have previously performed full sanitization, we know that this

insertion is not being performed by a bot. Hence, if b is true, then |σϕK
(R)| is

not controlled by a bot, and (R,K) should not become tainted. Similarly, if we

have performed conditional sanitization to restrict the number of occurrences

of value vi in the Ki’th attribute of R, then |σϕKi
(R)| is bounded; hence,

(R,Ki) is not tainted. Thus, our analysis considers an insertion to be a sink

for (R,Ki) only when b is false and Γ(vi) 6⇒ ¬RKi
(i.e., it is possible that vi is

tainted under context (R,Ki)).

The last two rules of Figure 5.3 summarize taint propagation for se-

quences and if statements. In the Seq rule, observe that we take the union of

Λ1 and Λ2 because a database attribute (R,K) is tainted if it is either tainted

in S1 or S2.

Finally, let us consider taint propagation for a conditional statement

of the form if(e) then S1 else S2. Here, we can only be sure that a full sani-

tization has been performed if it has been performed in both branches; thus,

our analysis takes the conjunction of b1 and b2. On the other hand, since we

want to overapproximate tainted database attributes, we propagate the union

of Λ1 and Λ2. Similarly, since we also want to be conservative about taint

information for variables, we compute the join (t) of Γ1 and Γ2, defined as

follows:

(Γ1 t Γ2)(v) =

Γ1(v) if v 6∈ dom(Γ2)
Γ2(v) if v 6∈ dom(Γ1)
Γ1(v) ∨ Γ2(v) otherwise

54

In other words, this join operation ensures that variable v is tainted if it is

tainted in either branch.

Observe that the rules from Figure 5.3 omit the analysis of loops and

selection operations because (1) our analysis unrolls loops a fixed number of

times, and (2) selection operations are effectively no-ops for the first analysis.

5.1.2 Phase II Analysis

The second phase of our algorithm performs a different kind of static

taint analysis to infer Ω(n) computation over tainted query results (views). For

the Phase II analysis, taint sources are elements of set Λ (i.e., tainted database

attributes) inferred by the Phase I analysis. On the other hand, taint sinks are

loops that iterate over collections. Unlike the Phase I analysis where we need

to differentiate between two classes of sanitizers, the notion of sanitization

for the Phase II analysis is more straightforward: Specifically, we say that a

collection v is sanitized if its size is bounded.

The taint propagation rules for Phase II are described in Figure 5.4

using judgments of the form:

Λ,Υ ` S : Υ′,E

Here, Λ is the output of the first static analysis (i.e., tainted database at-

tributes), and E is a boolean variable indicating whether a vulnerability has

been encountered. The set Υ is a set of variables that correspond to tainted

query results. Essentially, our phase II analysis propagates taint arising from

55

selection operations and issues a warning when the number of loop iterations

depends on a tainted variable v ∈ Υ.

Let us now consider the rules from Figure 5.4 in more detail. The first

rule for assignments v := e simply propagates taint to v if e is tainted. The

second rule analyzes sanitizers that perform some bounds checking on the size

of a collection v. In this case, since the size of collection of v is bounded, we

simply remove v from the set of tainted variables Υ. While Figure 5.4 models

sanitizers using a function call sanitize(v), our implementation automatically

infers sanitization expressions that perform bounds checking on the size of

collections.

The most interesting aspect of Phase II is the analysis of selection

operations. Here, given a set Λ of tainted database attributes, we need to

infer whether the result of a selection query is also tainted. Unsurprisingly,

this depends on the expression Φ used in the WHERE clause of the query.

For this purpose, our analysis utilizes the helper rules shown in Figure 7.2.

Given tainted attributes Λ and a database table R, these rules decide whether

to propagate taint or not. In particular, given a query whose WHERE clause

is Φ, the judgment Λ,R ` Φ : true indicates that taint should be propagated

to the result of the query.

The first two rules in Figure 7.2 deal with the base case where Φ is

an atomic predicate of the form K = v. In this case, if (R,K) is not tainted

(i.e., (R,K) 6∈ Λ), then the result of the query cannot be unbounded; hence,

Λ,R ` K = v : true if and only if (R,K) ∈ Λ. If the WHERE clause involves

56

AND, then the result is tainted iff both Φ1 and Φ2 are tainted. In contrast,

Φ1 OR Φ2 yields true iff Λ,R ` Φi : true for some i ∈ {1, 2}.

Based on this discussion, let us go back to the Select rule from Fig-

ure 5.4. As expected, the query result v becomes tainted if and only if

Λ,R ` Φ : true; hence, we only add v to set Υ under this condition. Since the

rules Seq and If are similar to taint propagation from the first phase, we do

not describe them in detail.

In Figure 5.4, the last rule for loops describes the analysis of sinks.

In particular, since the loop iterates over collection v1, the CPU usage of the

program is Ω(count(v1)).3 Furthermore, if v1 ∈ Υ, we know that the size of v1

may be unbounded, so the analysis issues a warning if v1 ∈ Υ. Note that this

rule also propagates taint for the loop body.

5.2 Attack Vector Generation

So far, we have described a static analysis for identifying second-order

DoS vulnerabilities. However, our static analysis has two main limitations:

First, it can have false positives. Second, even when the tool reports a true

positive, it can be hard to understand the conditions under which the detected

vulnerability can be exploited. Hence, to help programmers understand and

confirm the warnings generated by the tool, we have also developed an attack

3Unless there is a break or return statement, in which case the attacker should insert
values in the first phase that don’t trigger these statements. In our experience, we don’t
find this to be an obstacle for the attacker.

57

vector generation engine. In the context of second-order DoS vulnerabilities,

an attack vector consists of the following:

• Component 1: A set S of tuples inserted into the database, together

with other user inputs that are needed to trigger these insertion opera-

tions

• Component 2: A particular database query that causes the application

to perform some expensive computation over S (again, along with other

user inputs that are necessary for triggering this behavior)

As shown schematically in Figure 5.6, our approach to automated

attack generation is based on backwards symbolic execution and constraint

solving. Specifically, given a pair of program locations π0, π1 associated with

sources and sinks, we perform backwards symbolic execution to collect a set of

constraints φ describing the conditions under which execution will reach from

π0 to π1. We then use an SMT solver to find a satisfying assignment σ to φ

and use σ to generate a candidate attack vector.

5.2.1 Backwards Symbolic Execution

Given source and sink locations π0, π1, the goal of our symbolic execu-

tion is to generate a constraint φ that describes the conditions under which

control will reach from π0 to π1. This analysis is described in Figure 5.7 using

judgments of the following shape:

φ, b, π0, π1 ` S : φ′, b′

58

Here, π0 and π1 are the source and sink locations respectively and b is a boolean

value indicating whether we have reached the source. Given condition φ,

formula φ′ represents the constraint under which control will reach π1 starting

from the current statement S. Hence, if our analysis produces the judgment:

false, false, π0, π1 ` P : φ,

then φ yields the condition under which π1 is reachable from π0 in program P .

Let us now consider the rules from Figure 5.6 in more detail. According

to rule 1, if we encounter a sink statement at program point π1, we know that

π1 is unconditionally reachable from this statement; hence, we propagate true.

On the other hand, if we encounter a source at program point π0, we have

reached the desired source; hence, we set the boolean variable b to true to

indicate that we should stop computing weakest preconditions.

Continuing with rule (3) for assignment v := e, we use the standard

rule for weakest precondition computation by substituting e for v in constraint

φ. However, if we have already reached the source (i.e, b is true), we do not

need to compute weakest preconditions; hence, the generated constraint is

(b → φ) ∧ (¬b → φ[e/v]). Rule (4) for composition (S1;S2) also computes

weakest preconditions in the standard way.

Rule (5) for conditionals is a bit more involved. First, we compute

the weakest precondition of φ with respect to the then and else branches.

Now, if we have encountered the source π0 in either branch, we need to stop

propagating the weakest precondition; hence the new value of boolean b′ is

59

b1 ∨ b2. Assuming we have not yet encountered the desired source, the new

precondition is computed as (e ∧ φ1) ∨ (¬e ∧ φ2). To see why this is correct,

consider two cases: If there is sink π1 is in the then branch, then condition

e needs to be true for control to reach π1; hence, we conjoin e with φ1. On

the other hand, if the desired sink is in the else branch, ¬e needs to hold for

control to reach π1. Note that at least one of φ1 and φ2 is guaranteed to be

false because the sink location cannot be in both branches simultaneously.

The last rule describes the analysis of SELECT statements. This rule

is similar to the assignment rule, except that we now substitute v with a more

complex term t that involves set comprehensions. In particular, term t is a set

that contains all tuples in R satisfying condition Φ.

5.2.2 Using Constraints to Generate Inputs

We now describe how to use the constraints from Section 5.2.1 to gen-

erate attack vectors. As in Section 5.1, the attack vector generation consists

of two phases: In the first phase, the input to the analysis is a (user input,

database insertion) pair discovered to be a feasible source-sink flow in the

Phase I static analysis of Section 5.1.1. Similarly, for the second phase of

attack vector generation, the input is a (database selection, loop) pair that

is deemed to be a feasible source-sink flow according to the Phase 2 static

analysis (Section 5.1.2).

The second phase of attack vector generation is simpler than the first

phase because we only need to compute a single input. For this purpose,

60

we get a satisfying assignment σ to the constraint generated using backwards

symbolic execution. The input values given by σ, together with the database

query for the sink, are now used to generate the second component of the

attack vector.

The first phase of attack vector generation is a bit more involved since

we need to generate a sequence of tuples, rather than a single input. A key

challenge here is that the constraint φ generated using symbolic execution can

refer to database R, which evolves as we insert new tuples into the database.

To address this challenge, we employ an iterative algorithm that repeatedly

instantiates constraint φ with respect to the actual tuples inserted into the

database. In particular, given a set variable R used in constraint φ, we first

initialize it to the empty set and get a satisfying assignment σ0 for φ[∅/R].

This assignment σ0 is now used to generate a concrete tuple t to insert into

the database. In the next iteration, we instantiate R with the set {t} and ask

for a new satisfying assignment σ1 to φ[{t}/R]. This process continues until

we have inserted a sufficiently large number of tuples into the database.

Example 11. We illustrate attack vector generation using a realistic code

pattern commonly found in PHP programs:

L1: x := $_POST["a"]; y := $_POST["b"]; z := $_POST["c"];
if (z == "1") {

v := SELECT (k1, k2) from R where k2 = y;
if(count(v)==0)

L2: INSERT (x, y) INTO R;
}

61

Our goal is to generate a sequence of tuples that can reach the database

insertion at program point L2 starting from program location L1. Using back-

wards symbolic execution, we first generate the following constraint φ:

$ POST[“c”] = 1 ∧
count({(e.K1, e.K2) | e ∈ R ∧ e.K2 = $ POST[“b”]}) = 0

To generate the first tuple, we instantiate R with ∅, which yields $ POST["c"]

= "1". Hence, the values of $ POST["a"] and $ POST["b"] are uncon-

strained, but $ POST["c"] must be "1"; so suppose we generate the in-

put "aa", "bb", "1". In the next iteration, we instantiate R with {

("aa", "bb") } in φ. This new constraint now tells us that, in addition

to $ POST["c"] = "1", we need $ POST["b"] 6= "bb". Hence, we now

pick the next input to be "aa", "bc", "1". In the next iteration, we in-

stantiate R with the set { ("aa", "bb"), ("aa", "bc") }, which tells

us that $ POST["c"] = "1" ∧ $ POST["b"] 6= "bb" ∧ $ POST["b"] 6=

"bc". This process continues until we have inserted sufficiently many tuples

into the database.

5.2.3 Constraint Solving

As described in the previous subsections, the formulas we need to solve

for attack vector generation belong to the following constraint language :

Term t := c | x | f(t) | {x | x ∈ S ∧ φ}
Formula φ := true | false | t1 op t2

| φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ | φ1 → φ2

62

Here, c is a constant, x is a variable, f is an uninterpreted function, and

S is a set. If we exclude set comprehension terms of the form {x | x ∈ S ∧φ}

from this constraint language, then our formulas would belong to the stan-

dard first order theory of equality with uninterpreted functions (and linear

arithmetic) and could be directly solved using off-the-shelf SMT solvers. Un-

fortunately, to allow the computation of weakest preconditions in the presence

of database queries, our analysis also needs to introduce set comprehension

terms which are not supported by standard SMT solvers. For this purpose,

we employ a customized decision procedure that overapproximates satisfiabil-

ity by performing a transformation and using off-the-shelf SMT solvers. In

particular, our algorithm consists of the following steps:

1. Replace each set comprehension term ti ∈ φ with a fresh variable xi and

generate the formula φ′ = φ[xi/ti] and the mapping Γ : {xi 7→ ti}

2. Let Γ(xi) be {x | x ∈ Si ∧ φi}. Now, generate the constraint:

φ′′ = (
∧

xi∈dom(Γ)

(count(xi) = 0→
∧

eij∈Si

¬φi[eij/x]))

3. Use an off-the-shelf SMT solver to get a satisfying assignment to φ′ ∧ φ′′

It is easy to see that our procedure overapproximates satisfiability: In

particular, we construct φ′ by replacing set comprehension terms with fresh

variables. Second, observe that count(xi) = 0 implies that xi must be the

empty set; hence if xi represents a set comprehension term {x | x ∈ Si ∧ φi},

63

we know that φi must evaluate to false for all elements in set Si, which is

expressed using φ′′.

Since our procedure overapproximates satisfiability, it is possible that

the inputs generated using our technique do not trigger the desired source-sink

flow in reality. However, we have not observed this overapproximation to be a

problem in practice. Specifically, the overwhelming majority of the set compre-

hension terms ti appear in the form count(t) = 0; and, under this restriction,

it can be shown that φ′ ∧ φ′′ is equisatisfiable to the original constraint φ.

5.3 Implementation

Torpedo consists of approximately 4,000 lines of PHP code. We use

Nikic’s PHP parser [142] to obtain an initial AST and then construct our

own CFG representation for each function. Since an SMT solver (recall Sec-

tion 5.2) is needed to automatically generate attack vectors, Torpedo uses the

Z3 SMT solver [193] and its string solving plug-in [194] for finding satisfying

assignments to constraints. For interprocedural analysis, Torpedo concep-

tually performs function inlining by “gluing together” the CFGs of callees at

method invocation sites.

Internally, Torpedo consists of four different modules, namely, (1)

static taint analysis, (2) symbolic execution engine, (3) sanitization inference,

and (4) an engine for inferring database schemas. Since we have already de-

scribed the taint analyzer and symbolic execution engine in detail, we now

briefly outline the design of modules (3) and (4).

64

Sanitizer Inference Engine. To infer sanitizers, Torpedo uses a combi-

nation of manual annotations and automated static analysis. For the Phase I

static analysis from Section 5.1.1, Torpedo requires manual annotations of

full sanitizers, since automated inference of Turing tests is beyond the scope

of static analysis. Hence, we have manually annotated CAPTCHA routines,

as well as methods that check for website administrator credentials. How-

ever, Torpedo does perform static analysis to infer conditional sanitizers

that impose a bound on the size of data structures. Specifically, Torpedo

first statically analyzes the source code to generate constraints on collection

sizes (for Phase II) and on the number of occurrences of keys in database tables

(for Phase I). Torpedo then uses an SMT solver to check if the generated

constraints imply an upper bound on the size of some data structure of inter-

est. Hence, a statement S is considered to be a sanitizer if the size of a data

structure is unbounded before S but becomes bounded after S.

Database Schema Inference. Recall from Section 5.1 that our static anal-

ysis needs to know the attributes for a given database table, so Torpedo

performs a pre-analysis that infers the schema for each database table. Specif-

ically, after parsing all files in the application, Torpedo looks for CREATE

TABLE instructions in the source code, and it records the ordered set of at-

tributes associated with each table name. Since database queries in PHP can

be generated dynamically through the use of string variables, Torpedo can

only over-approximate the set of string values provided to the queries. As

we discuss later, this source of imprecision is one of the main causes of false

65

Application Files LOC # TP # FP

SCARF 19 1686 11 0
OpenConf 130 22,889 7 0
HotCRP 103 48,144 8 11
Gallery 505 62,699 1 0
osCommerce 702 86,693 5 3
Wordpress 479 261,564 5 4

Total 1938 483,675 37 18

Table 5.1: DoS vulnerability detection results. “TP” indicates true positives
(i.e., real vulnerabilities), and “FP” denotes false positives.

positives.

5.4 Evaluation

We evaluate Torpedo by applying it to six server-side web applica-

tions written in PHP. Specifically, our benchmarks include HotCRP (a widely-

used conference management software), WordPress (a popular blogging ap-

plication), Gallery (a photo management application), SCARF (a research

discussion forum), osCommerce (an online store management software), and

OpenConf (another conference management system). In total, we use Tor-

pedo to analyze 483,675 lines of PHP code. We perform our experiments on a

MacBook Air laptop with Mac OS X 10.9.3, a 2 GHz Intel Core i7 processor,

and 8 GB of RAM.

Table 5.4 summarizes our experimental results, showing that Torpedo

finds a total of 37 vulnerabilities across six applications and only reports 18

false positives. On average, we see that Torpedo has a 33% false detection

66

Application n=25,000 n=50,000 n=75,000 n=100,000

SCARF 6m32s 22m53s TO TO
OpenConf 2m26s 17m49s TO TO
HotCRP 7m46s 26m33s TO TO
Gallery 1m57s 6m12s 14m8s 29m47s
osCommerce 7m16s 15m35s 33m17s TO
Wordpress 46s 2m11s 8m37s 21m53s

Table 5.2: Impact of DoS attacks for different numbers (n) of entries inserted
into the database during the first phase. TO means that the application
becomes unresponsive for more than one hour. This data only includes a
subset of the uncovered vulnerabilities.

rate.

Discussion of true positives. For the true vulnerabilities detected by our

tool, we use Torpedo’s attack vector generation capability to confirm that the

uncovered vulnerability can be exploited to launch a DoS attack. Specifically,

we devise a bot to insert a large number of junk entries into a given database

and then issue a query that triggers an Ω(n) computation over these entries.

As expected, the severity of the DoS attack is proportional to the number of

entries inserted during the first phase. Table 5.2 shows the number of database

entries inserted during the first phase against the amount of time the server

is unresponsive during the second phase. For example, for a vulnerability in

HotCRP, when we insert 75,000 entries into the database in the first phase,

we can bring down the server for more than an hour by issuing a single query

in the second phase.

Upon manual inspection of the true vulnerabilities, we find that the

67

second phase of the attack does not necessarily need to be carried out by a

bot. In fact, all of the running times reported in Table 5.2 are caused by a

single database query, so automation of the second phase is not a prerequisite

for the DoS attack. By contrast, since the uncovered DoS attacks typically

involve the insertion of thousands of entries into the database, automation is

crucial to the first phase of the attack.

Another interesting aspect of the vulnerabilities is that a few tainted

database attributes typically lead to several security vulnerabilities in the same

application. In other words, many of the source-sink flows identified by Tor-

pedo’s Phase II taint analysis share the same source. For example, the 8 dif-

ferent vulnerabilities found in HotCRP involve two distinct tainted database

attributes. This observation suggests that several vulnerabilities within the

same application can be prevented by a single fix that blocks the first phase

of the attack (e.g., by employing some kind of Turing test).

Finally, we observe that the severity of the uncovered vulnerability is

proportional not only to the number of database entries inserted in the first

phase of the attack but also to the kind of sink encountered in the second

phase. In particular, Ω(n) computations that involve network operations, file

I/O or database manipulation typically lead to more serious vulnerabilities.

For example, one of the vulnerabilities in osCommerce involves sending emails

to all registered users, which can lead to the collapse of the server’s network

for hours.

68

Discussion of false positives. We now discuss the root causes of the false

positives reported by Torpedo. Manual inspection of all false alarms reveals

that there are only two root causes: (1) incomplete sanitizer inference, and (2)

incomplete database query resolution. In particular, all 11 false positives in

HotCRP are due to missed detection of sanitizers, and the remaining 7 false

alarms in osCommerce and WordPress are caused by imprecise string analysis

used for database schema detection. Torpedo fails to identify some of the

sanitizers in HotCRP because the constraints generated for sanitizer inference

are overapproximate: Since Torpedo heuristically drops some interprocedu-

ral path conditions for scalability reasons, the SMT solver may decide that the

overapproximate constraint is satisfiable even though the exact constraint is

in fact unsatisfiable. We note that all false positives in HotCRP can be elimi-

nated using a few simple annotations that explicitly identify sanitizers missed

by Torpedo. Incomplete database query resolution occurs when Torpedois

unable to identify the string values of the database name and/or attributes in a

dynamic database query, and this over-approximation results in false positives.

We believe the remaining 8 false positives in osCommerce and Wordpress can

be eliminated by employing a more precise string analysis for inferring the

tables and attributes of database queries.

Lasting Damage to Applications. While the results in Table 5.2

focus on the damage of a specific second-phase attack, the impact of the first

phase can often be much more significant: Once the database has been pol-

luted, the application is often primed for multiple possible second-phase at-

69

tacks, becoming virtually unusable. For example, imagine a conference sub-

mission site whose database has been populated with an enormous number

n of spurious papers. This database is unlikely to be useful for the review

process because the conference chair would have to be careful to not trigger

the high-complexity behavior in the application. Alternatively, the conference

chair could try to cleanse the database. In OpenConf, the program chair might

try to flag for withdrawal all submissions with no uploaded files. This natural

reaction to the attack unfortunately triggers the second phase of the attack.

In general, a careful attacker can perform a dictionary attack that makes it

difficult to distinguish malicious from benign entries, complicating the task of

automatically cleansing the tables without removing legitimate entries.

Feedback from developers.

Since our work, the Wordpress developers have added CAPTCHA mech-

anisms that prevent the DoS attacks against their application. The developers

of osCommerce and HotCRP have decided not to fix the vulnerabilities.

In the remainder of this section, we describe two representative vul-

nerabilities uncovered by Torpedo and outline how an attacker can exploit

these vulnerabilities to launch a second-order DoS attack.

5.4.1 Exploit in HotCRP

One of the vulnerabilities uncovered by Torpedo is in the HotCRP

conference management application. This vulnerability arises due to an in-

70

teraction between three HotCRP features, namely account creation, paper

registration, and merging of accounts.

To understand the vulnerability and how it can be exploited, we first

observe that HotCRP allows a registered user to add an unrestricted number

of papers to an underlying database called Paper. Furthermore, it is possible,

although not trivial, to automatically pollute this Paper database by ensuring

that certain conditions are met (for example, $ REQUEST[“p”] is set to “new”,

$ POST[“submitfinal”] and $ POST[“submitpaper”] are both set to “1”, the

hidden formid value, which is actually leaked from the cookie, is valid, and so

on).

Second, let us consider the HotCRP functionality that allows users to

merge different accounts, shown in Figure 5.9. This merge operation first

retrieves the set S of all papers associated with one account, and then, for

each paper in S, it performs an update operation on the Paper database to

modify the corresponding author information. Thus, when merging an account

A with another account B, the amount of work that is performed is directly

proportional to the number of papers associated with A’s account.

Thus, to launch a DoS attack on HotCRP, an attacker can implement

a bot that performs the following steps:

1. It registers a large number m of bogus user accounts.4

4Even though HotCRP disallows the registration of multiple accounts associated with
the same email address, the attacker can still generate arbitrarily many HotCRP accounts
because some email services, including Yahoo, do not prevent bots from creating accounts.

71

2. For each user account, it then registers a large number n of papers by

providing inputs that pass the paper registration filters.

3. Finally, it merges account i with account i+1 for each i ∈ [1,m−1], again

by generating inputs that pass HotCRP’s checks that (unsuccessfully)

attempt to prevent illicit account merging.

Observe that this attack causes the server to perform work whose com-

plexity is Θ(m× n), where m is the number of accounts and n is the number

of papers per account. Furthermore, since m and n can both be made arbi-

trarily large, this attack can feasibly cause HotCRP to become unavailable for

significant periods of time. For example, when m = 5 and n = 25, 000, the

bot we created was able to bring down HotCRP for more than an hour on our

local server.5

5.4.2 Exploit in osCommerce

We now describe a vulnerability uncovered by Torpedo in the osCom-

merce application. Since osCommerce provides infrastructure for online stores,

DoS attacks involving osCommerce directly cost money to businesses that use

this application. An interesting aspect of the vulnerability found in osCom-

merce is that the second phase of the attack is only indirectly triggered by

the attacker. Thus, the point of this example is to illustrate that second-order

5For the HotCRP results in Table 5.2, we use m = 1.

72

DoS attacks can be serious even if the second phase is not under the direct

control of the attacker.

The vulnerability in osCommerce arises from an interaction between

two features, namely account creation and email subscription. Let us first

consider account creation. The key point here is that osCommerce does not

employ a mechanism that prevents bots from registering spurious user ac-

counts. As shown in the code snippet of Figure 5.9, osCommerce uses a

database relation called TABLE CUSTOMERS that stores information about

all registered users. When a user fills out an HTML form to create a new

account, the code performs checks to ensure that certain conditions are met,

for instance, that the customer’s first name and email address are a certain

minimum length, that there are no other users with the same email address,

etc. However, these checks are not sufficient to rule out the possibility that

the web form is being filled out by a bot. In fact, the application does not

even check that the user has entered a valid (i.e., existing) email address. As a

result, it is fairly straightforward to create a bot that registers many spurious

users and pollutes the TABLE CUSTOMERS database.

The next feature relevant to the attack is an email subscription fea-

ture that notifies users when certain events occur. For example, a user can

subscribe to a product category, which notifies the user when a new product

is added to that category (e.g., electronics or groceries). Similarly, users can

subscribe to individual products so that osComerce can notify them of changes

to the inventory (e.g., when a certain product is re-stocked). Since the code

73

implementing this subscription feature does not protect itself against bots, it is

possible for an attacker to subscribe a huge number of spurious accounts to all

possible categories and products. Hence, each time there is a minor change in

the inventory, the application will send an enormous number of email messages

to all of the spurious users registered by the attacker.

At first sight, this exploit may seem insignificant because the amount

of work performed upon each inventory change is only linear in the number

of subscribed users. However, when we perform experiments to evaluate the

impact of this kind of attack, we find that we can bring down our own server

for over 10 minutes by registering only 40,000 users and subscribing them to

a product. If the website becomes unavailable for over 10 minutes every time

there is a minor change to the inventory, customers are unlikely to enjoy their

online shopping experience. Thus, even this innocuous-looking attack makes

websites based on osCommerce quite unusable for all practical purposes.

Moreover, we find that after polluting the database, the application’s

administrator becomes essentially helpless, as many of the application’s ad-

ministrative features become unusable due to their long setup or execution

times. The panel for displaying user profiles becomes too slow to use. Sending

a general newsletter or new product announcements can take hours or even

collapse the network, preventing the legitimate users from receiving the mes-

sage. Personalized emails to specific users can become almost impossible to

send due to the need to navigate a vast amount of junk entries. Of course,

the administrator likely has no idea which operations have been affected by

74

the attack, further adding to his despair. Unfortunately, as mentioned ear-

lier, it can be extremely difficult to automatically cleanse the database in the

presence of a sophisticated first-phase attack.

75

(Assign)

Υ′ =

{
Υ ∪ {v} if e ∈ Υ
Υ if e 6∈ Υ

Λ,Υ ` v := e : Υ′, false

(Sanitize)
Λ,Υ ` sanitize(v) : Υ\{v}, false

(Select)

Λ,R ` Φ : c

Υ′ =

{
Υ ∪ {v} if c = true
Υ if c = false

Λ,Υ ` v := SELECT (K1, ...,Kn) FROM R WHERE Φ : Υ′, false

(Seq)

Λ,Υ ` S1 : Υ1,E1

Λ,Υ1 ` S2 : Υ2,E2

Λ,Υ ` S1;S2 : Υ2,E1 ∨ E2

(If)

Λ,Υ ` S1 : Υ1,E1

Λ,Υ ` S2 : Υ2,E2

Λ,Υ ` if(e) then S1 else S2 : Υ1 ∪Υ2,E1 ∨ E2

(Loop)

Υ′ ⊇ Υ
Λ,Υ′ ` S : Υ′,E

Λ,Υ ` foreach(v1 as v2) S : Υ′, (v1 ∈ Υ) ∨ E

Figure 5.4: Inference rules describing the second phase of static analysis

76

(Base 1)
(R,K) ∈ Λ

Λ,R ` K = v : true

(Base 2)
(R,K) 6∈ Λ

Λ,R ` K = v : false

(AND)

Λ,R ` Φ1 : c1

Λ,R ` Φ2 : c2

Λ,R ` Φ1 AND Φ2 : c1 ∧ c2

(OR)

Λ,R ` Φ1 : c1

Λ,R ` Φ2 : c2

Λ,R ` Φ1 OR Φ2 : c1 ∨ c2

Figure 5.5: Helper rules for SELECT

ConstraintsBackwards

symb. execution

Satis
fy

in
g

ass
ig

nm
ent

Program
location

Input!

Figure 5.6: Illustration of attack vector generation

77

(1)
π = π1

φ, b, π0, π1 ` sink@π : true, b

(2)
π = π0

φ, b, π0, π1 ` source@π : φ, true

(3)
φ′ = (b→ φ) ∧ (¬b→ φ[e/v])

φ, b, π0, π1 ` v := e : φ′, b

(4)

φ′, b′, π0, π1 ` S1 : φ′′, b′′

φ, b, π0, π1 ` S2 : φ′, b′

φ, b, π0, π1 ` S1;S2 : φ′′, b′′

(5)

φ, b, π0, π1 ` S1 : φ1, b1

φ, b, π0, π1 ` S2 : φ2, b2

b′ = b1 ∨ b2

φ′ = (e ∧ φ1) ∨ (¬e ∧ φ2)

φ, b, π0, π1 ` if(e) then S1 else S2 : (b′ → φ) ∧ (¬b′ → φ′), b′

(6)

t = {(x.K1, . . . , x.Kn) | x ∈ R ∧ Φ[x.Ki/Ki]}
φ′ = (b→ φ) ∧ (¬b→ φ[t/x])

φ, b, π0, π1 ` v := SELECT (K1, ...,Kn) FROM R WHERE Φ : φ′, b

Figure 5.7: Backward symbolic execution rules for generating attack vector
constraints. Statements whose preconditions are not met (or are not shown in
the figure) are assumed to be no-ops.

78

...
if ($Me->is_empty())

$Me->escape();
...
if (isset($_REQUEST["merge"]) && check_post()) {

if (!$_REQUEST["email"])
...

else if (!$_REQUEST["password"])
...

else {
$MiniMe = Contact::find_by_email($_REQUEST["email"]);

if (!$MiniMe)
...

else if
(!$MiniMe->check_password($_REQUEST["password"]))

...
else if ($MiniMe->contactId == $Me->contactId) {
...

} else if (!$MiniMe->contactId || !$Me->contactId)
...

else {
...
$result = $Conf->qe("select paperId,
authorInformation
from Paper where authorInformation like ’%\t" .
sqlq_for_like($MiniMe->email) . "\t%’");
$qs = array();
while (($row = edb_row($result))) {
$row[1] = str_ireplace("\t"

. $MiniMe->email .
"\t", "\t" .
$Me->email . "\t", $row[1]);

$qs[] ="update Paper set authorInformation=’"
.sqlq($row[1]) . "’ where paperId=$row[0]";

}
...

Figure 5.8: Code snippet showing merging of user accounts functionality in
HotCRP.

79

if (isset($HTTP_POST_VARS[’action’])
&& ($HTTP_POST_VARS[’action’] == ’process’)
&& isset($HTTP_POST_VARS[’formid’])

&& ($HTTP_POST_VARS[’formid’] == $sessiontoken)) {

...

if (strlen($firstname)
< ENTRY_FIRST_NAME_MIN_LENGTH) {
$error = true;

$messageStack->add(’create_account’,
ENTRY_FIRST_NAME_ERROR);

}
...

if (strlen($email_address) <
ENTRY_EMAIL_ADDRESS_MIN_LENGTH) {

$error = true;

$messageStack->add(’create_account’,
ENTRY_EMAIL_ADDRESS_ERROR);

}
...
} else {

$check_email_query = tep_db_query(
"select count(*) as total from "

. TABLE_CUSTOMERS .
" where customers_email_address = ’" .
tep_db_input($email_address) . "’");

$check_email = tep_db_fetch_array
($check_email_query);

if ($check_email[’total’] > 0) {
$error = true;
$messageStack->add(’create_account’,

ENTRY_EMAIL_ADDRESS_ERROR_EXISTS);
}

}
...
if ($error == false) {

...
tep_db_perform(TABLE_CUSTOMERS, $sql_data_array);

...

Figure 5.9: Code snippet showing user registration functionality in osCom-
merce

80

Chapter 6

Defining Side-Channel Vulnerabilities

6.1 Side-Channel Vulnerabilities

Web applications have become enormously popular due to the ubiq-

uity of the Internet and the existence of rich development frameworks. Hence,

in today’s Internet-rich world, most people perform their daily activities, in-

cluding banking and e-commerce, using web applications. Unfortunately, this

growing popularity of privacy-sensitive applications has also led to a surge of

illegal activities by hackers trying to steal confidential data.

To secure private data, web applications currently rely on a combina-

tion of network-level security mechanisms (e.g., encryption and firewalls) and

application-level protection techniques, such as credential checks and session

handling. While these mechanisms provide some degree of privacy assurance,

they do not prevent the application from leaking confidential data through

unintended communication channels, known as side channels.

Most side-channel leaks in web applications are related to resource us-

age (e.g., time or space). As an example, consider a health-related web appli-

cation whose response time depends on whether the user is taking a certain

medication. In this case, the server response time can reveal confidential in-

81

formation about ailments of specific users. For instance, recent work [71] has

shown that timing and response-size side-channel vulnerabilities can be ex-

ploited using cross-site search attacks.

This thesis presents an effective static analysis for automatically de-

tecting resource-related side-channel vulnerabilities in web applications. Our

approach is pragmatic and aims to detect as many exploitable side channels

as possible with a low false positive rate. Towards this goal, we focus on a

subset of side-channel vulnerabilities that arise due to asymptotic differences

in resource usage. To gain some intuition about such asymptotic side-channel

vulnerabilities, consider an application whose response size is either constant

or linear (in the application’s input size), depending on the value of some se-

cret data. In this case, an attacker can easily observe a substantial difference

in response size by supplying a sufficiently large input to the application. In

addition to being easy to exploit, asymptotic side-channel vulnerabilities also

have the advantage of being amenable to detection using a fairly lightweight

static analysis. In particular, our detection algorithm uses a combination of

dataflow and taint analyses to automatically uncover serious side-channel vul-

nerabilities in widely-used PHP applications.

While the techniques we describe in this thesis can be used to detect

any resource-related asymptotic side-channel vulnerability, our implementa-

tion focuses on two kinds of resources, namely, time and response size. Specif-

82

ically, we implement our static analysis in a tool called Scanner1, which can

be used to find timing and response-size side-channel vulnerabilities in PHP

applications. In addition to pinpointing vulnerable components, Scanner

further aids security analysts by identifying confidential database fields that

may be leaked due to the detected vulnerability. Furthermore, Scanner helps

users assess the severity of the uncovered vulnerability by semi-automatically

generating a Javascript exploit that performs a cross-site search attack.

We evaluate Scanner on 5 open-source PHP applications and show

that it uncovers 10 side-channel vulnerabilities and reports no false positives.

Furthermore, the vulnerabilities uncovered by Scanner are fairly serious and

can be used to obtain confidential user information, such as purchase histories,

medical records, and bids placed by the user.

6.2 Non-Interference

Since our definition of resource side-channel vulnerabilities is inspired

by non-interference, we briefly review this security policy and introduce some

standard terminology that we use throughout the next two chapters. Non-

interference [74] is a security policy that informally states that confidential

data may not “interfere with” (i.e., affect) non-confidential data. In particular,

non-interference allows a program to manipulate confidential data as long as

the observable outputs of the program do not reveal anything about the secret.

1Scanner stands for Side Channel ANalyzER

83

The literature on secure information flow classifies program inputs as

being either ”high” or “low”. Specifically, high inputs represent confidential

security-sensitive data, whereas low inputs denote non-confidential public data.

Using this terminology, non-interference is typically formally defined as follows:

Definition 8. (Non-Interference) Let H, L denote high and low inputs

of a program P , and let OP (I) denote the observable output of program P

on input I. We say that P obeys the non-interference security policy if the

following condition is satisfied:

∀H1, H2, L1, L2. L1 = L2 ⇒ OP (H1, L1) = OP (H2, L2)

Intuitively, non-interference states that the program always yields the

same observable output on the same low input, regardless of the values of the

high inputs.

6.3 Defining Side-Channel Vulnerabilities

In this section, we formally state the class of side-channel vulnerabilities

studied in this thesis and justify our decision to focus on this subclass.

We first start by defining resource side-channel vulnerabilities, which

effectively arise when a program violates non-interference with respect to re-

source usage:

Definition 9. (Resource Side-Channel Vulnerabilities) Let H, L denote

high and low inputs of a program, respectively, and let RP (I) denote the re-

84

source usage of program P on input I. We say that program P has a resource

side-channel vulnerability if:

∃H1, H2, L. RP (H1, L) 6= RP (H2, L)

As in traditional non-interference terminology, high variables represent

secret values, while low variables denote values that are not security-sensitive.

Hence, according to the above definition, a resource side-channel vulnerability

arises if it is possible to observe different resource usages when program P is

run on the same low input but different high inputs. Hence, an adversary can

glean information about the secret simply by observing the program’s resource

usage.

Since the above definition does not specify the specific kind of resource,

it is quite general and can be instantiated in a variety of ways to yield different

classes of side-channel vulnerabilities previously discussed in the literature.

For instance, if the resource of interest is CPU cycles, then this vulnerability

corresponds to a timing side channel. On the other hand, if we instantiate RP

with power consumption, then the vulnerability could be exploited to cause a

power monitoring attack.

The above definition also gives some intuition about a possible way to

detect resource side-channel vulnerabilities. In particular, since Definition 9

is a variant of the standard notion of non-interference, we could simply in-

strument the program with additional “ghost variables” to track resource us-

85

age and then utilize an existing static analysis to track implicit information

flow [18, 17, 134].

However, since non-interference is a very strong condition that is vio-

lated by almost any program, we believe that such an approach is not practical.

For instance, consider a program that has a very minor resource imbalance

(e.g., one CPU cycle) across two different execution paths. While such a pro-

gram has a resource side-channel vulnerability according to Definition 9, it is

very unlikely to be exploitable because an attacker cannot reliably observe this

minor imbalance in resource usage.

Since our goal is to develop a practical static analysis with a low false

positive rate, we instead focus on a subclass of resource side-channel vulnera-

bilities that can be easily and reliably exploited by attackers. We refer to this

subclass as asymptotic resource side channels:

Definition 10. (Asymptotic Resource Side-Channel Vulnerabilities)

Let H denote the high inputs of a program, and let RP (I) denote the resource

usage of program P on input I. We say that program P has an asymptotic

resource side-channel vulnerability if:

∃H1, H2. RP (H1) 6= Θ(RP (H2))

In this definition, observe that the high inputs H1 and H2 are still

fixed, but the low inputs are unconstrained, so RP (H1) and RP (H2) are both

functions of the low inputs. Hence, the above definition states that it is possible

86

to find a pair of secrets H1 and H2 for which the resource usage of P will be

asymptotically different with respect to the low-inputs. Since the attacker can

control the program’s low inputs, he can easily tell whether the secret is H1

or H2 by running the program on arbitrarily large values of the low input.

Observe that every asymptotic resource side-channel vulnerability also

satisfies Definition 9, but not vice versa. We illustrate the differences between

Definitions 9 and 10 using the following two examples.

Example 12. Consider the following code snippet:

foo(int n) {
if(secret) {

for(int i = 0; i < n; i++) {
consume(1);

}
}
else consume(1);

}

Let consume(x) be a statement that consumes x units of resource. If

the value of secret is true, then the resource usage of foo is n. On the

other hand, if secret is false, then the resource usage is 1. Since, n 6= Θ(1),

this program contains an asymptotic side-channel vulnerability according to

Definition 10.

Example 13. Consider the following code snippet:

bar(int n) {
if(secret) consume(2);
else consume(1);

}

87

Here, function bar contains a vulnerability according to Definition 9 be-

cause the resource usage of the program differs depending on whether secret

is true or false. However, this function does not exhibit an asymptotic vulner-

ability because RP (H1) and RP (H2) only differ by a constant.

This second example illustrates why we choose to focus on the subclass

of vulnerabilities given by Definition 10 as opposed to Definition 9: Since the

difference in resource usage is minimal in Example 13, it will be hard to exploit

this imbalance in practice due to various kinds of noise in the program’s ex-

ecution environment (e.g., network traffic). Hence, our approach deliberately

targets vulnerabilities that can be amplified by the attacker through carefully

crafted inputs.

6.4 Assumptions

A key assumption in our work is that the attacker does not have direct

access to the database records of other users, and cannot steal another user’s

credentials. Thus, an attacker needs to resort to a side channel attack to

obtain sensitive information.

In order for the side channel vulnerability to be remotely exploitable,

a cross-site request forgery (CSRF) vulnerability must also be present. In our

experience, requests involving search queries do not typically change the state

of the application, thus developers overlook the need for deploying anti-CSRF

mechanisms.

88

We consider asymptotic resource usage whenever the resource usage

depends on string values that can be arbitrarily controlled by an attacker.

That is, the string value must not be bounded or converted to an integer

before the resource usage region of the code is reached.

In the underlying vulnerability, the attacker must have control over one of

the parameters related to a private field in a database query. Additionally,

the conditional node that depends on the secret must leak whether there is

a record or not with specific values provided to the query. These last two

conditions ensure that due to the vulnerability the attacker can use the request

as an oracle to try different values for a private field and rely on side channel

measurements to determine if the query was a hit or a miss.

89

Chapter 7

Detecting Side-Channel Vulnerabilities

7.1 Detecting Side-Channel Vulnerabilities

Now that we have defined asymptotic side-channel vulnerabilities, we

turn our attention to a static analysis algorithm for detecting these vulner-

abilities. As mentioned earlier, our detection philosophy is pragmatic and

aims to minimize false positives, rather than targeting theoretical soundness

or completeness.

7.1.1 Key Ideas

To understand the key idea underlying our detection algorithm, observe

that Definition 10 requires reasoning about the time or space complexity of

programs. Unfortunately, it is difficult to statically reason about worst-case

resource usage, and existing techniques for reasoning about complexity typi-

cally do not scale to large programs [84, 83, 94, 32]. Hence, to analyze realistic

web applications with a low false positive rate, we further restrict our atten-

tion to the following subclass of asymptotic side-channel vulnerabilities that

can be detected using lightweight static analysis:

90

Definition 11. (Detectable Resource Side-Channel Vulnerabilities)

Let H,L denote the high and low inputs of a program, and let RP (I) repre-

sent resource usage of program P on input I. We say that program P has a

detectable resource side-channel vulnerability if:

∃H1, H2. RP (H1) = O(1) ∧ RP (H2) 6= O(1)

In other words, we are interested in detecting a subclass of asymptotic

side-channel vulnerabilities where the resource usage is constant for some val-

ues of the secret but a function of L for other values of the secret. Our

detection algorithm targets this specific subclass of vulnerabilities because we

can find instances of Definition 11 using standard taint analysis rather than

heavy-weight resource usage analysis.

To see how we can reduce side-channel vulnerability detection to taint

analysis, consider a program that contains a conditional statement with pred-

icate C and two branches S1 and S2. In this case, the following three criteria

constitute a sufficient condition for exhibiting the behavior from Definition 11:

1. Predicate C depends on the secret

2. Resource usage in S1 is a function of low input L

3. Resource usage in S2 is not dependent on L

To see why these three conditions imply Definition 11, observe that

condition (1) entails a possible secret-dependent resource usage imbalance be-

tween the two branches. Furthermore, since resource usage in S2 does not

91

Expr E := c | v | E1 ? E2 (? ∈ {+,−,×})
Cond C := E1 ◦ E2 (◦ ∈ {<,>,=})

| C1 ∧ C2 | C1 ∨ C2

Stmt S := consume(E) | source(v, label)
| v := E | S1;S2 | C ? S1 : S2

| while (C) do S

Figure 7.1: Language used for describing our analysis

depend on L according to condition (3), the resource usage must be O(1) in

executions where predicate C is true. In contrast, since resource usage in S1

depends on L according to condition (2), it is not O(1) and can be controlled

by the attacker by varying L.

The three conditions stated above also provide some intuition about

how vulnerability detection can be reduced to taint analysis. In particular,

consider two sources of taint, namely H and L denoting high and low inputs,

respectively. The first condition above can simply be restated as predicate C

being tainted by H. Now, to understand how conditions (2) and (3) can be

reduced to taint analysis, let us consider what it means for resource usage to

be a function of L in terms of the program syntax: (i) Either the resource

consumption is directly controlled by L (e.g., malloc(x) where x is tainted

by L), or (ii) the resource consumption occurs in a loop or recursive procedure

whose bound is controlled by L. We can check both of these scenarios by

tracking expressions that are tainted by L. Hence, the key idea underlying our

detection algorithm is to combine two kinds of taint analyses, one that tracks

H-tainted variables and another one that tracks L-tainted expressions.

92

7.1.2 Formalization

With this intuition in mind, we are now ready to explain our static

analysis for detecting asymptotic resource side channels. To formally describe

our algorithm, we make use of the grammar presented in Figure 7.1, which

describes a simplified imperative language with assignments, conditionals, and

loops. This language has two non-standard constructs, namely , consume and

source statements. Here, consume(E) models the consumption of E units of

resource, where E is an integer expression. On the other hand, source(v, label)

denotes a taint source of kind label where label is either H (for high) or L

(for low). For instance, source(v,H) indicates that variable v is assigned to a

secret value. In practice, taint sources with label H model database queries

that retrieve security-sensitive data (e.g., password). On the other hand, taint

sources with label L represent operations that accept some input from the

user.

Our analysis is described using rules of the form

Γ ` S : Γ′,∆, χ

where χ is a boolean value indicating whether or not a vulnerability was en-

countered during the analysis of S. Environment Γ used in this judgment is

a taint environment that maps each program variable to a dataflow value η

drawn from the lattice shown below:

93

Here, H indicates a secret value and L indicates a (low) input that can be

controlled by the attacker. Variables with abstract value ⊥ are not tainted,

and > indicates unknown taint.

Continuing with the judgment Γ ` S : Γ′,∆, χ, we use ∆ to denote an

abstraction of the resource usage of statement S. In particular, 0 indicates

no resource usage and 1 indicates constant (but not necessarily unit) resource

usage. In contrast, ∞ indicates that the resource usage cannot be statically

bounded (e.g., because it is controlled by the user). We define a ⊕ operation

on elements of set R = {0, 1,∞} as follows:

∀x ∈ R. x⊕∞ =∞
∀x ∈ R. x 6=∞⇒ x⊕ 1 = 1
∀x ∈ R. x = 0⇒ x⊕ 0 = 0

We also define a total order � on set R as ∞ � 1 � 0. Finally, we write

∆1 � ∆2 if ∆1 =∞ and ∆1 � ∆2.

To summarize, the meaning of the judgment Γ ` S : Γ′,∆, χ is the

following: “If we execute statement S in an environment that satisfies Γ, then

the resource usage of S is given by ∆ and the taint environment after S is Γ′”.

We describe our static analysis using the inference rules shown in Fig-

ures 7.2 and 7.3. First, the helper rules from Figure 7.2 allow us to determine

the taint value η for each expression E and predicate C under taint environ-

ment Γ. According to these rules, constants are not tainted (⊥), and the taint

value for each variable v is given by Γ. For composite expressions of the form

E1 ⊗ E2, the taint value is given by the join of the values of E1 and E2. For

94

Γ ` c : ⊥

Γ ` v : Γ(v)

Γ ` E1 : η1

Γ ` E2 : η2

⊗ = ? or ◦
Γ ` E1 ⊗ E2 : η1 t η2

Γ ` C1 : η1

Γ ` C2 : η2

op ∈ {∧,∨}
Γ ` C1 op C2 : η1 t η2

Figure 7.2: Helper rules for determining taint values of expressions E and
predicates C

instance, if E1 has taint H and E2 has taint ⊥, then the taint value if E1⊗E2

is H t ⊥ = H.

Let us now consider the main analysis rules presented in Figure 7.3.

Here, rule (1) describes the analysis of a taint source of the form source(v, label).

In this case, the new taint environment Γ′ is obtained from Γ by updating the

taint value of v to label.

Rule (2) describes the analysis of consume(E) statements that model

resource usage. Recall that resource usage is defined to be ∞ if expression E

can be made arbitrarily large by an attacker. Hence, we first use the helper

judgments from Figure 7.2 to determine the taint value η of E. If η = L, then

the resource usage of this statement is ∞ but constant otherwise.

95

Rule (3) describes taint propagation for assignments of the form v := E.

As before, we use the helper rules from Figure 7.2 to determine the taint value

η of E and update the taint environment by assigning v to η.

Rule (4) shows how we analyze sequence statements S1;S2. Observe

that the resource usage of this statement is obtained by adding the resource

usage ∆1 of S1 and ∆2 of S2 using the ⊕ operation defined earlier. Further-

more, S1;S2 contains a vulnerability if either S1 or S2 has a vulnerability;

hence we take the disjunction of χ1 and χ2.

Rule (5) for conditionals is a bit more involved. Recall that C ? S1 : S2

exhibits a side-channel vulnerability if C depends on the secret and S1 and S2

have different resource usages. Hence, to determine if there is a vulnerability,

we first check the taint value η of C using Figure 7.2. Clearly, if η 6w H, the

statement does not exhibit a vulnerability; hence χ = false under this scenario.

On the other hand, if C is secret-dependent (i.e., η w H), then an asymptotic

side-channel vulnerability arises if the resource usage ∆i is ∞ in one branch

but constant or zero in the other branch. Hence, χ is true if ∆1 � ∆2 or

∆2 � ∆1, but it is false otherwise.

Continuing with rule (5), let us consider the taint values after analyzing

C ? S1 : S2 under Γ. If the taint environment after Si is given by Γi, then the

value of each variable v after C ? S1 : S2 is given by Γ1(v)tΓ2(v). Hence, the

join operation Γ1 t Γ2 on taint environments takes the pairwise join for each

variable.

96

(1)
Γ′ = Γ[x 7→ label]

Γ ` source(v, label) : Γ′, 0, false

(2)

Γ ` E : η

∆ =

{
∞ if η w L

1 otherwise

Γ ` consume(E) : Γ,∆, false

(3)
Γ ` E : η

Γ ` v := E : Γ[v 7→ η], 0, false

(4)

Γ ` S1 : Γ1,∆1, χ1

Γ1 ` S2 : Γ2,∆2, χ2

Γ ` S1;S2 : Γ2,∆1 ⊕∆2, χ1 ∨ χ2

(5)

Γ ` C : η
Γ ` S1 : Γ1,∆1, χ1

Γ ` S2 : Γ2,∆2, χ2

χ =

{
(∆i � ∆j) if η w H

false otherwise

Γ ` (C? S1 : S2) : Γ1 t Γ2,∆1 ⊕∆2, χ1 ∨ χ2 ∨ χ

(6)

Γ ` C : η
Γ ` S : Γ,∆, χ

∆′ =

∞ if ∆ =∞∨ (∆ � 0 ∧ η w L)
1 if ∆ = 1 ∧ η 6w L

0 otherwise

Γ ` while(C) do S : Γ,∆′, χ ∨ (η w H ∧∆′ =∞)

Figure 7.3: Analysis rules for asymptotic side-channel vulnerability detection.

Finally, let us consider the resource usage of the statement C ? S1 : S2,

where the resource usage of each Si is given by ∆i. Since S1 and S2 cannot

execute at the same time, the resource usage of C ? S1 : S2 is max(∆1,∆2),

97

which is in fact the same as ∆1 ⊕∆2.

The final rule in Figure 7.3 describes the analysis of loops. First, the

assumption Γ ` S : Γ,∆, χ at the second line of Rule (6) states that the taint

environment Γ is a fixed-point, hence, the taint environment after the loop is

also Γ. Now, let us consider the resource usage of the loop while(C) do S.

Clearly, if the resource usage of the body S is ∞ (resp. 0), then the resource

usage of the loop is also ∞ (resp. 0). However, if the resource usage of S

is constant (i.e., ∆ = 1), then the resource usage of the loop depends on the

taint value η of predicate C. In particular, if η w L, then the number of loop

executions can be controlled by the attacker, causing the resource usage to be

statically unbounded. Hence, if ∆ = 1, the resource usage ∆′ of the loop is∞

if η w L but ∆′ = 1 otherwise.

The last thing to consider is whether the loop contains a vulnerability.

First, observe that the loop may have a vulnerability if the loop continuation

condition C is secret-dependent. In particular, if C depends on a secret, the

attacker might be able to learn the secret by observing the number of times that

the loop executes, which in turn can potentially be inferred from the program’s

resource usage. To understand whether the loop introduces a vulnerability,

observe that while(C) do S can be rewritten as C? (S; while(C) do S) : skip.

Clearly, the resource usage of the else branch is 0, and since ∆′ � ∆, the

resource usage of the then branch is precisely ∆ ⊕ ∆′ = ∆′. Thus, the loop

introduces a vulnerability if η w H and ∆′ =∞.

98

7.2 Implementation

The previous sections have explained the core technical insights under-

lying our side-channel vulnerability detection approach. However, to imple-

ment a tool, several practical issues need to be addressed. For instance, in

the previous section, we assumed that taint sources were explicitly annotated

using source statements, even though PHP applications typically retrieve se-

cret data from a database. As another example, Section 7.1 models resource

consumption using explicit consume statements, but a practical tool must di-

rectly reason about specific kinds of resource usage. In this section, we address

these practical concerns by describing the design and implementation of the

Scanner tool in more detail.

7.2.1 Scanner Basics

Scanner analyzes PHP applications and detects two specific kinds

of side-channel vulnerabilities, namely, timing and response-size side-channel

vulnerabilities. Specifically, these side channels allow an attacker to infer confi-

dential data by measuring server response times or response sizes, respectively.

Both kinds of vulnerabilities can be easily exploited in web applications by

launching a cross-site search attack [71].

Internally, the Scanner tool consists of three different modules that

perform complementary tasks:

• The detection module performs a static analysis that flags potential tim-

99

ing and response-size side-channel vulnerabilities. In essence, this mod-

ule implements an instantiation of the algorithm described in Section 7.1

for two specific resources.

• The error diagnostic module performs additional static analysis to report

descriptive warnings to the user. In particular, this module identifies the

database fields that may be leaked by the detected vulnerabilities.

• The exploit generation module performs backwards symbolic execution

to semi-automatically generate a Javascript exploit that can be used in

a cross-site search attack.

The following three subsections describe each of these modules in greater

depth.

7.2.2 Detection Module

Scanner’s detection module implements the static analysis algorithm

described in Section 7.1. Our implementation considers two kinds of taint

sources, namely, user inputs and database operations. User inputs are taint

sources with label L and correspond to reads from pre-defined PHP arrays,

such as GET, POST, and SESSION. For instance, the PHP code fragment

$v = $_GET(’amount’)

corresponds to a source statement source(v,L) in our formalization from Sec-

tion 7.1.

100

In our implementation, taint sources with label H correspond to database

queries that retrieve confidential attributes from a database. Since our tool

does not know a priori the database columns that store confidential informa-

tion, we require the user to annotate database fields that are considered to

be secret. Armed with such annotations, Scanner then infers whether or

not a given SELECT statement is a taint source. As an example, consider the

following database query:

$result = mysql_query("SELECT firstname,
lastname, address, age FROM friends
WHERE firstname=$fs AND lastname=$ls");

Here, we consider variable result to be tainted if any attribute firstname,

lastname, address, or age in table friends is annotated to be confiden-

tial. Furthermore, since previous work [71] has shown that the most effective

way to exploit side-channel vulnerabilities is through cross-site search attacks

in which the adversary can control the database query, we additionally require

that the WHERE clause be tainted by the user. Hence, going back to our ex-

ample, another necessary condition for considering result to be tainted is if

either $fs or $ls depends on user input.

In our implementation, consume statements from our formalization are

instantiated in different ways depending on the type of side-channel vulner-

ability. For timing vulnerabilities, we consider every instruction to consume

one unit of resource; hence, resource usage only becomes ∞ if a loop bound is

101

tainted by user input 1. For response-size vulnerabilities, resource consump-

tion corresponds to print statements. For instance, the resource usage of a

statement echo $foo is∞ if foo is tainted by user input, but has unit cost

otherwise.

7.2.3 Error Diagnostic Module

The static analysis described so far allows Scanner to detect the ex-

istence of a possible side-channel vulnerability. To help the user understand

the severity and implications of a possible vulnerability, Scanner performs

an additional static analysis that identifies for the user the information that

may be leaked.

Specifically, the error diagnostic module outputs, for each database

table, the set of confidential attributes that may be leaked by the application.

For instance, if the error diagnostic module outputs {Age, Address} for

a database table called Employees, then the attacker can infer something

about the age and address for each employee stored in this table.

To provide such diagnostic information, Scanner performs a back-

wards static analysis that utilizes the information produced by the vulnera-

bility detection module. Specifically, the input to the error diagnostic module

is the predicate of a conditional branch along which there is a resource usage

imbalance. Given such a predicate C, Scanner then collects all secret-tainted

1Recall from Section 7.1 that∞ indicates that the resource usage can be made arbitrarily
large by the attacker.

102

variables used in C and performs backwards symbolic execution to trace each

variable v to the database query that caused v to become tainted. Confidential

database attributes that are mentioned in the WHERE clause of the query are

then reported as being potentially leaked.

7.2.4 Exploit Generation Module

To further help programmers understand and assess the detected vul-

nerability, Scanner also generates a Javascript program that can be used to

launch a cross-site search attack to exploit the vulnerability. We first provide

some relevant background on cross-site search attacks, and we then explain

how Scanner semi-automatically generates attack scripts.

Cross-site attacks. Recent work has shown that cross-site search attacks

can effectively exploit side-channel vulnerabilities in web applications [71]. In

this scenario, the attacker first tricks an unsuspecting user into executing a

malicious script, for instance, by visiting the attacker’s website or clicking on

a link in a phishing email message. Now, the malicious script automatically

submits a cross-site request with the user’s legitimate credentials. Since web

browsers allow a script to implement handlers for events triggered by cross-

site requests, the malicious script can perform timing measurements between

events and send this information back to the attacker2. Hence, if the underly-

2Observe that response-size side-channels can also be exploited using timing measure-
ments since response parsing times are dependent on the response size.

103

ing website contains a side-channel vulnerability, then the attacker can glean

confidential information about the victim by inflating certain parameters used

in a database query.

The goal of Scanner’s exploit generation module is to synthesize

Javascript programs that trigger the vulnerable component of the web ap-

plication. This exploit generation module is only semi-automatic: Scanner

automatically infers the URL parameters needed to trigger the vulnerable

functionality, but the user must still inflate various search strings to amplify

resource usage. In our experience, the exploit generation module is extremely

helpful in assessing the severity of the detected vulnerability.

Backwards symbolic execution. To generate a script that exploits the

detected vulnerability, Scanner performs backwards symbolic execution and

automatically infers the URL parameters that are necessary for exercising the

vulnerable component. To illustrate this process, consider the following code

snippet:

1. $page = $_GET["page"];

2. $product_name = $_GET["product_name"];

3. if ($page != "1") {

4. exit();

5. }

6. if (strlen($product_name) < 3) {

7. exit();

104

8. }

9 ...

10. if(count($x)) {

11. // do something very expensive!

12. }

Here, assume that the value of variable $x is secret-dependent; hence,

lines 10-12 suffer from a timing side-channel vulnerability. However, observe

that the vulnerable component (i.e., lines 10-12) is only reachable under certain

values of the URL parameters. In particular, the URL parameter page must

be 1, and product name must be at least three characters long.

To automatically infer these parameters, Scanner starts from the vul-

nerable component C and performs backwards symbolic execution to collect all

path constraints that are necessary for the execution to reach C. The output

of the symbolic execution engine is an SMT formula φ that encodes all possible

ways that execution can reach C. Given such a constraint φ, Scanner uses

an SMT solver (in our case, Z3 [193, 194]) to find a satisfying assignment σ of

φ. This assignment σ corresponds to concrete values of the URL parameters

that are sufficient to trigger the vulnerable functionality.

Going back to our code example, Scanner collects the following path

constraint, which must hold for execution to reach the vulnerable code starting

at line 10:

105

Application Lines Files Timing Side- Response Side- False Analysis
of Code Channel Vulnerabilities Channel Vulnerabilities Positives Time (min:sec)

OpenClinic 30,849 180 0 2 0 1:09
WeBid 48,753 336 1 1 0 4:01

osCommerce 86,663 702 0 0 0 10:13
OpenCart 156,322 1,014 1 0 0 27:48
ZeusCart 166,400 612 5 0 0 31:06

Total 488,987 5,844 7 3 0 74:17

Table 7.1: Side-channel vulnerability detection results.

¬length($ GET [”product name”]) < 3
∧¬$ GET [”page”] 6= ”1”

For this constraint, an SMT solver that reasons about string opera-

tions [194] can yield a satisfying assignment, such as product name = ”aaaaa”

and page = ”1”. The synthesized Javascript program hard-codes these URL

parameters, which can be further tweaked by the user to inflate resource usage.

7.3 Evaluation

To evaluate Scanner, we apply it to five widely used open-source

PHP applications, namely, OpenClinic, WeBid, OpenCart, osCommerce and

ZeusCart. We choose these applications because they contain security-sensitive

information, such as medical records, account balances, and purchase histories.

Furthermore, these are mature applications that have been developed with

security in mind, so these applications constitute a good test-bed for evaluating

our approach.

We run our experiments on a server laptop with Ubuntu 14.04, a dual-

106

core 2 GHz processor, 8 GB of RAM, and the Apache 2.4.18 web server,

connected to a campus wireless network. The client is a desktop machine

running Ubuntu 14.04, with a dual-core 3 GHz processor, 8 GB of RAM, and

the Firefox browser (version 44.0).

Table 7.1 gives statistics about the analyzed programs and summarizes

the results of our evaluation. We see that the analyzed programs are quite

large, ranging between 30K and 166K lines of code. We also see that Scan-

ner’s running time is quite reasonable, with the largest application taking 31

minutes to analyze. Most importantly, we see that Scanner uncovers a total

of 10 vulnerabilities. Among these, seven are timing side-channel vulnerabili-

ties, and the rest are response-size side channels.

Table 7.2 provides a more detailed overview of the vulnerabilities un-

covered by Scanner. The second column summarizes the information that

can be learned by the attacker by performing timing measurements.3 We see

that four of the 5 applications leak various kinds of confidential data, ranging

from medical data to bidding histories to purchase data.

The columns labeled “Positive Query” and “Negative Query” in Ta-

ble 7.2 report response times when the answer to the query is positive and

negative, respectively. For instance, one of the vulnerabilities in OpenCart

allows the attacker to infer whether a customer X has bought downloadable

product Y because the average response time is 265 ms if X has bought Y

3Recall that response-size vulnerabilities can also be exploited by performing timing
measurements.

107

Application Information Inferred by Attacker Positive Query Negative Query
Avg Time Std Dev Avg Time Std Dev

OpenClinic Does patient X have a medical record? 1523.71 64.85 2020.32 137.60
OpenClinic Has patient X been prescribed medication Y? 1655.69 29.84 2358.24 119.24

WeBid Does user X have product Y on their watchlist? 96.27 10.23 513.35 22.67
WeBid Is user X bidding on product Y? 2593.63 113.80 1225.34 18.47

OpenCart Has user X bought downloadable product Y? 265.13 16.21 29.27 4.44
ZeusCart Has user X bought downloadable product Y? 329.26 14.68 32.61 8.85
ZeusCart Does user X have an order with amount Y? 4241.29 821.32 630.82 80.96
ZeusCart Has user X bought something between dates X and Y? 4580.50 121.90 668.72 62.65
ZeusCart Does user X’s order Y have processing status Z ? 4616.64 130.10 676.79 99.84
ZeusCart Is Y the account status for user X? 3740.37 468.63 798.55 64.92

Table 7.2: Summary of timing results for positive and negative queries. Times
are in milliseconds.

but 29 ms otherwise. Since response times vary significantly for each pair

of positive and negative queries, we see that the vulnerabilities uncovered by

Scanner can be exploited by attackers. The average and standard deviation

metrics correspond to the collection of 100 samples, with URL request sizes of

at most 90K characters.

In the next subsections, we describe two representative vulnerabilities

that were automatically detected by Scanner.

7.3.1 Response-size Side-Channel Vulnerability in OpenClinic

Our first example is a response-size side-channel vulnerability found in

OpenClinic, which is an open-source medical records system. This vulnera-

bility can be exploited to infer whether a patient has a medical record in the

system.

The root cause of the vulnerability is that the response size of the ap-

plication is asymptotically dependent on the search query provided by the

108

attacker. When there is no record associated with the search string, the appli-

cation returns a “Result not found” page, which also includes the entire search

string associated with the query. On the other hand, if there is a record that

matches the query, the response size of the application is constant and does

not depend on the search string.

To explain this vulnerability in more detail, Figure 7.4 shows the rele-

vant part of the vulnerable code, which searches for medical records matching a

given query string. Specifically, lines 7-13 process the search string provided by

the user, and lines 14-16 perform a database query involving this search string.

The important point is that the user can set a URL parameter called logical

(line 9), and if this parameter is set to “OR”, then the database query will

return all rows for which the patient name matches any of the keywords in the

search string. If the table does not contain patients matching the query (lines

17-23), then the application prints No results found for X, where X is

the search string provided by the user. On the other hand, if there is a single

record matching the query, then the application displays the patient’s record.

(We omit the case where there are multiple matching entries.)

To see how an attacker can exploit this vulnerability, we show in Fig-

ure 7.5 part of the Javascript exploit. Here, the exploit inflates the query

string by appending a long suffix (e.g., ”aaaaaaaa...”) after the patient of in-

terest (in this case, Hoare). Note that the URL parameter logical is set

to “OR”, so the database query will succeed if there is a patient with name

Hoare. Since the query string has been intentionally inflated by the attacker,

109

the attacker can tell that a negative answer to the query will be associated

with a much longer response time. Thus, it is possible to infer the existence

(or lack thereof) of a patient named Hoare by performing a cross-site search

attack.

7.3.2 Timing Side-Channel Vulnerability in ZeusCart

Our second example is a timing side-channel vulnerability that Scan-

ner finds in ZeusCart, an open-source e-commerce system. In addition to the

main store functionality, ZeusCart provides an administrator module that can

be used by the store owner to query information about customers and their

orders.

At a high level, ZeusCart contains a timing side-channel vulnerability

in code that allows an administrator to determine the order status (processing,

delivered, etc.) for a specific order and customer. Specifically, this component

allows a request to search for a customer, order ID, and its order status. If

there is no matching purchase, the administrator quickly gets an empty results

table. Otherwise, the application performs a few more database queries as well

as computations that depend on user input. Hence, the attacker can observe

a significant difference in response times when a specific user and order have

a specific order status. By leaving the order status field blank, a similar

underlying vulnerability can be used to initially infer a valid order ID for a

user.

Figure 7.6 shows the relevant ZeusCart code implementing the or-

110

1. $tab = "medical";
2. $nav = ‘‘search’’;
3. require_once(‘‘../auth/login_check.php’’);
4. loginCheck(OPEN_PROFILE_DOCTOR);

5. require_once(‘‘../model/Query/Page/Patient.php’’);
6. require_once(‘‘../lib/Search.php’’);

7. $currentPage = Check::postGetSessionInt(’page’, 1);
8. $searchType = Check::postGetSessionInt(’search_type’);
9. $logical = Check::postGetSessionString(’logical’);
10. $limit = Check::postGetSessionInt(’limit’);

11. $searchText = stripslashes(Check::postGetSessionString(’search_text’));
12. $searchText = preg_replace(‘‘/[[:space:]]+/i’’, ‘‘ ‘‘, $searchText);
13. $arraySearch = Search::explodeQuoted($searchText);

14. $patQ = new Query_Page_Patient();
15. $patQ->setItemsPerPage(OPEN_ITEMS_PER_PAGE);
16. $patQ->search($searchType, $arraySearch, $currentPage, $logical, $limit);

17. if ($patQ->getRowCount() == 0)
18. {
19. $patQ->close();
20. FlashMsg::add(sprintf(_(‘‘No results found for ’%s’.’’), $searchText));
21. header("Location: ../medical/patient_search_form.php");
22. exit();
23. }

24. if ($patQ->getRowCount() == 1)
25. {
26. $pat = $patQ->fetch();
27. $patQ->freeResult();
28. $patQ->close();
29. header("Location: ../medical/patient_view.php?id_patient="
30. . $pat->getIdPatient());
31. exit();
32. }
33. ...

Figure 7.4: Response-size vulnerability in OpenClinic.

111

<html>
...
<body> <script>
var video = document.createElement(’video’);
...
video.onloadstart = function() {

console.log("Started load at: " + performance.now());
};
video.onerror = function() {

console.log("Finished processing: " + performance.now());
};
var page = "1";
var search_type="1";
var logical = "OR";
var searchText = "Hoare aa

aa
aaa...";

video.src = "http://.../openclinic/medical/patient_search.php?"
+ "page=" + page + "&" + "search_type=" + search_type + "&"
+ "logical=" + logical + "&" + "search_text=" + searchText;

</script> </body>
</html>

Figure 7.5: Simplified Javascript exploit for OpenClinic’s response size side-
channel vulnerability

112

1. if($name!=’’)
2. {
3. $condition []= ‘‘ b.user_display_name like ’%’’.$name."%’";
4. }
5. if($orderid!=’’)
6 {
7. $condition[]= " a.orders_id=’".$orderid."’";
8. }
...
9. if($orderstatus!=’’)
10. {
11. $condition []= " a.orders_status=’".$orderstatus.’";
12. }
...
13. if(count($condition)>0)
14. $sql.= ’ where ’. implode(’ and ’, $condition) .

’ order by a.date_purchased desc’ ;
...
15. else
16. {
17. $sql.=’ order by a.date_purchased desc’;
18. }
...
19. $obj=new Bin_Query();
20. if($obj->executeQuery($sql))
21. {
...
22. if (empty($condition))
23. $sql1 =$sql." LIMIT ".$start.’’,’’.$end;
24. else
25. $sql1 =$sql;

26. $query=new Bin_Query();
27. $obj1=new Bin_Query();
28. $obj1->executeQuery($sql1);
29. $sql3="select orders_status_id,orders_status_name from orders_status_table";
30. $obj3=new Bin_Query();
31. $obj3->executeQuery($sql3);
32. $query->executeQuery($sql);
33. }

Figure 7.6: Timing side-channel vulnerability in ZeusCart.

113

der status lookup functionality. The webpage allows the user to supply the

name, orderid and orderstartus parameters, which correspond to the

username, order ID, and the status of the order, respectively. The code cre-

ates a query over the supplied values and calls the executeQuery method

to look for a match (line 20). If a result is found, the code performs three

more database queries (calls to executeQuery at lines 28, 31, 32). The

executeQuery method, omitted for brevity, is defined in the application

and sanitizes the input string before calling the pre-defined mysql_query

method to execute the query. Thus, the computation time of executeQuery

is linear in the size of the query string.

Since the query string is controlled by the user, the attacker can ar-

bitrarily inflate one of the query parameters to amplify the running time of

executeQuery. For instance, Figure 7.7 shows an exploit in which the at-

tacker inflates the user name parameter with spaces. Hence, in cases where

there is a matching purchase, the attacker can observe a significant increase in

running time of the application. Specifically, as shown in Table 7.2, positive

queries take 3740ms on average, while negative queries take 799ms.

7.3.3 Feedback from Developers

The OpenClinic developers have acknowledged our reported vulnera-

bilities, and are working towards fixing them. We are collaborating with the

developers of WeBid, OpenCart and ZeusCart to fix the remaining vulnerabil-

ities.

114

<html>
...
<body> <script>
var video = document.createElement(’video’);
...
video.onloadstart = function() {

console.log("Started load at: " + performance.now());
};
video.onerror = function() {

console.log("Finished processing: " + performance.now());
};
var dispname = "Hoare ...";
var orderid="3";
var selorderstatus = "3";
video.src = "http://.../zeuscart/admin/?do=disporders&" + "dispname=" + dispname

+ "&" + "orderid=" + orderid + "&" + "selorderstatus="
+ selorderstatus;

</script> </body>
</html>

Figure 7.7: Simplified Javascript exploit for ZeusCart’s timing side-channel
vulnerability

115

Chapter 8

Related Work

8.1 Performance Bugs

Automated Performance Bug Detection. Several recent projects use

program analysis to automatically detect performance bugs. Some of these

detect wasteful use of temporary objects [66, 159, 185, 183], others focus on

inefficient or incorrect usage of collection data structures [158, 184, 187], and

some use dynamic profiling to identify expensive computation that can be

memoized [138].

The Toddler tool [139] uses dynamic instrumentation to identify “likely

redundant” computation by monitoring repetitive and partially-similar mem-

ory access patterns. Like Toddler, our work builds on the observation that

repetitive traversal of collections likely constitutes a performance bug. Un-

like Toddler, our method is purely static, so it incurs no run-time overhead

and does not require that the programmer provide representative performance

tests.

The PerfChecker tool [124] statically analyzes Android applications to

identify common performance bugs. Unlike Clarity, PerfChecker detects

performance bugs related to GUI lagging, energy leaks, and memory bloat.

116

The X-ray tool [10] helps users diagnose performance problems related

to configuration settings. X-ray uses a technique called performance sum-

marization, which couples performance costs with dynamic information flow

analysis. Unlike Clarity, X-ray performs dynamic analysis and focuses on

performance problems caused by user rather than developer error.

Trace analysis is a technique for identifying root causes of performance

anomalies [192, 65]. For example, the TraceAnalyzer tool [65] constructs per-

formance traces that capture the time-varying performance of program runs.

Another approach [192] performs impact and causality analysis on traces to

discover patterns that are correlated with performance problems. These tech-

niques can shed light on a wide variety of performance anomalies, but they

are not fully automated.

Classification and Impact of Performance Bugs. Jin et al. present a

comprehensive study of performance bugs and propose a variety of rules to de-

tect and repair likely performance bugs [104]. These rules, which are inspired

from existing patches, perform pattern-matching over syntactic program con-

structs and require domain-specific knowledge about the classes of performance

bugs that exist in a given application. A pattern-matching technique is also

proposed in the context of databases [40].

Song and Lu use five open-source applications to study the use of sta-

tistical debugging for finding performance bugs [161]. They find that two

kinds of statistical models involving branch predicates can help pinpoint root

117

causes of performance problems. The idea is to use existing bug reports to

gather similar efficient and inefficient computations and compute statistically

significant predicates. While quite general, this approach relies on existing

bug reports and on user-provided test parameters.

Zaman et al. find that, for Mozilla Firefox and Google Chrome, devel-

opers typically spend more time fixing performance bugs than functionality

bugs [195].

Loop-Invariant Code Motion. The removal of redundant traversal bugs

bears some similarity to loop invariant code motion (LICM), but the prob-

lems are quite different. LICM is typically applied to individual assignment

statements, and it uses a low-level notion of loop-invariance that is based on

reaching definitions. Thus, LICM is not capable of identifying redundant data

structure traversals that are detected by our analysis. Of course, LICM also

performs the actual optimization, rather than simply detecting the inefficiency.

Techniques for Estimating Computational Complexity. Recent work

uses sophisticated static analyses to automatically estimate worst-case resource

usage—such as running time—of programs [84, 83, 112, 95], and the Trend-

Profiler tool uses profiling and dynamic analysis to estimate empirical compu-

tational complexity [75]. While these approaches can help programmers debug

and understand performance problems, they do not automatically pinpoint

them.

118

Necessary and Sufficient Preconditions. To detect redundant traversal

bugs, our algorithm constructs dual over- and under-approximations of the

program. Other static analyses that involve negation (or set complement) also

make simultaneous use of necessary and sufficient conditions. In particular,

the interplay between over- and under-approximations has been explored in

path-sensitive static analysis [60], in precise reasoning for unbounded data

structures [61, 62], in the construction of method summaries [52], for analysis

of confidentiality properties [33], and in typestate analysis [68].

May and Must Alias Analysis. May alias analysis [121, 55, 165, 179, 163]

underlies almost any compiler optimization, bug detection, and verification

technique. While not quite as common as may-alias analysis, must-alias anal-

ysis is also considered in several papers [9, 102, 135]. Our work simply utilizes

may- and must-alias information and does not make contributions in this area.

8.2 Denial-of-Service Attacks

Defending Against Network-Based DoS Attacks Most mechanisms for

defending against DoS attacks are deployed at the network level to monitor

network behavior, identify anomalous traffic, and set up firewalls that block

the attack [72, 3, 169, 140, 131, 176, 114, 46, 108, 190, 175, 155]. Although

these techniques are capable of preventing some DoS (and DDoS) attacks, they

are limited to a specific underlying model of anomalous traffic and can suf-

fer from scalability problems. Furthermore, they sometimes raise false alarms

119

that prevent legitimate users from accessing the application. In general, dis-

tinguishing between DoS attacks and sudden high-volume user traffic (flash

crowds) is an open problem [91]. A more detailed survey of network-layer DoS

prevention mechanisms can be found elsewhere [130, 4].

More importantly, network-based defense measures are only activated

while the attack is in progress, and they are incapable of diagnosing application-

specific performance issues that can be exploited by low-bandwidth attacks,

including the second-order DoS attacks considered in this thesis.

Defending Against Application-Level DoS Attacks Typical application-

level DoS vulnerabilities cause the software to crash or become unresponsive.

Particularly dangerous are the cases where a small amount of data sent by

an attacker can cause the application to shut down (ping of death [29, 98]),

enter an infinite loop, or trigger a super-linear recursion call-stack (inputs of

coma [35, 162]).

Dynamic analyses for the detection of application-level DoS vulnerabil-

ities try to generate inputs that either exhibit worst-case execution times or

enter non-terminating loops [26, 25, 86]. Dynamic analyses can be difficult to

scale to large programs and cannot always generate inputs that uncover such

worst-case behaviors.

Static analyses have been used to identify high-complexity code whose

behavior is dependent on user input and can thus be manipulated by an at-

tacker [35, 162]. Such analyses have been able to uncover some simple classes

120

of algorithmic complexity attacks, but they cannot automatically identify more

subtle cases of algorithmic complexity vulnerabilities, such as improperly im-

plemented hash functions [53]. In particular, detection of such vulnerabilities

requires knowledge about input distributions, which is hard to reason about

statically.

Recent work on static analysis has focused on extreme cases of DoS

vulnerabilities: detection of super-linear recursion call-stacks [35] and infinite

loops [162]. Our work detects DoS vulnerabilities that stem from polynomial

loops that can be manipulated by the attacker, instead of the extreme cases of

superlinear recursion and infinite loops. More importantly, our work focuses

on high resource usage behavior that is triggered by certain kinds of database

queries and where the query result is controlled by the attacker.

Other Static Analysis-Based Defenses Second-order vulnerabilities in-

volving SQL injections (SQLI) and cross-site scripting (XSS) have been known

for some time, but a static analysis for detecting these attacks has only re-

cently been proposed [54]. Our work is inspired in part by this recent work

and shares a similar overall framework that consists of two connected taint

analyses. However, since we target DoS vulnerabilities rather than XSS and

SQLI, our notions of taint and sanitization are different; thus, the details of the

detection algorithms also differ substantially. First, our analysis must detect

multiple potential insertions into database tables and analyze their perfor-

mance impact. Second, our analysis needs to differentiate between full and

121

conditional sanitizers, whereas conditional sanitization is not relevant in the

context of XSS and SQLI vulnerabilities. Third, unlike the method of Dahse

and Holz, our technique must perform automated inference to identify con-

ditional sanitizers. Finally, another contribution of this thesis over previous

work is a novel symbolic execution algorithm for generating candidate attack

vectors.

Xie and Aiken [182] implement a symbolic execution algorithm for SQL

injections. The idea is to detect unsanitized variables that reach SQL queries

using semantic analysis of path constraints. Their symbolic execution engine is

similar to ours, but we must solve the additional problem of relating insertions

to extractions. In addition, our engine also generates the attack vectors.

Livshits and Lam describe a flow-analysis for detecting XSS and SQL

injection vulnerabilities in Java [125]. Wassermann and Su use static analysis

to identify XSS vulnerabilities on code using weak sanitization [177]. These

approaches tackle a different security vulnerability and do not reason about

database interactions.

Automatic Generation of Attack Vectors Kiezun et al. [110] describe

a method of generating attack vectors for XSS attacks and SQL injections.

Specifically, they use dynamic symbolic execution to generate concrete inputs

that trigger execution paths involving sensitive nodes. Sen et al. [156] and

Chaudhuri & Foster [38] use similar dynamic symbolic execution methods for

Javascript and Ruby-on-Rails respectively. Since our approach is static, it

122

has the potential to report more false positives, but a key advantage is that it

does not depend on an input-generation mechanism or a mutation library.

8.3 Side-Channel Attacks

Side channels in web applications. While side-channel leaks have been

known for decades, the first thorough study of side-channel leaks in web ap-

plications is presented by Chen et al [39]. Specifically, they study common

types of side channels in modern web applications and demonstrate that side

channels are a serious and realistic source of privacy problems. They also

argue that effective mitigation strategies are application-specific and require

detecting underlying vulnerabilities in the application.

The only previous tool for automatically detecting side-channel vulner-

abilities in web applications is Sidebuster [197], which consists of a combined

static and dynamic analysis. In particular, Sidebuster first uses static taint

analysis to determine whether network traffic may depend on sensitive data.

If so, Sidebuster proceeds to perform a dynamic analysis on related network

operations to quantify the information leak. Our approach differs from Side-

buster in several ways: First, in addition to identifying which operations are

tainted by sensitive data, our approach also statically determines asymptotic

differences in resource usage. Second, our static detection framework is more

general and can be instantiated for any kind of resource. For example, the

timing and response-size side-channel vulnerabilities detected by Scanner

fall outside the scope of Sidebuster. Finally, the vulnerabilities discovered by

123

Sidebuster can only be exploited by an attacker who is able to sniff network

traffic, which requires the attacker to be in the same network path as the vic-

tim. In contrast, our approach detects vulnerabilities that can be exploited

remotely through cross-site search attacks.

Web timing attacks. Felten and Schneider present one of the first case

studies on web timing attacks [67]. In this work, they infer the browsing

history of other users by measuring the loading times of external websites.

In later work, Brumley and Boneh show how to extract private keys from

web servers running OpenSSL using timing attacks [24]. Bortz and Boneh

introduce cross-site timing attacks, and describe web timing attacks in which

they obtain valid usernames as well as items in users’ shopping carts [22].

Gelernter and Herzberg introduce cross-site search attacks as a mecha-

nism for exploiting side-channel vulnerabilities [71]. Van Goethem et al. show

that multimedia tags in HTML5 can be exploited to estimate response sizes

during web timing attacks [172]. Our work uses these two known attack tech-

niques to assess the severity of the vulnerabilities uncovered by our approach.

However, we emphasize that our work aims to detect application-specific vul-

nerabilities rather than to describe a new class of web timing attacks.

Non-interference. One possible security policy for preventing side-channel

leaks is non-interference, which was originally described by Goguen and Meseguer [74].

As mentioned in Chapter 6, non-inference is a very strict security policy which

124

requires that secret data should never affect the values of publicly observable

variables.

In the formal methods and programming languages communities, there

has been significant research effort on verifying non-interference. The simplest

method for proving non-interference is self-composition, which sequentially

composes two alpha-renamed copies of the same program and encodes the

non-interference property as an assertion, which can then be checked by an

off-the-shelf verifier [18]. Since self-composition does not work well in practice,

subsequent papers try to improve analysis precision by using more sophisti-

cated techniques (e.g., involving product programs) [17, 170]. As explained in

Section 6.3, we could, in principle, use similar techniques to detect resource

side-channel vulnerabilities by first instrumenting the program with ghost vari-

ables to track resource usage. However, the resulting approach would yield

too many false positives, since small differences in resource usage are unlikely

to be observable. In contrast, our approach focuses on asymptotic resource

side-channel vulnerabilities and detects them using lightweight static analysis

rather than heavy-weight verification techniques that require the inference of

precise loop invariants.

There have also been other proposals for statically checking security

policies like non-interference. For instance, Jif [134] is a security-typed ex-

tension of Java that checks information flow and access control. Other tech-

niques [13, 41, 126] use static analysis to quantify leakage in terms of Shannon’s

information theory. However, none of these techniques addresses side channels

125

that arise due to asymptotic imbalances in resource usage.

Mitigation of side-channel leaks. To mitigate side-channel leaks , mech-

anisms such as introducing random delays or fixing server response times have

been proposed. Kocher shows how adding random delays can be overcome

by an attacker by collecting more timing measurements [113]. Bortz and

Boneh describe how making inter-chunk transmission times constant can de-

fend against their timing attacks [22], but cross-site search attacks allow an

attacker to inflate computation times, minimizing the effects of this defense.

Disallowing cross-site requests is impractical, given their widespread use in the

modern web. Anti-CSRF defenses such as requiring the submission of secret

tokens or checking the origin header of the request [16] are typically suffi-

cient to prevent unintended state-changing requests, but they have not been

widely deployed against cross-site attacks [71]. However, even in the presence

of these defenses, the underlying side-channel vulnerabilities can leak private

information in the presence of man-in-the-middle attacks.

126

Chapter 9

Conclusion

In this thesis, we have presented formal definitions for performance-

related bugs and security vulnerabilities, and static analyses for detecting

them. We have used our tools to uncover 92 performance bugs, 37 denial-of-

service vulnerabilities, and 10 side-channel vulnerabilities, in mature, widely

used, open source applications with over hundreds of thousands of lines of

code.

Our definitions capture the subtle symptoms of problematic perfor-

mance, beyond the traditional notion of slow running times. Our static anal-

yses compute lightweight approximations of a program’s asymptotic complex-

ity, by leveraging traditional techniques from static analysis such as weakest-

precondition computation and taint analysis.

Our work opens a new avenue of research in software quality: prob-

lematic performance can have different symptoms beyond slow program ex-

ecution, and as these subtle manifestations of bad performance continue to

escape existing techniques and become widespread in software, there will be

a growing need to implement rigorous analysis techniques to achieve effective

performance understanding.

127

Appendices

128

Appendix A

Web Applications in PHP

In this appendix, we provide relevant background on PHP and rela-

tional databases.

A.0.1 Background on PHP Scripts

PHP is one of the most popular programming languages for web de-

velopment, with approximately 82% of server-side scripts implemented using

PHP [160]. Specifically, PHP makes it convenient to create dynamic web pages

that interact with the user and customize page content based on user prefer-

ences. There are two key reasons why PHP is so popular for web application

development: (1) HTML integration, and (2) native support for relational

databases.

HTML integration. One of the most useful features of PHP is the way it

allows programmers to handle HTML forms. Specifically, when a user fills out

an HTML form, it is possible to invoke a PHP script with the user data stored

in so-called superglobals that are available in every scope. Two of the most

commonly used PHP superglobals are $ GET and $ POST, both of which are

mappings from keys to values (called arrays in PHP terminology). If a web

129

form contains an input field named x which is sent using the HTTP POST

(resp. GET) method, then $ POST["x"] (resp. $ GET["x"]) holds the

value of the user input for field x. For instance, consider the following HTML

form:

<form action="example.php" method="get">
Name: <input type="text" name="name">
<input type="submit"> </form>

and the corresponding PHP script called “example.php”:

echo $_GET["name"];

Here, when the user enters their name into the name field of the

above HTML form and clicks submit, a PHP script called “example.php”

gets executed. Furthermore, since the web form specifies the data submission

method to be HTTP GET, the user input is stored in the superglobal variable

$ GET["name"]. Thus, the net effect of the above script is to simply print

out the name entered into the web form.

Database support. Another attractive feature of PHP is its native support
for databases. The most popular database system used with PHP is MySQL,
which is an open-source, cross-platform relational database. Certain built-in
PHP commands allow scripts to connect to a MySQL database and request
content that is typically displayed on a webpage. For the purposes of this
paper, the most relevant command is the mysqli query function, which
takes as input a string corresponding to the database query. For instance,
consider the following PHP code:

$name = $_GET["name"];
$query = "SELECT * FROM Customers WHERE Name=$name";
$result = $mysqli->query($query);

130

This code selects from the Customers database exactly those people whose
name matches the user input. Insertions into the database are performed in a
similar way, also using the mysqli query function.

A.0.2 Relational Databases

In relational databases, such as MySQL, data is organized into tables
(or relations) of rows and columns where there is a unique key associated with
each row. In this model, each row is a tuple representing a single data item,
and each column is a labeled attribute of the tuple. Given a relation R with set
of attributes A and a formula ϕ such that vars(ϕ) ⊆ A, a selection operation
σϕ(R) selects all tuples in R that satisfy condition ϕ. Similarly, given a set A′

and a relation R with attributes A such that A′ ⊆ A, a projection operation
πA′(R) yields a new relation R′ that includes all rows of R but only those
columns whose name is in A′. Hence, the following MySQL query:

SELECT Author FROM Papers
WHERE title = "X" AND author="Y"

corresponds to the operation πauthor(σϕ(papers)) where ϕ represents the for-
mula title = “X” ∧ author = “Y ”.

In the remainder of this paper, we refer to any set of tuples retrieved
from relation R as a view of R. Hence, the result of any MySQL query of the
form:

SELECT ... FROM MyTable WHERE ...

corresponds to a view of MyTable. Note that every relation R is also a view
of itself. Given some view R, we write |R| to denote the number of tuples in
R.

131

Bibliography

[1] Usage statistics and market share of php for websites. http://

w3techs.com/technologies/details/pl-php/all/all.

[2] CAV, volume 3114. Springer, 2004.

[3] S. Abdelsayed, D. Glismsholt, C. Leckie, S. Ryan, and S. Shami. An ef-

ficient filter for denial-of-service bandwidth attacks. In Global Telecom-

munications Conference (GLOBECOM), pages 1353–1357. IEEE, 2003.

[4] M. Abliz. Internet denial of service attacks and defense mechanisms. In

Technical Report No. TR-11-178, pages 1–50. University of Pittsburgh,

2011.

[5] Johan Agat. Transforming out timing leaks. In Principles of Program-

ming Languages, pages 40–53. ACM, 2000.

[6] A. Aiken, S. Bugrara, I. Dillig, T. Dillig, B. Hackett, and P. Hawkins.

An overview of the Saturn Project. In PASTE, pages 43–48, 2007.

[7] Xavier Allamigeon. Non-disjunctive numerical domain for array predi-

cate abstraction. In ESOP, pages 163–177, 2008.

[8] Erik Altman, Matthew Arnold, Stephen Fink, and Nick Mitchell. Perfor-

132

http://w3techs.com/technologies/details/pl-php/all/all
http://w3techs.com/technologies/details/pl-php/all/all

mance analysis of idle programs. In ACM SIGPLAN Notices, volume 45,

pages 739–753. ACM, 2010.

[9] Rita Z Altucher and William Landi. An extended form of must alias

analysis for dynamic allocation. In PLDI, pages 74–84. ACM, 1995.

[10] Mona Attariyan, Michael Chow, and Jason Flinn. X-ray: Automating

root-cause diagnosis of performance anomalies in production software.

In OSDI, pages 307–320, 2012.

[11] A. Avizienis, J-C. Laprie, B. Randell, and C. Landwehr. Basic concepts

and taxonomy of dependable and secure computing. In Transactions on

Dependable and Secure Computing, volume 1, pages 11–33. IEEE, 2004.

[12] Michael Backes and Boris Köpf. Formally bounding the side-channel

leakage in unknownmessage attacks. In ESORICS ’08. Springer, 517–

532.

[13] Michael Backes, Boris Köpf, and Andrey Rybalchenko. Automatic dis-

covery and quantification of information leaks. In Symposium on Security

and Privacy, pages 141–153. IEEE Computer Society, 2009.

[14] T. Ball and S.K. Rajamani. The SLAM project: debugging system

software via static analysis. In POPL, pages 1–3, 2002.

[15] Thomas Ball and James R Larus. Efficient path profiling. In Proceedings

of the 29th annual ACM/IEEE international symposium on Microarchi-

tecture, pages 46–57. IEEE Computer Society, 1996.

133

[16] Adam Barth, Collin Jackson, and John C. Mitchell. Robust defenses for

cross-site request forgery. In Computer and Communications Security,

pages 75–88. ACM, 2008.

[17] Gilles Barthe, Juan Manuel Crespo, and César Kunz. Relational veri-

fication using product programs. In FM 2011: Formal Methods, pages

200–214. Springer, 2011.

[18] Gilles Barthe, Pedro R D’Argenio, and Tamara Rezk. Secure information

flow by self-composition. In Computer Security Foundations Workshop,

2004. Proceedings. 17th IEEE, pages 100–114. IEEE, 2004.

[19] P. Bisht, T. Hinricks, N. Skrupsky, and V. N. Venkatakrishnan. Waptec:

Whitebox analysis of web applications for parameter tampering exploit

construction. In 18th Conference on Computer and Communications

Security (CCS), pages 575–586. ACM, 2011.

[20] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,

D. Monniaux, and X. Rival. Design and implementation of a special-

purpose static program analyzer for safety-critical real-time embedded

software, 2002.

[21] I. Bogudlov, T. Lev-Ami, T. Reps, and M. Sagiv. Revamping TVLA:

Making parametric shape analysis competitive. Lecture Notes in Com-

puter Science, 4590:221, 2007.

134

[22] Andrew Bortz and Dan Boneh. Exposing private information by timing

web applications. In World Wide Web, pages 621–628. ACM, 2007.

[23] A.R. Bradley, Z. Manna, and H.B. Sipma. What’s Decidable About

Arrays? Lecture notes in computer science, 3855:427, 2006.

[24] David Brumley and Dan Boneh. Remote timing attacks are practical.

In USENIX Security Symposium. USENIX Association, 2003.

[25] J. Burnim, N. Jalbert, C. Stergiou, and K. Sen. Looper: Lightweight

detection of infinite loops at runtime. In ASE, 2009.

[26] J. Burnim, S. Juvekar, and K. Sen. Wise: Automated test generation

for worst-case complexity. In ICSE, 2009.

[27] W.R. Bush, J.D. Pincus, and D.J. Sielaff. A static analyzer for find-

ing dynamic programming errors. Software: Practice and Experience,

30(7):775–802, 2000.

[28] Cristian Cadar, Daniel Dunbar, and Dawson R Engler. Klee: Unassisted

and automatic generation of high-coverage tests for complex systems

programs. In OSDI, volume 8, pages 209–224, 2008.

[29] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and

Dawson R. Engler. EXE: automatically generating inputs of death. In

Proceedings of the 13th ACM Conference on Computer and Communi-

cations Security, CCS ’06, pages 322–335, New York, NY, USA, 2006.

ACM.

135

[30] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional

shape analysis by means of bi-abduction. POPL, pages 289–300, 2009.

[31] The Official CAPTCHA. http://www.captcha.net/.

[32] Quentin Carbonneaux, Jan Hoffmann, and Zhong Shao. Composi-

tional certified resource bounds. In Proceedings of the 36th ACM SIG-

PLAN Conference on Programming Language Design and Implementa-

tion, pages 467–478. ACM, 2015.

[33] Pavol Černỳ and Rajeev Alur. Automated analysis of Java methods for

confidentiality. In CAV, pages 173–187. Springer, 2009.

[34] S. Chandra and T. Reps. Physical type checking for c. SIGSOFT,

24(5):66–75, 1999.

[35] R. Chang, G. Jiang, F. Ivanĉić, S. Sankaranarayanan, and V. Shmatikov.

Inputs of coma: Static detection of denial-of-service vulnerabilities. In

22nd Computer Security Foundations Symposium (CSF), pages 186–199.

IEEE, July 2009.

[36] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of pointers and

structures. In PLDI, pages 296–310, NY, USA, 1990. ACM.

[37] R. Chatterjee, B.G. Ryder, and W.A. Landi. Relevant context inference.

In POPL, pages 133–146. ACM, 1999.

136

http://www.captcha.net/

[38] Avik Chaudhuri and Jeffrey Foster. Symbolic security analysis of ruby-

on-rails web applications. In Proceedings of the 17th ACM Conference

on Computer and Communications Security (CCS’10), pages 585–594.

ACM, 2010.

[39] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. Side-

channel leaks in web applications: A reality today, a challenge tomorrow.

In Symposium on Security and Privacy, pages 191–206. IEEE Computer

Society, 2010.

[40] T.H. Chen, W. Shang, Z.M. Jiang, A.E. Hassan, M. Nasser, and P. Flora.

Detecting performance anti-patterns for applications developed using

object-relational mapping. In ICSE, pages 1013–1024. ACM, 2014.

[41] David Clark, Sebastian Hunt, and Pasquale Malacaria. A static analysis

for quantifying information flow in a simple imperative language. J.

Comput. Secur., 15(3):321–371, 2007.

[42] Malcolm Clark. Post congress tristesse. In TeX90 Conference Proceed-

ings, pages 84–89. TeX Users Group, March 1991.

[43] Michael R. Clarkson, Andrew C. Myers, and Fred B. Schneider. Quan-

tifying information flow with beliefs. J. Comput. Secur., 17(5):655–701,

2009.

[44] M. Colón and H. Sipma. Synthesis of linear ranking functions. In

TACAS, 2001.

137

[45] William R. Cook. Safe query objects: statically typed objects as re-

motely executable queries. In In Proceedings of the 27th International

Conference on Software Engineering (ICSE, pages 97–106. ACM Press,

2005.

[46] SYN cookies. http://cr.yp.to/syncookies.html.

[47] D.C. Cooper. Theorem proving in arithmetic without multiplication.

Machine Intelligence, 7:91–100, 1972.

[48] Emilio Coppa, Camil Demetrescu, and Irene Finocchi. Input-sensitive

profiling. In ACM SIGPLAN Notices, volume 47, pages 89–98. ACM,

2012.

[49] P. Cousot. Verification by abstract interpretation. Lecture notes in

computer science, pages 243–268, 2003.

[50] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints

among variables of a program. In POPL, pages 84–96, NY, USA, 1978.

ACM.

[51] Patrick Cousot and Radhia Cousot. Modular static program analysis.

In CC, pages 159–178, 2002.

[52] Patrick Cousot, Radhia Cousot, Manuel Fähndrich, and Francesco Lo-

gozzo. Automatic inference of necessary preconditions. In Verification,

Model Checking, and Abstract Interpretation, pages 128–148. Springer,

2013.

138

http://cr.yp.to/syncookies.html

[53] S. Crosby and D. Wallach. Denial of service via algorithmic complexity

attacks. In USENIX Security, 2003.

[54] D. Dahse and T. Holz. Static detection of second-order vulnerabilities in

web applications. In 23rd USENIX Security Symposium, pages 989–1003,

August 2014.

[55] A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond

k-limiting. In PLDI, pages 230–241. ACM, 1994.

[56] I. Dillig, T. Dillig, and A. Aiken. Sound, complete and scalable path-

sensitive analysis. In PLDI, pages 270–280, 2008.

[57] I. Dillig, T. Dillig, and A. Aiken. Cuts from proofs: A complete and

practical technique for solving linear inequalities over integers. In In

CAV. Springer, 2009.

[58] I. Dillig, T. Dillig, and A. Aiken. Fluid updates: Beyond strong vs. weak

updates. In ESOP, 2010.

[59] I. Dillig, T. Dillig, and A. Aiken. Small Formulas for Large Programs:

On-line Constraint Simplification in Scalable Static Analysis. In SAS,

2010.

[60] Isil Dillig, Thomas Dillig, and Alex Aiken. Sound, complete and scalable

path-sensitive analysis. In PLDI, volume 43, pages 270–280, 2008.

139

[61] Isil Dillig, Thomas Dillig, and Alex Aiken. Fluid updates: Beyond strong

vs. weak updates. In ESOP, pages 246–266. 2010.

[62] Isil Dillig, Thomas Dillig, and Alex Aiken. Precise reasoning for pro-

grams using containers. In ACM SIGPLAN Notices, volume 46, pages

187–200. ACM, 2011.

[63] Isil Dillig, Thomas Dillig, Alex Aiken, and Mooly Sagiv. Precise and

compact modular procedure summaries for heap manipulating programs.

In PLDI, pages 567–577. ACM, 2011.

[64] D. Distefano, P.W. O Hearn, and H. Yang. A local shape analysis based

on separation logic. Lecture Notes in Comp. Sc., 3920:287, 2006.

[65] Amer Diwan, Matthias Hauswirth, Todd Mytkowicz, and Peter F

Sweeney. Traceanalyzer: a system for processing performance traces.

Software: Practice and Experience, 41(3):267–282, 2011.

[66] Bruno Dufour, Barbara G Ryder, and Gary Sevitsky. A scalable tech-

nique for characterizing the usage of temporaries in framework-intensive

Java applications. In FSE, pages 59–70, 2008.

[67] Edward W. Felten and Michael A. Schneider. Timing attacks on web

privacy. In Computer and Communications Security, pages 25–32. ACM,

2000.

[68] Stephen J Fink, Eran Yahav, Nurit Dor, G Ramalingam, and Em-

manuel Geay. Effective typestate verification in the presence of alias-

140

ing. ACM Transactions on Software Engineering and Methodology

(TOSEM), 17(2):9, 2008.

[69] C. Flanagan and S. Qadeer. Predicate abstraction for software verifica-

tion. In POPL, pages 191–202. ACM, 2002.

[70] Y. Ge and L. de Moura. Complete instantiation for quantified formulas

in Satisfiabiliby Modulo Theories. In CAV, page 320. Springer, 2009.

[71] Nethanel Gelernter and Amir Herzberg. Cross-site search attacks. In

Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security, pages 1394–1405. ACM, 2015.

[72] Thomer M. Gil and Massimiliano Poletto. Multops: A data-structure for

bandwidth attack detection. In Proceedings of the 10th Conference on

USENIX Security Symposium - Volume 10, SSYM’01, pages 3–3, 2001.

[73] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed

automated random testing. In ACM SIGPLAN Notices, volume 40,

pages 213–223. ACM, 2005.

[74] Jan Goguen and Meseguer Jose. Security policies and security models.

In Symposium on Security and Privacy, pages 11–20. IEEE Computer

Society Press, 1982.

[75] Simon F Goldsmith, Alex S Aiken, and Daniel S Wilkerson. Measuring

empirical computational complexity. In FSE, pages 395–404, 2007.

141

[76] D. Gopan, T. Reps, and M. Sagiv. A framework for numeric analysis of

array operations. In POPL, pages 338–350, NY, USA, 2005. ACM.

[77] B. Gulavani, S. Chakraborty, G. Ramalingam, and A. Nori. Bottom-up

shape analysis. SAS, pages 188–204, 2009.

[78] B. Gulavani and S. Gulwani. A numerical abstract domain based on ex-

pression abstraction and max operator with application in timing anal-

ysis. In CAV, 2008.

[79] S. Gulwani, B. McCloskey, and A. Tiwari. Lifting abstract interpreters

to quantified logical domains. In POPL, pages 235–246. ACM New York,

NY, USA, 2008.

[80] S. Gulwani, K.K. Mehra, and T. Chilimbi. SPEED: precise and efficient

static estimation of program computational complexity. In POPL, pages

127–139, 2009.

[81] S. Gulwani and M. Musuvathi. Cover algorithms. In ESOP, pages 193–

207, 2008.

[82] S. Gulwani and A. Tiwari. Computing procedure summaries for inter-

procedural analysis. ESOP, pages 253–267, 2007.

[83] Sumit Gulwani. Speed: Symbolic complexity bound analysis. In Com-

puter Aided Verification, pages 51–62. Springer, 2009.

142

[84] Sumit Gulwani, Krishna K Mehra, and Trishul Chilimbi. Speed: precise

and efficient static estimation of program computational complexity. In

ACM SIGPLAN Notices, volume 44, pages 127–139. ACM, 2009.

[85] Sumit Gulwani, Ivan Radiček, and Florian Zuleger. Feedback gener-

ation for performance problems in introductory programming assign-

ments. FSE, 2014.

[86] A. Gupta, T. Henzinger, R. Majumdar, A. Rybalchenko, and R. Xu.

Proving non-termination. In POPL, 2008.

[87] P. Habermehl, R. Iosif, and T. Vojnar. What else is decidable about

integer arrays? Lecture Notes in Computer Science, 4962:474, 2008.

[88] N. Halbwachs and M. Péron. Discovering properties about arrays in

simple programs. In PLDI, pages 339–348, NY, USA, 2008. ACM.

[89] W. G. J. Halfond, A. Orso, and P. Manolios. Wasp: Protecting web

applications using positive tainting and syntax-aware evaluation. In

Transactions on Software Engineering (TSE), volume 34(1), pages 65–

81. IEEE, 2008.

[90] Shi Han, Yingnong Dang, Song Ge, Dongmei Zhang, and Tao Xie. Per-

formance debugging in the large via mining millions of stack traces. In

Proceedings of the 2012 International Conference on Software Engineer-

ing, pages 145–155. IEEE Press, 2012.

143

[91] M. Handley, E. Rescorla, and IAB. Internet denial-of-service considera-

tions. In RFC 4732, 2006.

[92] Matthias Hauswirth, Amer Diwan, Peter F Sweeney, and Michael C

Mozer. Automating vertical profiling. In ACM SIGPLAN Notices, vol-

ume 40, pages 281–296. ACM, 2005.

[93] Thomas A Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire

Sutre. Software verification with BLAST. In Model Checking Software,

pages 235–239. Springer, 2003.

[94] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate amor-

tized resource analysis. In ACM SIGPLAN Notices, volume 46, pages

357–370. ACM, 2011.

[95] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate amor-

tized resource analysis. In ACM SIGPLAN Notices, volume 46, pages

357–370. ACM, 2011.

[96] Pieter Hooimeijer, Prateek Saxena, Benjamin Livshits, Margus Veanes,

and David Molnar. Fast and precise sanitizer analysis with bek. In In

20th USENIX Security Symposium, 2011.

[97] http://gcc.gnu.org/. Gcc 4.3.0.

[98] http://insecure.org/sploits/ping-o death.html. Ping of death.

[99] http://www.gnu.org/software/coreutils/. Unix coreutils.

144

[100] http://www.openssh.com/. Openssh 5.3p1.

[101] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai

Lee, and Sy-Yen Kuo. Securing web application code by static analysis

and runtime protection. In Proceedings of the 13th International Con-

ference on World Wide Web, WWW ’04, pages 40–52, New York, NY,

USA, 2004. ACM.

[102] Suresh Jagannathan, Peter Thiemann, Stephen Weeks, and Andrew

Wright. Single and loving it: Must-alias analysis for higher-order lan-

guages. In PLDI, pages 329–341. ACM, 1998.

[103] R. Jhala and K. L. Mcmillan. Array abstractions from proofs. In CAV,

2007.

[104] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu.

Understanding and detecting real-world performance bugs. ACM SIG-

PLAN Notices, 47(6):77–88, 2012.

[105] N.D. Jones and S.S. Muchnick. Flow analysis and optimization of LISP-

like structures. In POPL, pages 244–256. ACM NY, USA, 1979.

[106] Milan Jovic, Andrea Adamoli, and Matthias Hauswirth. Catch me if

you can: performance bug detection in the wild. In ACM SIGPLAN

Notices, volume 46, pages 155–170. ACM, 2011.

145

[107] Vineet Kahlon. Bootstrapping: a technique for scalable flow and context-

sensitive pointer alias analysis. In ACM SIGPLAN Notices, volume 43,

pages 249–259. ACM, 2008.

[108] S. Kandula, D. Katabi, M. Jacob, and A. Berger. Botz-4-sale: Surviving

organized DDoS attacks that mimic flash crowds. In NSDI, 2005.

[109] M. Karr. Affine relationships among variables of a program. A.I., pages

133–151, 1976.

[110] Adam Kieżun, Philip J. Guo, Karthick Jayaraman, and Michael D.

Ernst. Automatic creation of SQL injection and cross-site scripting at-

tacks. In 31st International Conference on Software Engineering (ICSE),

pages 199–209, May 2009.

[111] Charles Killian, Karthik Nagaraj, Salman Pervez, Ryan Braud, James W

Anderson, and Ranjit Jhala. Finding latent performance bugs in systems

implementations. In Proceedings of the eighteenth ACM SIGSOFT in-

ternational symposium on Foundations of software engineering, pages

17–26. ACM, 2010.

[112] Jens Knoop, Laura Kovács, and Jakob Zwirchmayr. Symbolic loop

bound computation for WCET analysis. In Perspectives of Systems In-

formatics, pages 227–242. Springer, 2012.

[113] Paul C. Kocher. Timing attacks on implementations of diffie-hellman,

146

rsa, dss, and other systems. In Advances in Cryptology, pages 104–113.

Springer-Verlag, 1996.

[114] R.R. Kompella, S. Singh, and G. Varghese. On scalable attack detec-

tion in the network. In Proceedings of Internet Measurement Conference

(SIGCOMM). ACM, 2004.

[115] Boris Köpf and David Basin. An information-theoretic model for adap-

tive side-channel attacks. In Conference on Computer and Communica-

tions Security, pages 286–296. ACM, 2007.

[116] L. Kovacs and A. Voronkov. Finding loop invariants for programs over

arrays using a theorem prover. In FASE 2009, pages 470–485. Springer,

2009.

[117] D. Kroening and O. Strichman. Decision procedures: an algorithmic

point of view. Springer-Verlag New York Inc, 2008.

[118] Marc Kührer, Thomas Hupperich, Christian Rossow, and Thorsten Holz.

Exit from hell? reducing the impact of amplification DDoS attacks. In

23rd USENIX Security Symposium (USENIX Security 14), pages 111–

125, San Diego, CA, August 2014. USENIX Association.

[119] S.K. Lahiri and S. Qadeer. Verifying properties of well-founded linked

lists. In Proceedings of the Symposium on Principles of Programming

Languages, pages 115–126, 2006.

147

[120] W. Landi and B. G. Ryder. A safe approximate algorithm for interpro-

cedural aliasing. SIGPLAN Not., 27(7):235–248, 1992.

[121] William Landi and Barbara G Ryder. A safe approximate algorithm for

interprocedural aliasing. ACM SIGPLAN Notices, 27(7):235–248, 1992.

[122] S. Lee and D. Cho. Packet-scheduling algorithm based on priority of

separate buffers for unicast and multicast services. Electronics Letters,

39(2):259–260, Jan 2003.

[123] Tongping Liu and Emery D Berger. Sheriff: precise detection and auto-

matic mitigation of false sharing. In ACM SIGPLAN Notices, volume 46,

pages 3–18. ACM, 2011.

[124] Y. Liu, C. Xu, and S.C. Cheung. Characterizing and detecting perfor-

mance bugs for smartphone applications. In ICSE, pages 1013–1024,

2014.

[125] V. Benjamin Livshits and Monica S. Lam. Finding security vulnerabili-

ties in java applications with static analysis. In Proceedings of the 14th

Conference on USENIX Security Symposium - Volume 14, 2005.

[126] Pasquale Malacaria. Assessing security threats of looping constructs. In

Principles of Programming Languages, pages 225–235. ACM, 2007.

[127] Darko Marinov and Sarfraz Khurshid. TestEra: a novel framework for

automated testing of Java programs. In 16th IEEE Conference on Au-

tomated Software Engineering, page 22, 2001.

148

[128] J. Mccarthy. Towards a mathematical science of computation. In IFIP,

1962.

[129] Yasuhiko Minamide. Static approximation of dynamically generated web

pages. In Proceedings of the 14th International Conference on World

Wide Web, WWW ’05, pages 432–441, New York, NY, USA, 2005. ACM.

[130] J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher. Internet of Service:

Attack and Defense Mechanisms. Prentice Hall, 2005.

[131] J. Mirkovic, G. Prier, and P. Reiher. Attacking DDoS at the source. In

ICNP, pages 312–321, 2002.

[132] R. Monavich. Partially Disjunctive Shape Analysis. PhD thesis, Tel Aviv

University, 2009.

[133] Maliheh Monshizadeh, Prasad Naldurg, and V. N. Venkatakrishnan.

Mace: Detecting privilege escalation vulnerabilities in web applications.

In Conference on Computer and Communications Security, pages 690–

701, 2014.

[134] Andrew C Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and

Nathaniel Nystrom. Jif: Java information flow. Software release. Located

at http://www. cs. cornell. edu/jif, 2005, 2001.

[135] Mayur Naik and Alex Aiken. Conditional must not aliasing for static

race detection. ACM SIGPLAN Notices, 42(1):327–338, 2007.

149

[136] Mayur Naik, Alex Aiken, and John Whaley. Effective static race detec-

tion for Java, volume 41. ACM, 2006.

[137] K. Nguyen, T. Nguyen, and S. Cheung. P2p streaming with hierarchical

network coding, July 2007.

[138] Khanh Nguyen and Guoqing Xu. Cachetor: Detecting cacheable data

to remove bloat. In Proceedings of the 2013 9th Joint Meeting on Foun-

dations of Software Engineering, pages 268–278. ACM, 2013.

[139] Adrian Nistor, Linhai Song, Darko Marinov, and Shan Lu. Toddler:

Detecting performance problems via similar memory-access patterns. In

ICSE, pages 562–571. IEEE, 2013.

[140] T. Peng, C. Lecking, and K. Ramamohanarao. Proactively detecting

distributed denial of service attacks using source ip address monitoring.

In Networking, pages 771–782. Springer-Verlag, 2004.

[141] Paul Petefish, Eric Sheridan, and Dave Wichers. Cross-site request

forgery (csrf) prevention cheat sheet. In OWASP, pages 225–235. ACM,

2007.

[142] PHP-Parser. https://github.com/nikic/PHP-Parser.

[143] Tadeusz Pietraszek and Chris Vanden Berghe. Defending against injec-

tion attacks through context-sensitive string evaluation. In Proceedings

of the 8th International Conference on Recent Advances in Intrusion

150

https://github.com/nikic/PHP-Parser

Detection, RAID’05, pages 124–145, Berlin, Heidelberg, 2006. Springer-

Verlag.

[144] M.S.A. Pnueli. Two approaches to interprocedural data flow analysis.

Program Flow Analysis: Theory and Applications, pages 189–234, 1981.

[145] W. Pugh. The Omega test: a fast and practical integer programming

algorithm for dependence analysis. In ACM conference on Supercomput-

ing, pages 4–13, 1991.

[146] T. W. Reps, S. Sagiv, and R. Wilhelm. Static program analysis via

3-valued logic. In CAV [2], pages 15–30.

[147] Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. Precise interpro-

cedural dataflow analysis via graph reachability. In POPL, pages 49–61,

1995.

[148] J.C. Reynolds. Separation logic: A logic for shared mutable data struc-

tures. In 17th Annual IEEE Symposium on Logic in Computer Science,

pages 55–74, 2002.

[149] Dorothy Elizabeth Robling Denning. Cryptography and Data Security.

Addison-Wesley Longman Publishing Co., Inc., 1982.

[150] Shmuel Sagiv, Thomas W. Reps, and Susan Horwitz. Precise inter-

procedural dataflow analysis with applications to constant propagation.

Theor. Comput. Sci., 167(1&2):131–170, 1996.

151

[151] A. Salcinau. Pointer Analysis for Java Programs: Novel Techniques and

Applications. PhD thesis, MIT, 2006.

[152] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. A

symbolic execution framework for javascript. In Symposium on Security

and Privacy (SP). IEEE, 2010.

[153] D. A. Schmidt. A calculus of logical relations for over- and underapprox-

imating static analyses. Sci. Comput. Program., 64(1):29–53, 2007.

[154] M.N. Seghir, A. Podelski, and T. Wies. Abstraction Refinement for

Quantified Array Assertions. In SAS, page 3. Springer-Verlag, 2009.

[155] V. Sekar, N. Duffield, K. van der Merwe, O. Spatscheck, and H. Zhang.

Lads: Large-scale automated DDoS detection system. In USENIX, 2006.

[156] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs.

Jalangi: A selective record-replay and dynamic analysis framework for

javascript. In Proceedings of the 2013 9th Joint Meeting on Foundations

of Software Engineering, ESEC/FSE 2013, pages 488–498. ACM, 2013.

[157] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit

testing engine for c. In Proceedings of the 10th European Software Engi-

neering Conference, pages 263–272, 2005.

[158] Ohad Shacham, Martin Vechev, and Eran Yahav. Chameleon: adaptive

selection of collections. In ACM SIGPLAN Notices, volume 44, pages

408–418. ACM, 2009.

152

[159] Ajeet Shankar, Matthew Arnold, and Rastislav Bodik. Jolt: lightweight

dynamic analysis and removal of object churn. In ACM SIGPLAN No-

tices, volume 43, pages 127–142. ACM, 2008.

[160] Market share of PHP-based websites. http://w3techs.com/

technologies/details/pl-php/all/all.

[161] L. Song and S. Lu. Statistical debugging for real-world performance

problems. In OOPSLA, NY, USA, 2014. ACM.

[162] S. Song and V. Shmatikov. Saferphp: Finding semantic vulnerabilities

in php applications. In 6th Workshop on Programming Languages and

Analysis for Security (PLAS). ACM, November 2011.

[163] Manu Sridharan and Rastislav Bod́ık. Refinement-based context-

sensitive points-to analysis for Java. ACM SIGPLAN Notices, 41(6):387–

400, 2006.

[164] Francois-Xavier Standaert, Tal G. Malkin, and Moti Yung. A unified

framework for the analysis of side-channel key recovery attacks. In Ad-

vances in Cryptology: The Theory and Applications of Cryptographic

Techniques, pages 443–461. Springer-Verlag, 2009.

[165] Bjarne Steensgaard. Points-to analysis in almost linear time. In PLDI,

pages 32–41. ACM, 1996.

153

http://w3techs.com/technologies/details/pl-php/all/all
http://w3techs.com/technologies/details/pl-php/all/all

[166] A. Stump, C.W. Barrett, D.L. Dill, and J. Levitt. A decision procedure

for an extensional theory of arrays. In IEEE Symposium on Logic in

Computer Science, pages 29–37, 2001.

[167] Zhendong Su and Gary Wassermann. The essence of command injec-

tion attacks in web applications. In Conference Record of the 33rd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’06, pages 372–382. ACM, 2006.

[168] Symantec. Symantec internet security threat report, 2014.

[169] R. Talpade, G. Kim, and S. Khurana. Nomad: Traffic-based network

monitoring framework for anomaly detection. In International Sympo-

sium on Computers and Communications, pages 442–451. IEEE, 1999.

[170] Tachio Terauchi and Alex Aiken. Secure information flow as a safety

problem. In International Conference on Static Analysis, pages 352–

367. Springer-Verlag, 2005.

[171] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick

Lam, and Vijay Sundaresan. Soot-a Java bytecode optimization frame-

work. In Proceedings of the 1999 Conference of the Centre for Advanced

Studies on Collaborative research, page 13. IBM Press, 1999.

[172] Tom Van Goethem, Wouter Joosen, and Nick Nikiforakis. The clock

is still ticking: Timing attacks in the modern web. In Computer and

Communications Security, pages 1382–1393. ACM, 2015.

154

[173] Kapil Vaswani, Aditya V Nori, and Trishul M Chilimbi. Preferential path

profiling: compactly numbering interesting paths. In ACM SIGPLAN

Notices, volume 42, pages 351–362. ACM, 2007.

[174] Dennis Volpano and Geoffrey Smith. Probabilistic noninterference in a

concurrent language. J. Comput. Secur., 7(2-3):231–253, 1999.

[175] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and S. Shenker.

DDoS defense by offense. In SIGCOMM, 2006.

[176] H. Wang, D. Zhang, and K.G. Shin. Detecting syn flooding attacks. In

21st Annual Joint Conference of the IEEE Computer and Communica-

tions Societies (INFOCOM), pages 1530–1539. IEEE, 2002.

[177] Gary Wassermann and Zhendong Su. Static detection of cross-site script-

ing vulnerabilities. In Proceedings of the 30th International Conference

on Software Engineering, ICSE ’08, pages 171–180, New York, NY, USA,

2008. ACM.

[178] J. Whaley and M. Rinard. Compositional pointer and escape analysis

for Java programs. In OOPSLA, pages 187–206. ACM, 1999.

[179] Robert P Wilson and Monica S Lam. Efficient context-sensitive pointer

analysis for c programs. ACM SIGPLAN Notices, 30(6):1–12, 1995.

[180] Robert P. Wilson and Monica S. Lam. Efficient context-sensitive pointer

analysis for c programs. In PLDI, 1995.

155

[181] www.garmin.com/support/pdf/iop spec.pdf. Interface specification.

[182] Yichen Xie and Alex Aiken. Static detection of security vulnerabilities in

scripting languages. In Proceedings of the 15th Conference on USENIX

Security Symposium - Volume 15, 2006.

[183] G. Xu, M. Arnold, A. Rountev, and G. Sevitsky. Finding low utility

data structures. In PLDI, pages 174–186. ACM, 2010.

[184] Guoqing Xu. CoCo: sound and adaptive replacement of Java collections.

In ECOOP 2013–Object-Oriented Programming, pages 1–26. Springer,

2013.

[185] Guoqing Xu, Matthew Arnold, Nick Mitchell, Atanas Rountev, and Gary

Sevitsky. Go with the flow: profiling copies to find runtime bloat. In

ACM SIGPLAN Notices, volume 44, pages 419–430. ACM, 2009.

[186] Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, Edith

Schonberg, and Gary Sevitsky. Scalable runtime bloat detection using

abstract dynamic slicing. ACM Transactions on Software Engineering

and Methodology (TOSEM), 23(3):23, 2014.

[187] Guoqing Xu and Atanas Rountev. Detecting inefficiently-used containers

to avoid bloat. ACM SIGPLAN Notices, 45(6):160–173, 2010.

[188] Guanhua Yan, Ritchie Lee, Alex Kent, and David Wolpert. Towards

a bayesian network game framework for evaluating DDoS attacks and

156

defense. In Proceedings of the 2012 ACM Conference on Computer

and Communications Security, CCS ’12, pages 553–566, New York, NY,

USA, 2012. ACM.

[189] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and

P. O’Hearn. Scalable shape analysis for systems code. CAV, pages 385–

398, 2008.

[190] X. Yang, D. Wetherall, and T. T. Anderson. A DoS-limiting network

architecture. In SIGCOMM, 2005.

[191] G. Yorsh, E. Yahav, and S. Chandra. Generating precise and concise

procedure summaries. POPL, 43(1):221–234, 2008.

[192] Xiao Yu, Shi Han, Dongmei Zhang, and Tao Xie. Comprehending per-

formance from real-world execution traces: A device-driver case. In

ASPLOS, pages 193–206. ACM, 2014.

[193] Z3. https://github.com/Z3Prover/z3.

[194] Z3-str2. https://sites.google.com/site/z3strsolver/.

[195] S. Zaman, B. Adams, and A. E. Hassan. A qualitative study on perfor-

mance bugs. In Mining Software Repositories. ACM, 2012.

[196] Dmitrijs Zaparanuks and Matthias Hauswirth. Algorithmic profiling.

ACM SIGPLAN Notices, 47(6):67–76, 2012.

157

https://github.com/Z3Prover/z3
https://sites.google.com/site/z3strsolver/

[197] Kehuan Zhang, Zhou Li, Rui Wang, XiaoFeng Wang, and Shuo Chen.

Sidebuster: Automated detection and quantification of side-channel

leaks in web application development. In Computer and Communica-

tions Security, pages 595–606. ACM, 2010.

[198] Xin Zheng and Radu Rugina. Demand-driven alias analysis for c. ACM

SIGPLAN Notices, 43(1):197–208, 2008.

158

Index

Acknowledgments, v

Appendices, 128

Bibliography, 158

Challenges, 2

Conclusions, 127

Contributions, 5

Dedication, iv

Defining Denial-of-Service Vulnera-

bilities, 43

Defining Performance Bugs, 7

Defining Side-Channel Vulnerabili-

ties, 81

Denial-of-Service Attacks, 119

Denial of Service Vulnerabilities, 43

Detecting Denial-of-Service Vulner-

abilities, 47

Detecting Performance Bugs, 15

Detecting Side-Channel Vulnerabil-

ities, 90

dos:evaluation, 66

evaluation-side-channel, 106

fig:lang, 21

Introduction, 1

Performance Bugs, 7, 116

Related Work, 116

sec:assumptions, 88

sec:bug-detection, 31

sec:defining-side-channel, 84

sec:dos-analysis, 47

sec:dos-attack-gen, 57

sec:dos-def, 45

sec:dos-impl, 64

sec:dtb-def, 12

sec:evaluation, 36

sec:footprint, 23

sec:implementation, 33

sec:implementation-side-channel, 99

sec:performance-bug-algorithm, 21

sec:performance-bug-core-ideas, 15

sec:side-channel-detection, 90

Side-Channel Attacks, 123

Side-Channel Vulnerabilities, 81

Web Applications in PHP, 129

159

Vita

Oswaldo Luis Olivo was born in Punto Fijo, Venezuela on April 1st

1986, the son of Luis Olivo and Margarita Mazzei. He received the Bachelor

of Science degree in Computer Engineering from Universidad Simón Boĺıvar

in 2008, and a Masters of Science degree in Computer Science from The Uni-

versity of Texas at Austin in 2013.

Permanent address: 610 W 30th St.
Austin, Texas 78705

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

160

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Challenges
	Contributions
	Chapter 2. Defining Performance Bugs
	Performance Bugs
	Defining Redundant Traversal Bugs

	Chapter 3. Detecting Performance Bugs
	Core Ideas for Detecting Redundant Traversals
	Static Analysis
	Language
	Computing Traversal and Write Footprints
	Detecting Redundant Traversal Bugs

	Implementation
	Experimental Evaluation
	Discussion

	Chapter 4. Defining Denial-of-Service Vulnerabilities
	Denial-of-Service Vulnerabilities
	Defining Second Order Denial-of-Service Vulnerabilities

	Chapter 5. Detecting Denial-of-Service Vulnerabilities
	Static Analysis
	Phase I Analysis
	Phase II Analysis

	Attack Vector Generation
	Backwards Symbolic Execution
	Using Constraints to Generate Inputs
	Constraint Solving

	Implementation
	Evaluation
	Exploit in HotCRP
	Exploit in osCommerce

	Chapter 6. Defining Side-Channel Vulnerabilities
	Side-Channel Vulnerabilities
	Non-Interference
	Defining Side-Channel Vulnerabilities
	Assumptions

	Chapter 7. Detecting Side-Channel Vulnerabilities
	Detecting Side-Channel Vulnerabilities
	Key Ideas
	Formalization

	Implementation
	Scanner Basics
	Detection Module
	Error Diagnostic Module
	Exploit Generation Module

	Evaluation
	Response-size Side-Channel Vulnerability in OpenClinic
	Timing Side-Channel Vulnerability in ZeusCart
	Feedback from Developers

	Chapter 8. Related Work
	Performance Bugs
	Denial-of-Service Attacks
	Side-Channel Attacks

	Chapter 9. Conclusion
	Appendices
	Appendix A. Web Applications in PHP
	Background on PHP Scripts
	Relational Databases

	Index
	Vita

