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Abstract

Array languages such as Fortran 90, HPF and ZPL have
many benefits in simplifying array-based computations and
expressing data parallelism. However, they can suffer large
performance penalties because they introduce intermediate
arrays—both at the source level and during the compila-
tion process which increase memory usage and pollute the
cache. Most compilers address this problem by simply scalar-
izing the array language and relying on a scalar language
compiler to perform loop fusion and array contraction. We
instead show that there are advantages to performing a form
of loop fusion and array contraction at the array level. This
paper describes this approach and explains its advantages.
Experimental results show that our scheme typically yields
runtime improvements of greater than 20% and sometimes
up to 400%. In addition, it yields superior memory use when
compared against commercial compilers and exhibits com-
parable memory use when compared with scalar languages.
We also explore the interaction between these transforma-
tions and communication optimizations.

1 Introduction

Array languages such as Fortran 90 (F90) [1], High Per-
formance Fortran (HPF) [13] and ZPL [24] have become
important vehicles for expressing data parallelism. Though
they simplify the specification of array-based calculations,
they also present a potential problem: Large temporary ar-
rays may need to be introduced, either by the programmer
or by the compiler. For example, the F90 statements in
Figure 1(a) use temporary array R to cache a computation,
while the Fortran 77 equivalent in Figure 1(b) uses only the
scalar variable s, which can be viewed as a contracted form
of the full array R. Similarly, there are cases where an array
language compiler will insert temporary arrays to preserve
array language semantics. In both cases, these array tem-
poraries increase memory usage, degrade performance by
polluting the cache, and therefore impede the acceptance of
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array languages, despite their other advantages.

There are two ways to solve this problem. The first is
to scalarize the array language source (i.e., produce scalar
loop nests for each array statement) and rely on a scalar
language compiler to remove the array temporaries using its
existing scalar level optimizations. Specifically, the scalar
compiler must fuse loops to enable contraction, as shown
in Figure 1(b). The second approach is to optimize at the
array level prior to scalarization (i.e., perform analyses and
transformations on array statements directly). Since fusion
and contraction are mature and well understood transforma-
tions, the first approach appears a natural choice because it
simplifies the array language compilation process and lever-
ages existing compiler technology. However, we believe that
the first approach is inferior for several reasons. First, the
reality is that scalar languages do not require programmers
to introduce large temporary arrays, so scalar language com-
pilers do not bother to perform costly transformations that
will not benefit typical human generated code. Second, re-
moving array temporaries at the scalar level solves the prob-
lem at a greater conceptual distance from the source of the
problem and at a greater cost. Most importantly, it is im-
practical to implement an integrated optimization strategy
when some optimizations (e.g., communication pipelining)
are performed at the array level while others (e.g., array
contraction) are subsequently performed at the scalar level.

Our work supports earlier claims that there are perfor-
mance benefits to performing analyses and transformations
at the array level [6, 21]. In particular, this paper makes the
following contributions. We explain how fusion and contrac-
tion can be performed at the array level. We refer to the
former as statement fusion because array statements, not
loops, are the fused entities. We provide empirical evidence
that our approach is superior to those used by several com-
mercial compilers. We measure the benefits of various array
level fusion and contraction strategies, both in terms of ex-
ecution time and memory usage, and we find that the com-
mon practice of contracting only compiler introduced arrays
is insufficient. In addition, we show that our array level
approach produces code that is comparable to that of hand-
written scalar programs. Finally, we show that performance
suffers when compilers do not use an integrated strategy for
optimizing communication and performing fusion.

This paper is organized as follows. Sections 2 and 3
define the representations we use and the problem we solve.
Section 4 describes our solution to the problem. Section 5
evaluates the implementation of statement fusion and array
contraction in the ZPL compiler, and the final two sections
present related work and give conclusions.



do j=1,n
s = AA(i,j)*D(i-1,j)
D(i j)=1/(DD(ij)-AA(i-1 j)*s
Rx(i.j)=Rx(i.j)-Rx(i-1,j)*s
Ry(i.j)=Ry(i.j)-Ry(i-1.j)*s
enddo
(a) (b)

Figure 1: Hlustration of unnecessary array allocation (R) in
an array language using a code fragment from the tridiago-
nal systems solver component of the SPEC CFP95 Tomcatv
benchmark.

2 Representations

This section describes our array statement normal form and
array level dependence representation. The representation
we describe will be used in defining the fusion for contraction
problem and in implementing its solution.

2.1 Normalized Array Statements

We define a normalized array statement to be an element-
wise array operation that has the following properties: (i) the
same array (or aliasing arrays) may not be both read and
written, (ii) the statement contains arrays of a common
rank, and (iii) the extent of the array statement’s com-
putation is defined by an index set, called a region, and all
array references are specified as constant offsets from this
index set. The final property implies that for each array ref-
erence, the elements of its subscript are separable (i.e., an
index variable may appear in only a single element of a sub-
script) and a particular index variable appears in the same
position of all subscripts. A normalized array statement has
the following form.

[R] f(A1@d:, Ax@d>,..., As@dy)

The indices of array A; involved in the computation are
those of the region R=[1l..n1,l..n2,... ,1..n,] offset by the
integer r-tuple d;=(di,,..., di.), é.e., [1+d; ..ni+ds ...,
1+d;,..n,+d;.]. Figures 2(a) and (b) contain F90 array
statements and their normal form equivalents (note that
A = AQO, where 0 is the null or zero vector). Though only
normalized statements can participate in fusion and contrac-
tion, unnormalized statements do not prevent independent
normalized statements from being optimized.

This normal form is an appropriate representation for
array statements because the data volume of each term in
a single array statement is the same (i.e., they are con-
formable). Conformability permits most F90 and ZPL array
statements to be normalized, either directly or by the in-
troduction of compiler temporaries that are often later con-
tracted. Furthermore, the normal form serves as an effective
internal representation when compiling for parallel machines
because it makes the alignment of arrays explicit. All array
references are perfectly aligned except for vector offsets, so
normalized statements will compile to highly efficient paral-
lel code [7]. Compiler generated communication primitives
need not be normalized because they are not candidates for
fusion or contraction. Not coincidentally, the normal form
closely resembles the core of the ZPL source language.

1 A(1:m,1:n) = B(0:m-1,1:n) 1 [1.m,1.n] A:= B@(-1,0);
2 C(1:m,1:n) = A(1:m,0:n-1) 2 [1.m,1..n] C := A@(0.-1);
3 B(1:m,1:n) = A(0O:m-1,2:n+1) 3 [1.m,1.n] B := AQ(-1,1);
(a) (b)
doj=n1-1

doi=m1-1

A(i.j) = B(i-1,j)

B(i) = A 1j+1)
enddo

{(A(1,-1),flow),
(B,(-1,0),anti)}

Figure 2: Four different representations of the same array
computation: (a) Fortran 90, (b) normalized array state-
ments, (c) Fortran 77, and (d) array statement dependence
graph.

2.2 The Array Statement Dependence Graph

In this section, we review the concept of data dependence,
and we modify existing mechanisms to represent depen-
dences between normalized array statements. Data depen-
dences [26] represent ordering constraints on statements in
a program. A flow or true dependence requires that a vari-
able assignment precede a read to the same variable, and an
anti-dependence requires the reverse. An output dependence
requires that one assignment to a variable precede another
assignment to the same variable. Transformations that re-
order dependent statements (i.e., move the dependence tar-
get before its source) are illegal because they violate the
dependence and do not preserve correctness.

Data dependence is also used to represent ordering con-
straints on iterations in the iteration space of a loop nest.
The iteration space associated with a loop nest has a dimen-
sion for each loop in the nest. Loop transformations such
as loop interchange or loop reversal are only legal if they
preserve the data dependences in the iteration space. Dis-
tance vectors serve as a static analysis tool to represent data
dependences concisely in an iteration space.

Definition 1 A distance vector is an integer n-tuple, d =
(di,d2,...,dys), representing a dependence between the iter-
ations of a rank n iteration space, where the source of the
dependence precedes the target by d; iterations in loop i (1
is the outermost), for 1 < i < n. Note that a negative or
zero value implies that the target precedes the source or that
they are in the same iteration, respectively.

A distance vector is lezicographically nonnegative if it is
a null vector or if its leftmost non-zero element is positive.
A lexicographically nonnegative distance vector is said to be
legal because the dependence source precedes the target in
the loop that carries the dependence. If a distance vector
is not lexicographically nonnegative, then the target of the
dependence precedes the source in the loop that carries the
dependence, which is clearly illegal.

Distance vectors are inappropriate for use in array level
compilation because they are derived from loop nests, which
are not created until after our transformations have been



performed. As a result, we introduce a variant of the dis-
tance vector, called the unconstrained distance vector, to
represent array level data dependences between normalized
array statements.

Definition 2 An unconstrained distance vector is an in-
teger n-tuple, w = (u1,u2,...,u,), representing a depen-
dence between two normalized n-dimensional array state-
ments, where the source of the dependence precedes the target
by u; iterations of the loop that iterates over dimension i (if
both statements appear in the same loop nest).

Unconstrained distance vectors are constructed by subtract-
ing the dependence’s target offset vector from its source off-
set. For example, the unconstrained distance vectors that
arise from the dependences in the code in Figure 2(b) are
(0,0)—(0,—1) = (0,1) and (0,0)—(—1,1) = (1, —1) for array
A and (—1,0)—(0,0) = (—1,0) for array B. The lexicograph-
ical nonnegativity of an unconstrained distance vector has
no bearing on the legality of the dependence it represents.

Because scalarization of a normalized statement gener-
ates a single loop to iterate over the same dimension of all
arrays in its body, we can characterize dependences by di-
mensions of the array rather than dimensions of the iteration
space. Thus u; is the distance of the dependence along ar-
ray dimension ¢. Unconstrained distance vectors are more
abstract than traditional (constrained) distance vectors be-
cause they separate loop structure from dependence repre-
sentation. Though unconstrained distance vectors are not
fully general, they can represent any dependence that ap-
pears in our normal form.

We represent code using the array statement dependence
graph.

Definition 3 An array statement dependence graph
(ASDG), G = (V,E), is a labeled, acyclic, directed
graph, where vertices, vi, represent statements, edges repre-
sent data dependences between statements, and each edge,
(vi,v2) € E, is labeled, I(vi,v2), with a set of (vari-
able name, unconstrained distance vector, dependence type
€ {flow, anti, output}) tuples.

An ASDG is guaranteed to not contain cycles because
it represents a single basic block at the array statement
level. An edge from v1 to vz, (v1,v2) € E, in an ASDG
indicates that the target statement v, is dependent on the
source statement v1. The label on each edge in the ASDG
describes the dependences the edge represents by naming
the variables that induce the dependences and the associ-
ated unconstrained distance vectors and dependence types.
Figure 2(d) contains the ASDG that corresponds to the nor-
malized array statements in 2(b).

If after scalarization, the source and target of a depen-
dence appear in the single loop nest, a conventional (con-
strained) distance vector may be constructed from an uncon-
strained one given a description of the loop nest structure.

Definition 4 A loop structure vector is an integer n-tuple,
p = (p1,p2,---,Pn), that describes the dimension and direc-
tion of each loop in an n-deep loop nest. Loop i (1 is the
outermost loop in the loop nest) iterates over dimension |p;|
in the direction of the sign of pi, positive denoting increas-
ing.

A loop structure vector is a
permutation of (+1,+2,...,+n). The loop structure vec-
tor that describes the loop nests in Figure 2(c) are (—2, —1)
and (1,2). In the first nest, the outer loop iterates over the

second dimension and the inner loop iterates over the first
dimension, both in a decreasing direction.

A constrained distance vector, d = (di,ds,...,d,), is
constructed from an unconstrained one, u, and a loop struc-
ture vector, p, by letting d; = ‘Zﬁu‘m‘, for 1 < i < n.
Consider array statements 1 and 3 in Figure 2(b). If
p = (—2,—1), the unconstrained distance vectors (—1,0)
and (1, —1) become (0,1) and (1,—1), respectively, when
constrained. The constrained distance vectors are lexico-
graphically nonnegative, so the dependences of the code in
Figure 2(b) are preserved by the first loop nest in 2(c) result-
ing from loop structure vector p. There are no constraints
on the structure of the second loop nest because it does not
contain statements that depend on each other.

A fusion partition describes a particular fusing of the
statements in an ASDG.*

Definition 5 A fusion partition, P = (P, P»,..., P), of
an ASDG, G = (V,E), is a partitioning of the nodes of
G into | disjoint sets, Pi, Ps, ..., P;, called fusible clusters
such that the following conditions hold: (i) all statements
in a single cluster operate under the same region, (ii) all
unconstrained distance vectors on intra-fusible-cluster flow
dependences are null vectors (i.e., VP; and vi,v2 € P;, if
(z,u, flow) € l(vi,v2) then u is a null vector), (iii) there
are no inter-fusible-cluster cycles, and (iv) a loop structure
vector exists for each fusible cluster that preserves all intra-
fusible-cluster dependences.

Upon scalarization, all the statements in a fusible cluster
are implemented with a single loop nest. The statements
in each loop nest and the loop nests themselves are ordered
by a topological sort using intra- and inter-fusible cluster
dependence edges, respectively. The first condition above
ensures that all the statements in a single cluster have the
same (i.e., conformable) loop bounds. The second condition
ensures that a loop carried flow dependence will not inhibit
parallelism. The final two conditions ensure that inter- and
intra-fusible-cluster dependences are preserved, respectively.
An algorithm to decide the final condition is described in
detail in Section 4.2. The trivial fusion partition of an ASDG
is one in which there is exactly one statement in each fusible
cluster.

Given a particular fusion partition we can decide for
what arrays contraction has been enabled.

Definition 6 Given a fusion partition,
P=(P,P,....,P), of an ASDG, G = (V, E), an array, z,
is contractible if the following conditions hold: (i) the source
and target of all dependences due to x appear in the same
fusible cluster (i.e.,¥V(vi,v2) € E, if (x,u,t) € l(v1,v2), then
v1 € P; and va € P; for some i, 1 <i<1), and (ii) the un-
constrained distance vectors of all data dependences due to
x are null vectors (i.e., V(v1,v2) € E, if (z,u,t) € l(v1,v2),
then u is a null vector).

These conditions ensure that all references to x will appear
in a single loop nest upon scalarization, and there will be
no loop carried dependences due to x. The latter condition
may be relaxed when the dependence is along a dimension
of the array that is not distributed [4], but here we assume
that all dimensions are distributed.

! This terminology is borrowed from Gao et al. [12], who considered
a similar problem. See Section 6.



3 Problem

There are two reasons to perform statement fusion: to en-
able the elimination of arrays by contraction and to improve
utilization of the data cache by exploiting inter-statement
reuse. For the first goal, we seek a fusion partition, P, for
an ASDG, G, that enables the maximum elimination of ar-
ray element references by contraction. The number of array
element references eliminated by the contraction of array =
(called reference weight, w(z,G)) is a function of the num-
ber of times it is referenced at the array level and the region
sizes over which these references occur. We call the sum of
the reference weights of all contracted arrays the contrac-
tion benefit of a fusion partition. For the second goal, we
seek a fusion partition that maximizes the number of arrays
without inter-fusible-cluster dependences. The intuition is
that while intra-cluster dependences are potential sources
of cache reuse, we must be careful not to pollute the cache
with the increased references that come with excessive fu-
sion. When all references to an array appear in a single
loop nest, all other loop nests are spared the cache burden
of references to the array. Both problems are provably NP-
complete, so we present approximate solutions in the next
section.

4 Solution

This section presents algorithms for performing statement
fusion to enable contraction and exploit locality. Because
eliminating entire arrays conserves memory and can result
in enormous performance improvements, we perform fusion
for contraction first. We also describe the details of scalar-
ization.

4.1 Statement Fusion

Our algorithm to fuse statements to enable array contraction
appears in Figure 3. It takes as input an ASDG, G, and it
returns a fusion partition P = (P1, P», ..., P;) containing [
clusters. Initially, P is the trivial fusion partition (line 1).
The algorithm considers each variable,® z;, that appears
in the input array statement dependence graph in order of
decreasing weight, w(xz;,G). As a result, arrays that have
potentially the largest single impact on the total contraction
benefit are considered first. In line 5, set ¢ is assigned all
the fusible clusters that contain references to variable z;.
The fusion of all the statements in the fusible clusters in
¢ might introduce inter-fusible-cluster cycles, so ¢ becomes
the union of itself and the fusible clusters that are on inter-
fusible-cluster cycles using the GROw function (line 6). This
guarantees that there will be no dependence cycles, for they
prevent fusion. If variable xz; is contractible and a fusion
partition is produced by combining all the fusible clusters in
¢ (by Definitions 6 and 5), fusion is performed. The union
of all fusible clusters in ¢ is taken and assigned into the P
with the smallest value k in ¢. The counter [ is decremented
to indicate that there are fewer clusters.

The FUSION-FOR-CONTRACTION algorithm uses three
auxiliary routines. Function GROW (¢, G) returns all fusible
clusters not in ¢ that are reachable by a dependence path
from a cluster in ¢ and that have a dependence path to a
cluster in ¢. These are the fusible clusters that will be on

2¥or simplicity, we describe the algorithm as operating on array
variables. In reality, it operates on array variable definitions, so that
different references to the same array in disjoint live ranges can be
optimized separately.

InvuT G = (V, E) : an array statement dependence graph
OuTtpUT P = (P1, Ps,..., P;) : a fusion partition of G

FusioN-FOR-CONTRACTION(G)

1 P « trivial partition of G

2 1 — V|

3 x < array vars in G sorted by decreasing weight w

4 for i «— 1to |z| { consider var z; for contraction }

5 ¢ « {Pj|P; contains a reference to variable z; }

6 ¢ «— cUGrow(e, @)

7 if CONTRACTIBLE?(z;,c, G) and
FusioN-PARTITION? (¢, G)

8 k <« smallest j for P; € ¢

9 P, — U.ccz

10 I —1—(le]—=1)

11 return P

Figure 3: Algorithm to find a fusion partition that enables
contraction in an ASDG.

an inter-fusible-cluster dependence cycle if the clusters in ¢
are fused. This function’s running time is O(e), where e is
the number of edges in G. The FUSION-PARTITION? (¢, G)
and CONTRACTIBLE?(z, ¢, G) predicates test the conditions
in Definitions 5 and 6, respectively. They both run in O(e)
time. The former function can ignore inter-cluster cycles
because line 6 guarantees they will not exist. It also calls
FIND-LOOP-STRUCTURE (described in the next section) to
decide whether condition (iv) of Definition 5 is met. If there
are r arrays in G, the total running time for FUSION-FOR-
CONTRACTION is O(re).

The algorithm to perform fusion for locality enhance-
ment is identical to that in Figure 3, except that the CON-
TRACTIBLE? predicate in line 7 is eliminated. We try to
fuse all statements that reference the array that will have
the greatest single locality benefit, which is analogous to the
contraction benefit. Next, we will describe the process by
which an ASDG is scalarized given a fusion partition.

4.2 Scalarization

Scalarization generates a loop nest for each fusible cluster
in a fusion partition, where the loop nests and the state-
ments in the loop nests are ordered by a topological sort
using inter- and intra-fusible-cluster dependences, respec-
tively. The only work remaining is deciding the structure
of each loop nest, i.e., the direction in which and dimension
over which each loop iterates. This information is encoded
in a loop structure vector (Definition 4) for each fusible clus-
ter. Intra-cluster dependences constrain the structure of the
loop nest that will implement its statements (i.e., the loop
nest must preserve these dependences). When the depen-
dences do not fully constrain the structure of the loop nest,
we will favor the loop structure that best exploits spatial
locality.

The algorithm to find a loop structure vector given a set
of unconstrained distance vectors from intra-fusible-cluster
array-level dependences appears in Figure 4. FiND-Loop-
STRUCTURE consists of a doubly nested loop. The outer
loop (line 3) iterates over the loops of the target loop nest,
and the inner loop iterates over the dimensions of the arrays.
The loop body matches loops to array dimensions (lines 7
through 11). We consider target loops from outer to inner
because when a dimension is assigned to a loop, the de-
pendences that are carried in that loop do not constrain the
structure of the inner loops (thus set C' is pruned in line 10).



InpuT C : a set of m unconstrained distance vectors, each of size n

OUTPUT p : a loop structure vector of size n (loop i iterates over
array dimension |p;| in the direction of the sign of p;)

FIND-LOOP-STRUCTURE(C')

1 for j —1to n { initialize unassigned mask }

2 b; <« true { bj = true = array dimension j has
not yet been assigned to a loop}
3 for { —1to n { iterate over loops }
4 for j —1to n { iterate over array dimensions }
5 if b,
+1 ifVue C,u; >0
6 d — —1 ifVue C,u; <0and Ju € C,u; <0
0 otherwise
7 if d#0 { can loop i iterate over dimension j? }
8 b; « false
9 pi <« jd
10 C —C—{ueClu; #0}
11 break out of j loop
12 return NoSoLutioN  { no dimension found for loop % }

13 return p

Figure 4: Algorithm to find a legal loop structure vector
given a set of unconstrained distance vectors from intra-
fusible-cluster data dependences.

We consider dimensions from 1 to n so that inner loops will
be matched with higher array dimensions to exploit spatial
locality (assuming row-major allocation), if allowed by the
constraints. If there are e dependences, the running time
of lines 6 and 10 is O(e), so FIND-LOOP-STRUCTURE runs
in O(n%e) time. Because the rank of the arrays, n, is typi-
cally very small and effectively constant [23], the algorithm
is essentially linear, O(e), in the number of dependences.

5 Evaluation

This section evaluates our algorithm for statement fu-
sion and array contraction as implemented in the ZPL
compiler—by comparison to commercial F90/HPF compil-
ers and hand coded C code. Furthermore, we examine the
transformations’ effect on memory use and their relative im-
pact on runtime performance. Finally, we evaluate how their
interaction with communication optimizations effect perfor-
mance.

The benchmark programs we use to evaluate our trans-
formations represent typical parallel array language pro-
grams. The SP application and EP kernel belong to the
NAS parallel benchmark suite [2, 3]. SP solves sets of un-
coupled scalar pentadiagonal systems of equations; it is rep-
resentative of portions of CFD codes. EP generates pairs of
Gaussian random deviates, and it is considered “embarrass-
ingly parallel.” EP characterizes the peak realizable FLOPS
of a parallel machine. Tomcatv is a SPEC CFP95 bench-
mark that performs vectorized mesh generation. The Simple
code solves hydrodynamics and heat conduction equations
by finite difference methods [10]. The Fibro application uses
mathematical models of biological patterns to simulate the
dynamic structure of fibroblasts [11].

We use the Cray T3E, IBM SP-2 and Intel Paragon in our
evaluation. The T3E is a distributed shared memory ma-
chine, while the other two are message passing distributed
memory machines. The T3E we use has 94 nodes, each con-
taining a 450 MHz DEC Alpha 21164, 8 and 96 KB L1 and
L2 data caches, respectively, and 256 MB memory. The SP-2
we use has 144 nodes, each containing a 120 MHz POWER?2
Super Chip (P2SC), 128 KB data cache and 256 MB mem-

B(1:n,1:m) = A(1:n,1:m)+A(1:n,1:m) (1)
C(1:n,1:m) = A(1:n,1:m)*A(1:n,1:m)
B(1:n,1:m) = A(0:n-1,1:m)+A(0:n-1,1:m) (2)
C(1:n,1:m) = A(1:n,1:m)*A(1:n,1:m)
B(1:n,1:m) = A(0:n-1,1:m)+C(0:n-1,1:m) (3)
C(1:n,1:m) = A(1:n,1:m)*A(1:n,1:m)
A(1:n,1:m) = A(1:n,1:m)+A(1:n,1:m) (4)
A(1:n,1:m) = A(0:n-1,1:m)+A(0:n-1,1:m) (5)
B(1:n,1:m) = A(1:n,1:m)+A(1:n,1:m) (6)
C(1:n,1:m) = B(1:n,1:m)

(1:n,1:m) = A(1:n,1:m)+A(1:n,1:m)+C(0:n-1,1:m) (7)
C(1:n,1:m) = B(1:n,1:m)
T1(1:n,1:m) = B(1:n,1:m)
T2(1:n,1:m) = B(1:n,1:m) (8)
A(1:n,1:m) = A(2:n+1,1:m) + T1(2:n+1,1:m) + T2(2:n+1,1:m)

Figure 5: Code fragments to exercise Fortran 90 and HPF
compilers.

ory. The Paragon we use has 18 nodes, each containing a
75MHz Intel i860 processor, 8 KB data cache and 32 MB of
memory.

5.1 Comparison to Commercial Compilers

In order to assess the state of the art, we determine how
aggressively current commercial array language compilers
perform statement fusion and array contraction. We exam-
ine compilers for F90 and HPF (a parallel superset of F90)
because F90 is the array language to which the greatest de-
velopment effort has been devoted.

The developers of commercial compilers do not advertise
the specific optimizations that their products perform, so
we infer their ability to perform statement fusion and array
contraction by studying compiler output for a set of care-
fully selected code fragments, shown in Figure 5. In all cases,
arrays B, T1 and T2 are not live beyond the given code frag-
ments. The fragments in (1), (2) and (3) test a compiler’s
ability to perform statement fusion to exploit temporal lo-
cality. The fragments differ in the data dependences they
contain. The fragments in (4) and (5) test a compiler’s abil-
ity to eliminate compiler temporaries, and (6) and (7) test
the same for user temporaries, in this case array B. Frag-
ment (8) contains two user arrays that can be contracted
if contraction of the compiler array for the third statement
is sacrificed. The fragment tests whether a compiler prop-
erly weighs this tradeoff. Figure 6 summarizes whether each
compiler properly fused (and in some cases contracted) each
code fragment.

First, observe that the PGI and IBM compilers appear
not to perform any statement fusion (i.e., each array state-
ment compiles to a single loop nest). The implementors
hoped to leverage the optimizations performed by the back
end Fortran 77 compiler, which does in fact perform fusion.
Unfortunately, the back end compiler does not perform con-
traction because it was not designed to compile scalarized
array language programs. Most of the compilers success-
fully eliminate compiler temporaries. This is not surpris-
ing given that it requires only a simple local analysis, but
additional experiments (Section 5.4) show that this trans-



compiler user trade-

fusion temps temps off
compiler (1) 12) [(3) |4 | (5) 1) (0| (8)
PGI HPF 2.1 VARV
IBM XLHPF 1.2 VA v
APR XHPF 2.0 v |V VA
Cray F90 2.0.1.0 | v/ | v N RV
ZPL 1.13 viviviviviviv] v

Figure 6: Observed behavior of five array language compil-
ers. A ./ indicates that the compiler produced the proper
fused/contracted code (as described in the running text).

formation alone is not sufficient. Though the APR com-
piler appears to performs fusion for locality and compiler
array contraction, it is unable to fuse loops that carry anti-
dependences.

Finally, notice that the Cray F90 compiler appears to
perform both statement fusion and array contraction, but
there are circumstances under which it fails. The com-
piler is unable to fuse statements where the resulting loop
nest would contain loop carried anti-dependences. As a re-
sult, fusion does not occur in either (3) or (7), in the latter
case inhibiting contraction. We also infer that the compiler
considers contraction of compiler and user temporary ar-
rays separately, since it contracts the compiler temporary in
(8) at the expense of contracting the two user temporaries.
The Cray compiler probably never inserts compiler tempo-
raries when a single statement does not require it, even if
this transformation would enable the contraction of multiple
other arrays. The technique we describe always inserts com-
piler arrays, and it treats compiler and user arrays together
as candidates for contraction. If a single statement does
not truly require a compiler array, our algorithm is guar-
anteed to contract it unless a more favorable contraction is
performed that prevents it.

5.2 Comparison to Hand-coded

A successful array language compiler will produce scalar
code comparable to that of a skilled scalar language pro-
grammer. We now compare code produced by the ZPL
compiler with equivalent programs written in a scalar lan-
guage. Figure 7 summarizes for each of the six benchmarks
the number of static arrays appearing in the compiled code
with and without array contraction. Note that within each
code, nearly all arrays are approximately the same size. We
see that all compiler-generated arrays have been eliminated.
The benefit of this is that a programmer can better compre-
hend the memory use of their code when the compiler only
infrequently introduces arrays. Figure 7 shows a substantial
reduction in the number of static arrays. All the arrays are
eliminated in EP, and in all but one of the other benchmarks
more than half are eliminated.

The final column in Figure 7 gives the number of arrays
that appear in equivalent scalar language codes. The scalar
language codes are all publicly available C or Fortran 77
programs written by third parties. The compiler-generated
code has the same or fewer arrays on all the benchmarks
except SP, which highlights a deficiency in our current algo-
rithm. As we have described contraction, an array is con-
tracted to a scalar or left as is. SP contains a great many
opportunities to contract arrays to lower dimensional ar-
rays. Though the resulting arrays cannot be manipulated
in registers, they conserve memory and make better use of

array language scalar
application w/o contr. w/ contr. | % change lang.
EP 22(0/22) 0(0/0) ~100.0 1
Frac 8(0/8) 1(0/1) -87.5 1
SP 181(18/163) | 56(0/56) -69.1 48
Tomcatv 19(4/15) 7(0/7) -63.2 7
Simple 85(20/65) | 32(0/32) 62.4 32
Fibro 49(0/49) 27(0/27) -44.9 n/a

Figure 7: Static arrays contracted (categorized as com-
piler/user arrays). Fibro was developed in ZPL; so no equiv-
alent scalar version exists.

the cache. Despite this shortcoming, SP still benefits from
a substantial performance improvement, as we see in Sec-
tion 5.4.

5.3 Effect on Memory Usage and Problem Size

While the preceding section uses static array counts to sug-
gest that contraction conserves memory, here we employ dy-
namic data to discover more precisely how memory conser-
vation from array contraction enables larger problems to be
solved in a fixed amount of memory. The degree by which
contraction allows larger problems to be solved is an im-
portant issue for memory bound applications. We assume
the following of a single program on a particular machine:
(i) all arrays are the same size, which we call the problem
size, (ii) all array elements are the same size, and (iii) a
constant amount of memory is available for array allocation
independent of problem size. The degree by which the max-
imum problem size scales due to contraction is the ratio of
the maximum problem size after and before contraction, SS—‘;

Given the above assumptions and that maximum problem
size is inversely proportional to the maximum number of si-
multaneously live arrays, [, the scaling factors becomes ll—z
We subtract 1 and multiply by 100 to convert the maximum

problem size scaling factor to percent change,

C(ly, l.) = 100 x #

a

The first columns of Figure 8 give the dynamic I, and I,
values and the calculated C value for each benchmark.

To confirm the above analysis, we experimentally deter-
mine for each benchmark the largest problem size that fits
on a single node of the Cray T3E and the IBM SP-2. Both
machines have operating system facilities to limit the pro-
cess size, so we found the largest problem size that does not
result in a memory allocation failure. Columns seven and
ten of Figure 8 give the change in problem size, both along
one dimension of the problem domain and in total data vol-
ume. The experimental data shows that these applications
respect the above assumptions, for the C value accurately
predicts the change in problem volume. The one exception
is Frac on the SP-2, which violates assumption (ii). EP,
in which all arrays are eliminated, clearly benefits the most
from contraction because the contracted form uses a con-
stant amount of memory, independent of the problem size.
The other applications’ changes in problem size vary from
10% to 274% along a single dimension or 25% to 1300% in
total volume.



IBM SP-2 maximum problem size Cray T3E maximum problem size
application | I, | la C w/o contr. | w/ contr. | % change (vol) | w/o contr. | w/ contr. | % change (vol)
EP 22 | 0 ) 219 oo oo (00) 216 ) o0(00)
Frac 8 1 | 700.0 15312 57302 274.3(1300.7) 1409 39877 183.0(700.7)
Tomcatv 19 | 7 | 171.4 9292 15302 64.7(171.2) 12932 21282 64.6(170.9)
Fibro 49 | 27 | 81.5 5832 7902 35.5(83.6) 5722 7742 35.3(83.1)
SP 23 | 17 | 35.3 743 81% 9.5(31.1) 91° 1013 11.0(37.7)
Simple 40 | 32 | 25.0 6402 7152 11.7(24.8) 6232 7022 12.7(27.0)

Figure 8: Effect of contraction on maximum achievable problem size on single IBM SP-2 and Cray T3E nodes.

5.4 Run-time Performance

This section considers the runtime performance impact of
array contraction and statement fusion. Though we discuss
only the relative effect of these transformations, other stud-
ies have shown that the ZPL compiler produces code that
performs within 10% of hand coded C plus message passing
and generally better than HPF [8, 17, 18, 20].

In order to better understand the performance contribu-
tions of fusion and contraction, we measure execution time
using several incrementally different optimization strategies.

baseline : no fusion or contraction transformations are per-
formed

f1 : fusion is performed to enable the contraction of com-
piler arrays, but contraction is not performed

c1 : fusion is performed to enable the contraction of com-
piler arrays, and contraction is performed

f2 : cl plus fusion is performed to enable contraction of user
arrays, but the contraction is not performed

18 : ¢l plus fusion is performed to improve locality (as de-
scribed in Section 4)

c¢2 : cl plus fusion is performed to enable contraction of
user arrays, and contraction is performed

c2+f8 : ¢2 plus fusion is performed to improve locality (as
described in Section 4)

c24+f4 : c2+f3 plus all legal fusion (by a greedy pair-wise
algorithm)

Figures 9, 10 and 11 show the percent improvement of
each transformation over baseline for each benchmark for a
varying number of processors on the Cray T3E, IBM SP-2
and Intel Paragon. Execution times are the best of three
trials on the T3E and Paragon and of at least six trials on
the SP-2, a machine that suffers from great performance
variance from trial to trial. So that we may neutralize the
effect of communication masking all other performance char-
acteristics on large processor sets, we scale the problem sizes
with the number of processors (i.e., the amount of data per
processor remains constant as the number of processors in-
creases).

These graphs demonstrate that performing contraction
on both compiler and user arrays in array languages is es-
sential. The predominant characteristic of the graphs is that
¢2 dominates the other transformations. The elimination of
a large portion of the compiler and user arrays by contrac-
tion drastically improves temporal locality, always resulting
in a significant performance boost (up to 400% on one appli-
cation). Fibro on the SP-2 does not benefit from contraction
for large number of processors because of interactions with

communications optimizations discussed in the next section.
In the larger applications, contraction of only compiler ar-
rays, cl, provides a substantive performance enhancement
(up to 30%), but it is only a fraction of the potential con-
traction benefit. The smaller benchmarks, such as Fibro,
EP and Frac, require no compiler arrays, so they do not
benefit from ff and c1. Clearly, transformation ¢! does not
sufficiently address the problem of unnecessary temporary
arrays in array languages.

For a number of programs, transformations f2 and f3 pro-
duce noticeable slowdown. It appears that they increase ca-
pacity and conflict misses in programs that are particularly
sensitive to memory system performance, such as Tomcatv
and Fibro. Transformation c2+f/ generally results in no
improvement beyond ¢2+f3, and frequently produces signif-
icantly less improvement versus baseline (3% versus 16% for
Fibro on the T3E). SP is the one exception, because arbi-
trary fusion enhances spatial locality of independent state-
ments. Our fusion algorithm instead fuses dependent state-
ments to enhance temporal locality. We leave to future work
the extension of our algorithm for spatial locality sensitivity.
The lesson is that fusion should not be performed arbitrarily
in an array language.

As the number of processors, p, varies, certain trends
become evident. The improvement due to contraction in
EP and Frac is effectively independent of the number of
processors because these codes scale nearly perfectly with
p. The improvement due to fusion and contraction grows
with p for some programs, such as Simple and Tomcatv on
the SP-2, when the transformations improve portions of the
program that make up a larger fraction of total execution
time as p grows (i.e., the transformations improve portions
of the code that do not scale well with p).

The performance improvement for a transformation de-
creases with p when the transformation improves a portion
of the code that makes up a smaller fraction of total exe-
cution time as p increase. This happens when some other
segment of the code is not scaling well and consumes a larger
fraction of total execution time as p increases. SP exhibits
this behavior because only potions of the code that scale
well benefit from the transformations. When both scaling
and non-scaling segments of a code benefit from the trans-
formations, machines characteristics (e.g., the relative costs
of cache misses, communication and floating point opera-
tions) dictate the trends. This is exemplified by Tomcatv,
which shows level, increasing and decreasing trends on the
three machines in our experiments.

5.5 Interaction with Communication Optimization

In this section, we demonstrate that statement fusion inter-
acts with communication optimizations and for this reason
should be performed at the array level. Some optimizations
cannot be performed practically at the scalar level because
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they interact with other transformations that can only oc-
cur at the array level. If an optimization that interacts with
array level transformations is relegated to a scalar compiler,
either the array level transformations must understand and
reason about the optimization behavior of the scalar com-
piler or vice versa. It is unlikely that scalar compilers can un-
derstand the optimization strategy of all the compilers that
compile to it, so the array compiler must consider scalar
optimizations when performing array transformations, ef-
fectively moving the scalar transformations into the array
compiler.

To achieve efficient parallel execution, compilers must
often perform aggressive communication optimizations [9],
such as redundancy elimination, message combining and
pipelining. In some cases, these communication optimiza-
tions are at odds with fusion for contraction. For example,
pipelining hides latency by separating the send and receive
portions of communication with computation, but fusion
may collect into a single loop some of the statements that
could be used to hide latency, potentially disabling overlap.
The experiments presented thus far resolve this conflict by
favoring fusion, i.e., fusion is never prevented by communi-
cation optimizations. We consider an alternative strategy in
which communication optimizations are favored, i.e., fusion
cannot be performed if it reduces the benefit of communi-
cation optimization. Message vectorization never conflicts
with fusion, so it is always performed.

As the amount of fusion increases, the potential for con-
flict with communication optimization grows. The preceding
section demonstrates that c2+f4 is not a valuable transfor-
mation, so we use the c¢2+f3 transformation. On the T3E,
when favoring communication optimizations over fusion for
contraction, Simple, Tomcatv, SP and Fibro suffer a slow-
down of 25.4%, 22.7%, 9.6% and 5.1%, respectively. On the
SP-2, they slowdown by 31.8%, 66.5%, 10.5% and -10.6%,
respectively. On the Paragon, they slowdown by 7.5%, 8.5%,
5.0% and 0.9%. The first three programs slowdown sig-
nificantly because the communication optimizations disable
a large number of array contraction opportunities without
producing comparable communication benefits. Only one
fusion for locality opportunity and no contraction opportu-
nities are lost by favoring communication optimizations in
Fibro. It slows down little and in one case it speeds up,
because of the additional communication optimization. EP
and Frac do not slowdown because they are small codes
that do not benefit from communication optimization, with
or without fusion.

We have not demonstrated that favoring contraction is
optimal, but we have shown that if a choice is to be made,
fusion for contraction should be favored. This suggests that
it would be very difficult to perform communication opti-
mizations if fusion and contraction occur after scalarization.
The communication transformations would have to under-
stand contraction well enough to optimize without disabling
it, since it is unlikely that the scalar compiler could reason
about communication primitives once they are scalarized.
The Fibro data suggests that there are delicate tradeoffs
that only an integrated approach to fusion and communica-
tion optimization can address, which would further compli-
cate performing fusion at the scalar level. Furthermore, we
expect to find that integration will become even more impor-
tant on machines with low cost synchronization in hardware
(e.g., SGI Origin, Sun E10000). Thus, these results sup-
port our claim that these optimizations for array languages
should be performed at the array level.

6 Related Work

The problem of optimizing array languages at the array level
has recently received attention by others. Hwang et al. de-
scribe a scheme for array operation synthesis [14]. Multi-
ple instances of element-wise F90 array operations such as
MERGE, CSHIFT, and TRANSPOSE are combined into a
single operation, reducing data movement and intermediate
storage. Their work does not address the inter-statement
intermediate array problem except to substitute an inter-
mediate array’s use by its definition. This statement merge
optimization [15] enables more operation synthesis, but it
is not always possible, and it potentially introduces redun-
dant computation and increases overall program execution
time. Roth and Kennedy have independently developed a
similar array based data dependence representation for F90,
and they describe its use in scalarization [21]. They do not
address the fusion for contraction problem.

Loop fusion in the context of scalar programming lan-
guages such as Fortran 77 is well understood [26]. Though
most work only considers pairwise fusion, some research ad-
dresses collective loop fusion, as we do. Sarkar and Gao [22]
transform loop nests by loop reversal, interchange and fusion
to enable array contraction. They target multiprocessors
and exploit pipelining by executing producer and consumer
loops on different processors, so they are free to ignore all
but flow dependences. Because we instead distribute itera-
tion spaces, preservation of all types of dependences is crit-
ical to our solution. Gao et al. [12] describe another tech-
nique for loop fusion based on a maxflow algorithm. The
technique requires its input loop nests to be identically con-
trolled, and it does not perform loop reversal nor interchange
to enable additional fusion. Furthermore, it is unclear what
the algorithm does when a potentially contractible array is
consumed by multiple loop nests. Our collective scheme
performs reversal, interchange and fusion simultaneously to
enable contraction.

Carr and Kennedy recognized the importance of keeping
array values in scalars through scalar replacement [4], which
is similar to array contraction in that some array references
become scalar references, but array allocation is not elimi-
nated (i.e., memory usage is not reduced). Their focus is in
recognizing the opportunity in a scalar loop nest, while ours
is in enabling the opportunity in an array language compiler
via statement fusion.

Many techniques for improving locality by loop transfor-
mations have appeared in the literature [5, 16, 19, 25]. Much
of this work addresses the issue of managing the conflicting
goals of improving locality without sacrificing parallelism.
This is a far less important issue in an array language com-
piler, for the compiler can assume that only the loops that
it generates need to be parallelized; user loops can remain
sequential. In this paper we have assumed that all dimen-
sions of all arrays are distributed and are a potential source
of parallelism.

7 Conclusion

This paper has shown how statement fusion can be per-
formed at the array level to enable array contraction and
to enhance locality. We have introduced, for array state-
ments, a normal form and data dependence machinery that
leverages array language properties. We have empirically
demonstrated that our array-level transformations produce
substantial performance improvements, both in execution
time and in memory usage. We have found that the common



technique of only contracting compiler arrays is insufficient
for achieving high performance. Finally, we have shown that
fusion and contraction should be performed at the array
level, i.e., before scalarization, because they must precede
or be integrated with communication optimizations for best
performance.
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