
The Implementation and Evaluation of Fusion and Contraction inArray Languages�E Christopher Lewis Calvin Liny Lawrence SnyderUniversity of Washington, Seattle, WA 98195-2350 USAyUniversity of Texas, Austin, TX 78712 USAfechris,snyderg@cs.washington.edu, lin@cs.utexas.eduAbstractArray languages such as Fortran 90, HPF and ZPL havemany bene�ts in simplifying array-based computations andexpressing data parallelism. However, they can su�er largeperformance penalties because they introduce intermediatearrays|both at the source level and during the compila-tion process|which increase memory usage and pollute thecache. Most compilers address this problem by simply scalar-izing the array language and relying on a scalar languagecompiler to perform loop fusion and array contraction. Weinstead show that there are advantages to performing a formof loop fusion and array contraction at the array level. Thispaper describes this approach and explains its advantages.Experimental results show that our scheme typically yieldsruntime improvements of greater than 20% and sometimesup to 400%. In addition, it yields superior memory use whencompared against commercial compilers and exhibits com-parable memory use when compared with scalar languages.We also explore the interaction between these transforma-tions and communication optimizations.1 IntroductionArray languages such as Fortran 90 (F90) [1], High Per-formance Fortran (HPF) [13] and ZPL [24] have becomeimportant vehicles for expressing data parallelism. Thoughthey simplify the speci�cation of array-based calculations,they also present a potential problem: Large temporary ar-rays may need to be introduced, either by the programmeror by the compiler. For example, the F90 statements inFigure 1(a) use temporary array R to cache a computation,while the Fortran 77 equivalent in Figure 1(b) uses only thescalar variable s, which can be viewed as a contracted formof the full array R. Similarly, there are cases where an arraylanguage compiler will insert temporary arrays to preservearray language semantics. In both cases, these array tem-poraries increase memory usage, degrade performance bypolluting the cache, and therefore impede the acceptance of�This research was supported in part by DARPA Grant E30602-97-1-0152 and NSF Grant CCR-9710284.

array languages, despite their other advantages.There are two ways to solve this problem. The �rst isto scalarize the array language source (i.e., produce scalarloop nests for each array statement) and rely on a scalarlanguage compiler to remove the array temporaries using itsexisting scalar level optimizations. Speci�cally, the scalarcompiler must fuse loops to enable contraction, as shownin Figure 1(b). The second approach is to optimize at thearray level prior to scalarization (i.e., perform analyses andtransformations on array statements directly). Since fusionand contraction are mature and well understood transforma-tions, the �rst approach appears a natural choice because itsimpli�es the array language compilation process and lever-ages existing compiler technology. However, we believe thatthe �rst approach is inferior for several reasons. First, thereality is that scalar languages do not require programmersto introduce large temporary arrays, so scalar language com-pilers do not bother to perform costly transformations thatwill not bene�t typical human generated code. Second, re-moving array temporaries at the scalar level solves the prob-lem at a greater conceptual distance from the source of theproblem and at a greater cost. Most importantly, it is im-practical to implement an integrated optimization strategywhen some optimizations (e.g., communication pipelining)are performed at the array level while others (e.g., arraycontraction) are subsequently performed at the scalar level.Our work supports earlier claims that there are perfor-mance bene�ts to performing analyses and transformationsat the array level [6, 21]. In particular, this paper makes thefollowing contributions. We explain how fusion and contrac-tion can be performed at the array level. We refer to theformer as statement fusion because array statements, notloops, are the fused entities. We provide empirical evidencethat our approach is superior to those used by several com-mercial compilers. We measure the bene�ts of various arraylevel fusion and contraction strategies, both in terms of ex-ecution time and memory usage, and we �nd that the com-mon practice of contracting only compiler introduced arraysis insu�cient. In addition, we show that our array levelapproach produces code that is comparable to that of hand-written scalar programs. Finally, we show that performancesu�ers when compilers do not use an integrated strategy foroptimizing communication and performing fusion.This paper is organized as follows. Sections 2 and 3de�ne the representations we use and the problem we solve.Section 4 describes our solution to the problem. Section 5evaluates the implementation of statement fusion and arraycontraction in the ZPL compiler, and the �nal two sectionspresent related work and give conclusions.



R(i,:)=AA(i,:)*D(i-1,:)D(i,:)=1.0/(DD(i,:)-AA(i-1,:)*R(i,:)Rx(i,:)=Rx(i,:)-Rx(i-1,:)*R(i,:)Ry(i,:)=Ry(i,:)-Ry(i-1,:)*R(i,:)(a) do j=1,ns = AA(i,j)*D(i-1,j)D(i,j)=1/(DD(i,j)-AA(i-1,j)*sRx(i,j)=Rx(i,j)-Rx(i-1,j)*sRy(i,j)=Ry(i,j)-Ry(i-1,j)*senddo (b)Figure 1: Illustration of unnecessary array allocation (R) inan array language using a code fragment from the tridiago-nal systems solver component of the SPEC CFP95 Tomcatvbenchmark.2 RepresentationsThis section describes our array statement normal form andarray level dependence representation. The representationwe describe will be used in de�ning the fusion for contractionproblem and in implementing its solution.2.1 Normalized Array StatementsWe de�ne a normalized array statement to be an element-wise array operation that has the following properties: (i) thesame array (or aliasing arrays) may not be both read andwritten, (ii) the statement contains arrays of a commonrank, and (iii) the extent of the array statement's com-putation is de�ned by an index set, called a region, and allarray references are speci�ed as constant o�sets from thisindex set. The �nal property implies that for each array ref-erence, the elements of its subscript are separable (i.e., anindex variable may appear in only a single element of a sub-script) and a particular index variable appears in the sameposition of all subscripts. A normalized array statement hasthe following form.[R] f(A1@d1, A2@d2,: : : , As@ds)The indices of array Ai involved in the computation arethose of the region R=[1..n1,1..n2,: : : ,1..nr ] o�set by theinteger r-tuple di=(di1 ,: : :, dir ), i.e., [1+di1 ..n1+di1 ,. . . ,1+dir ..nr+dir ]. Figures 2(a) and (b) contain F90 arraystatements and their normal form equivalents (note thatA � A@0, where 0 is the null or zero vector). Though onlynormalized statements can participate in fusion and contrac-tion, unnormalized statements do not prevent independentnormalized statements from being optimized.This normal form is an appropriate representation forarray statements because the data volume of each term ina single array statement is the same (i.e., they are con-formable). Conformability permits most F90 and ZPL arraystatements to be normalized, either directly or by the in-troduction of compiler temporaries that are often later con-tracted. Furthermore, the normal form serves as an e�ectiveinternal representation when compiling for parallel machinesbecause it makes the alignment of arrays explicit. All arrayreferences are perfectly aligned except for vector o�sets, sonormalized statements will compile to highly e�cient paral-lel code [7]. Compiler generated communication primitivesneed not be normalized because they are not candidates forfusion or contraction. Not coincidentally, the normal formclosely resembles the core of the ZPL source language.

1 A(1:m,1:n) = B(0:m-1,1:n)2 C(1:m,1:n) = A(1:m,0:n-1)3 B(1:m,1:n) = A(0:m-1,2:n+1)(a) 1 [1..m,1..n] A := B@(-1,0);2 [1..m,1..n] C := A@(0,-1);3 [1..m,1..n] B := A@(-1,1);(b)do j = n,1,-1do i = m,1,-1A(i,j) = B(i-1,j)B(i,j) = A(i-1,j+1)enddoenddodo i = 1,ndo j = 1,mC(i,j) = A(i,j-1)enddoenddo (c) 3
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  (B,(-1,0),anti)}(d)Figure 2: Four di�erent representations of the same arraycomputation: (a) Fortran 90, (b) normalized array state-ments, (c) Fortran 77, and (d) array statement dependencegraph.2.2 The Array Statement Dependence GraphIn this section, we review the concept of data dependence,and we modify existing mechanisms to represent depen-dences between normalized array statements. Data depen-dences [26] represent ordering constraints on statements ina program. A 
ow or true dependence requires that a vari-able assignment precede a read to the same variable, and ananti-dependence requires the reverse. An output dependencerequires that one assignment to a variable precede anotherassignment to the same variable. Transformations that re-order dependent statements (i.e., move the dependence tar-get before its source) are illegal because they violate thedependence and do not preserve correctness.Data dependence is also used to represent ordering con-straints on iterations in the iteration space of a loop nest.The iteration space associated with a loop nest has a dimen-sion for each loop in the nest. Loop transformations suchas loop interchange or loop reversal are only legal if theypreserve the data dependences in the iteration space. Dis-tance vectors serve as a static analysis tool to represent datadependences concisely in an iteration space.De�nition 1 A distance vector is an integer n-tuple, d =(d1; d2; : : : ; dn), representing a dependence between the iter-ations of a rank n iteration space, where the source of thedependence precedes the target by di iterations in loop i (1is the outermost), for 1 � i � n. Note that a negative orzero value implies that the target precedes the source or thatthey are in the same iteration, respectively.A distance vector is lexicographically nonnegative if it isa null vector or if its leftmost non-zero element is positive.A lexicographically nonnegative distance vector is said to belegal because the dependence source precedes the target inthe loop that carries the dependence. If a distance vectoris not lexicographically nonnegative, then the target of thedependence precedes the source in the loop that carries thedependence, which is clearly illegal.Distance vectors are inappropriate for use in array levelcompilation because they are derived from loop nests, whichare not created until after our transformations have been



performed. As a result, we introduce a variant of the dis-tance vector, called the unconstrained distance vector, torepresent array level data dependences between normalizedarray statements.De�nition 2 An unconstrained distance vector is an in-teger n-tuple, u = (u1; u2; : : : ; un), representing a depen-dence between two normalized n-dimensional array state-ments, where the source of the dependence precedes the targetby ui iterations of the loop that iterates over dimension i (ifboth statements appear in the same loop nest).Unconstrained distance vectors are constructed by subtract-ing the dependence's target o�set vector from its source o�-set. For example, the unconstrained distance vectors thatarise from the dependences in the code in Figure 2(b) are(0; 0)�(0;�1) = (0; 1) and (0; 0)�(�1; 1) = (1;�1) for arrayA and (�1; 0)�(0; 0) = (�1; 0) for array B. The lexicograph-ical nonnegativity of an unconstrained distance vector hasno bearing on the legality of the dependence it represents.Because scalarization of a normalized statement gener-ates a single loop to iterate over the same dimension of allarrays in its body, we can characterize dependences by di-mensions of the array rather than dimensions of the iterationspace. Thus ui is the distance of the dependence along ar-ray dimension i. Unconstrained distance vectors are moreabstract than traditional (constrained) distance vectors be-cause they separate loop structure from dependence repre-sentation. Though unconstrained distance vectors are notfully general, they can represent any dependence that ap-pears in our normal form.We represent code using the array statement dependencegraph.De�nition 3 An array statement dependence graph(ASDG), G = (V;E), is a labeled, acyclic, directedgraph, where vertices, vi, represent statements, edges repre-sent data dependences between statements, and each edge,(v1; v2) 2 E, is labeled, l(v1; v2), with a set of (vari-able name, unconstrained distance vector, dependence type2 f
ow, anti, outputg) tuples.An ASDG is guaranteed to not contain cycles becauseit represents a single basic block at the array statementlevel. An edge from v1 to v2, (v1; v2) 2 E, in an ASDGindicates that the target statement v2 is dependent on thesource statement v1. The label on each edge in the ASDGdescribes the dependences the edge represents by namingthe variables that induce the dependences and the associ-ated unconstrained distance vectors and dependence types.Figure 2(d) contains the ASDG that corresponds to the nor-malized array statements in 2(b).If after scalarization, the source and target of a depen-dence appear in the single loop nest, a conventional (con-strained) distance vector may be constructed from an uncon-strained one given a description of the loop nest structure.De�nition 4 A loop structure vector is an integer n-tuple,p = (p1; p2; : : : ; pn), that describes the dimension and direc-tion of each loop in an n-deep loop nest. Loop i (1 is theoutermost loop in the loop nest) iterates over dimension jpijin the direction of the sign of pi, positive denoting increas-ing.A loop structure vector is apermutation of (�1;�2; : : : ;�n). The loop structure vec-tor that describes the loop nests in Figure 2(c) are (�2;�1)and (1; 2). In the �rst nest, the outer loop iterates over the

second dimension and the inner loop iterates over the �rstdimension, both in a decreasing direction.A constrained distance vector, d = (d1; d2; : : : ; dn), isconstructed from an unconstrained one, u, and a loop struc-ture vector, p, by letting di = pijpijujpij, for 1 � i � n.Consider array statements 1 and 3 in Figure 2(b). Ifp = (�2;�1), the unconstrained distance vectors (�1; 0)and (1;�1) become (0; 1) and (1;�1), respectively, whenconstrained. The constrained distance vectors are lexico-graphically nonnegative, so the dependences of the code inFigure 2(b) are preserved by the �rst loop nest in 2(c) result-ing from loop structure vector p. There are no constraintson the structure of the second loop nest because it does notcontain statements that depend on each other.A fusion partition describes a particular fusing of thestatements in an ASDG.1De�nition 5 A fusion partition, P = (P1; P2; : : : ; Pl), ofan ASDG, G = (V;E), is a partitioning of the nodes ofG into l disjoint sets, P1; P2; : : : ; Pl, called fusible clusterssuch that the following conditions hold: (i) all statementsin a single cluster operate under the same region, (ii) allunconstrained distance vectors on intra-fusible-cluster 
owdependences are null vectors (i.e., 8Pi and v1; v2 2 Pi, if(x; u;
ow) 2 l(v1; v2) then u is a null vector), (iii) thereare no inter-fusible-cluster cycles, and (iv) a loop structurevector exists for each fusible cluster that preserves all intra-fusible-cluster dependences.Upon scalarization, all the statements in a fusible clusterare implemented with a single loop nest. The statementsin each loop nest and the loop nests themselves are orderedby a topological sort using intra- and inter-fusible clusterdependence edges, respectively. The �rst condition aboveensures that all the statements in a single cluster have thesame (i.e., conformable) loop bounds. The second conditionensures that a loop carried 
ow dependence will not inhibitparallelism. The �nal two conditions ensure that inter- andintra-fusible-cluster dependences are preserved, respectively.An algorithm to decide the �nal condition is described indetail in Section 4.2. The trivial fusion partition of an ASDGis one in which there is exactly one statement in each fusiblecluster.Given a particular fusion partition we can decide forwhat arrays contraction has been enabled.De�nition 6 Given a fusion partition,P = (P1; P2; : : : ; Pl), of an ASDG, G = (V;E), an array, x,is contractible if the following conditions hold: (i) the sourceand target of all dependences due to x appear in the samefusible cluster (i.e., 8(v1; v2) 2 E, if (x; u; t) 2 l(v1; v2), thenv1 2 Pi and v2 2 Pi for some i, 1 � i � l), and (ii) the un-constrained distance vectors of all data dependences due tox are null vectors (i.e., 8(v1; v2) 2 E, if (x; u; t) 2 l(v1; v2),then u is a null vector).These conditions ensure that all references to x will appearin a single loop nest upon scalarization, and there will beno loop carried dependences due to x. The latter conditionmay be relaxed when the dependence is along a dimensionof the array that is not distributed [4], but here we assumethat all dimensions are distributed.1This terminology is borrowed from Gao et al. [12], who considereda similar problem. See Section 6.



3 ProblemThere are two reasons to perform statement fusion: to en-able the elimination of arrays by contraction and to improveutilization of the data cache by exploiting inter-statementreuse. For the �rst goal, we seek a fusion partition, P , foran ASDG, G, that enables the maximum elimination of ar-ray element references by contraction. The number of arrayelement references eliminated by the contraction of array x(called reference weight, w(x;G)) is a function of the num-ber of times it is referenced at the array level and the regionsizes over which these references occur. We call the sum ofthe reference weights of all contracted arrays the contrac-tion bene�t of a fusion partition. For the second goal, weseek a fusion partition that maximizes the number of arrayswithout inter-fusible-cluster dependences. The intuition isthat while intra-cluster dependences are potential sourcesof cache reuse, we must be careful not to pollute the cachewith the increased references that come with excessive fu-sion. When all references to an array appear in a singleloop nest, all other loop nests are spared the cache burdenof references to the array. Both problems are provably NP-complete, so we present approximate solutions in the nextsection.4 SolutionThis section presents algorithms for performing statementfusion to enable contraction and exploit locality. Becauseeliminating entire arrays conserves memory and can resultin enormous performance improvements, we perform fusionfor contraction �rst. We also describe the details of scalar-ization.4.1 Statement FusionOur algorithm to fuse statements to enable array contractionappears in Figure 3. It takes as input an ASDG, G, and itreturns a fusion partition P = (P1; P2; : : : ; Pl) containing lclusters. Initially, P is the trivial fusion partition (line 1).The algorithm considers each variable,2 xi, that appearsin the input array statement dependence graph in order ofdecreasing weight, w(xi; G). As a result, arrays that havepotentially the largest single impact on the total contractionbene�t are considered �rst. In line 5, set c is assigned allthe fusible clusters that contain references to variable xi.The fusion of all the statements in the fusible clusters inc might introduce inter-fusible-cluster cycles, so c becomesthe union of itself and the fusible clusters that are on inter-fusible-cluster cycles using the Grow function (line 6). Thisguarantees that there will be no dependence cycles, for theyprevent fusion. If variable xi is contractible and a fusionpartition is produced by combining all the fusible clusters inc (by De�nitions 6 and 5), fusion is performed. The unionof all fusible clusters in c is taken and assigned into the Pkwith the smallest value k in c. The counter l is decrementedto indicate that there are fewer clusters.The Fusion-For-Contraction algorithm uses threeauxiliary routines. Function Grow(c; G) returns all fusibleclusters not in c that are reachable by a dependence pathfrom a cluster in c and that have a dependence path to acluster in c. These are the fusible clusters that will be on2For simplicity, we describe the algorithm as operating on arrayvariables. In reality, it operates on array variable de�nitions, so thatdi�erent references to the same array in disjoint live ranges can beoptimized separately.

Input G = (V;E) : an array statement dependence graphOutput P = (P1; P2; : : : ; Pl) : a fusion partition of GFusion-For-Contraction(G)1 P  trivial partition of G2 l jV j3 x array vars in G sorted by decreasing weight w4 for i  1 to jxj f consider var xi for contraction g5 c  fPj jPj contains a reference to variable xig6 c  c [ Grow(c;G)7 if Contractible?(xi; c;G) andFusion-Partition?(c;G)8 k  smallest j for Pj 2 c9 Pk  [z2cz10 l  l� (jcj � 1)11 return PFigure 3: Algorithm to �nd a fusion partition that enablescontraction in an ASDG.an inter-fusible-cluster dependence cycle if the clusters in care fused. This function's running time is O(e), where e isthe number of edges in G. The Fusion-Partition?(c; G)and Contractible?(x; c;G) predicates test the conditionsin De�nitions 5 and 6, respectively. They both run in O(e)time. The former function can ignore inter-cluster cyclesbecause line 6 guarantees they will not exist. It also callsFind-Loop-Structure (described in the next section) todecide whether condition (iv) of De�nition 5 is met. If thereare r arrays in G, the total running time for Fusion-For-Contraction is O(re).The algorithm to perform fusion for locality enhance-ment is identical to that in Figure 3, except that the Con-tractible? predicate in line 7 is eliminated. We try tofuse all statements that reference the array that will havethe greatest single locality bene�t, which is analogous to thecontraction bene�t. Next, we will describe the process bywhich an ASDG is scalarized given a fusion partition.4.2 ScalarizationScalarization generates a loop nest for each fusible clusterin a fusion partition, where the loop nests and the state-ments in the loop nests are ordered by a topological sortusing inter- and intra-fusible-cluster dependences, respec-tively. The only work remaining is deciding the structureof each loop nest, i.e., the direction in which and dimensionover which each loop iterates. This information is encodedin a loop structure vector (De�nition 4) for each fusible clus-ter. Intra-cluster dependences constrain the structure of theloop nest that will implement its statements (i.e., the loopnest must preserve these dependences). When the depen-dences do not fully constrain the structure of the loop nest,we will favor the loop structure that best exploits spatiallocality.The algorithm to �nd a loop structure vector given a setof unconstrained distance vectors from intra-fusible-clusterarray-level dependences appears in Figure 4. Find-Loop-Structure consists of a doubly nested loop. The outerloop (line 3) iterates over the loops of the target loop nest,and the inner loop iterates over the dimensions of the arrays.The loop body matches loops to array dimensions (lines 7through 11). We consider target loops from outer to innerbecause when a dimension is assigned to a loop, the de-pendences that are carried in that loop do not constrain thestructure of the inner loops (thus set C is pruned in line 10).



Input C : a set of m unconstrained distance vectors, each of size nOutput p : a loop structure vector of size n (loop i iterates overarray dimension jpij in the direction of the sign of pi)Find-Loop-Structure(C)1 for j  1 to n f initialize unassigned mask g2 bj  true f bj = true ) array dimension j hasnot yet been assigned to a loopg3 for i  1 to n f iterate over loops g4 for j  1 to n f iterate over array dimensions g5 if bj6 d � +1 if 8u 2 C; uj � 0�1 if 8u 2 C; uj � 0 and 9u 2 C; uj < 00 otherwise7 if d 6= 0 f can loop i iterate over dimension j? g8 bj  false9 pi  jd10 C  C � fu 2 Cjuj 6= 0g11 break out of j loop12 return NoSolution f no dimension found for loop i g13 return pFigure 4: Algorithm to �nd a legal loop structure vectorgiven a set of unconstrained distance vectors from intra-fusible-cluster data dependences.We consider dimensions from 1 to n so that inner loops willbe matched with higher array dimensions to exploit spatiallocality (assuming row-major allocation), if allowed by theconstraints. If there are e dependences, the running timeof lines 6 and 10 is O(e), so Find-Loop-Structure runsin O(n2e) time. Because the rank of the arrays, n, is typi-cally very small and e�ectively constant [23], the algorithmis essentially linear, O(e), in the number of dependences.5 EvaluationThis section evaluates our algorithm for statement fu-sion and array contraction|as implemented in the ZPLcompiler|by comparison to commercial F90/HPF compil-ers and hand coded C code. Furthermore, we examine thetransformations' e�ect on memory use and their relative im-pact on runtime performance. Finally, we evaluate how theirinteraction with communication optimizations e�ect perfor-mance.The benchmark programs we use to evaluate our trans-formations represent typical parallel array language pro-grams. The SP application and EP kernel belong to theNAS parallel benchmark suite [2, 3]. SP solves sets of un-coupled scalar pentadiagonal systems of equations; it is rep-resentative of portions of CFD codes. EP generates pairs ofGaussian random deviates, and it is considered \embarrass-ingly parallel." EP characterizes the peak realizable FLOPSof a parallel machine. Tomcatv is a SPEC CFP95 bench-mark that performs vectorized mesh generation. The Simplecode solves hydrodynamics and heat conduction equationsby �nite di�erence methods [10]. The Fibro application usesmathematical models of biological patterns to simulate thedynamic structure of �broblasts [11].We use the Cray T3E, IBM SP-2 and Intel Paragon in ourevaluation. The T3E is a distributed shared memory ma-chine, while the other two are message passing distributedmemory machines. The T3E we use has 94 nodes, each con-taining a 450 MHz DEC Alpha 21164, 8 and 96 KB L1 andL2 data caches, respectively, and 256 MB memory. The SP-2we use has 144 nodes, each containing a 120 MHz POWER2Super Chip (P2SC), 128 KB data cache and 256 MB mem-

B(1:n,1:m) = A(1:n,1:m)+A(1:n,1:m) (1)C(1:n,1:m) = A(1:n,1:m)*A(1:n,1:m)B(1:n,1:m) = A(0:n-1,1:m)+A(0:n-1,1:m) (2)C(1:n,1:m) = A(1:n,1:m)*A(1:n,1:m)B(1:n,1:m) = A(0:n-1,1:m)+C(0:n-1,1:m) (3)C(1:n,1:m) = A(1:n,1:m)*A(1:n,1:m)A(1:n,1:m) = A(1:n,1:m)+A(1:n,1:m) (4)A(1:n,1:m) = A(0:n-1,1:m)+A(0:n-1,1:m) (5)B(1:n,1:m) = A(1:n,1:m)+A(1:n,1:m) (6)C(1:n,1:m) = B(1:n,1:m)B(1:n,1:m) = A(1:n,1:m)+A(1:n,1:m)+C(0:n-1,1:m) (7)C(1:n,1:m) = B(1:n,1:m)T1(1:n,1:m) = B(1:n,1:m)T2(1:n,1:m) = B(1:n,1:m) (8)A(1:n,1:m) = A(2:n+1,1:m) + T1(2:n+1,1:m) + T2(2:n+1,1:m)Figure 5: Code fragments to exercise Fortran 90 and HPFcompilers.ory. The Paragon we use has 18 nodes, each containing a75MHz Intel i860 processor, 8 KB data cache and 32 MB ofmemory.5.1 Comparison to Commercial CompilersIn order to assess the state of the art, we determine howaggressively current commercial array language compilersperform statement fusion and array contraction. We exam-ine compilers for F90 and HPF (a parallel superset of F90)because F90 is the array language to which the greatest de-velopment e�ort has been devoted.The developers of commercial compilers do not advertisethe speci�c optimizations that their products perform, sowe infer their ability to perform statement fusion and arraycontraction by studying compiler output for a set of care-fully selected code fragments, shown in Figure 5. In all cases,arrays B, T1 and T2 are not live beyond the given code frag-ments. The fragments in (1), (2) and (3) test a compiler'sability to perform statement fusion to exploit temporal lo-cality. The fragments di�er in the data dependences theycontain. The fragments in (4) and (5) test a compiler's abil-ity to eliminate compiler temporaries, and (6) and (7) testthe same for user temporaries, in this case array B. Frag-ment (8) contains two user arrays that can be contractedif contraction of the compiler array for the third statementis sacri�ced. The fragment tests whether a compiler prop-erly weighs this tradeo�. Figure 6 summarizes whether eachcompiler properly fused (and in some cases contracted) eachcode fragment.First, observe that the PGI and IBM compilers appearnot to perform any statement fusion (i.e., each array state-ment compiles to a single loop nest). The implementorshoped to leverage the optimizations performed by the backend Fortran 77 compiler, which does in fact perform fusion.Unfortunately, the back end compiler does not perform con-traction because it was not designed to compile scalarizedarray language programs. Most of the compilers success-fully eliminate compiler temporaries. This is not surpris-ing given that it requires only a simple local analysis, butadditional experiments (Section 5.4) show that this trans-



compiler user trade-fusion temps temps o�compiler (1) (2) (3) (4) (5) (6) (7) (8)PGI HPF 2.1 p pIBM XLHPF 1.2 p pAPR XHPF 2.0 p p pCray F90 2.0.1.0 p p p p pZPL 1.13 p p p p p p p pFigure 6: Observed behavior of �ve array language compil-ers. A p indicates that the compiler produced the properfused/contracted code (as described in the running text).formation alone is not su�cient. Though the APR com-piler appears to performs fusion for locality and compilerarray contraction, it is unable to fuse loops that carry anti-dependences.Finally, notice that the Cray F90 compiler appears toperform both statement fusion and array contraction, butthere are circumstances under which it fails. The com-piler is unable to fuse statements where the resulting loopnest would contain loop carried anti-dependences. As a re-sult, fusion does not occur in either (3) or (7), in the lattercase inhibiting contraction. We also infer that the compilerconsiders contraction of compiler and user temporary ar-rays separately, since it contracts the compiler temporary in(8) at the expense of contracting the two user temporaries.The Cray compiler probably never inserts compiler tempo-raries when a single statement does not require it, even ifthis transformation would enable the contraction of multipleother arrays. The technique we describe always inserts com-piler arrays, and it treats compiler and user arrays togetheras candidates for contraction. If a single statement doesnot truly require a compiler array, our algorithm is guar-anteed to contract it unless a more favorable contraction isperformed that prevents it.5.2 Comparison to Hand-codedA successful array language compiler will produce scalarcode comparable to that of a skilled scalar language pro-grammer. We now compare code produced by the ZPLcompiler with equivalent programs written in a scalar lan-guage. Figure 7 summarizes for each of the six benchmarksthe number of static arrays appearing in the compiled codewith and without array contraction. Note that within eachcode, nearly all arrays are approximately the same size. Wesee that all compiler-generated arrays have been eliminated.The bene�t of this is that a programmer can better compre-hend the memory use of their code when the compiler onlyinfrequently introduces arrays. Figure 7 shows a substantialreduction in the number of static arrays. All the arrays areeliminated in EP, and in all but one of the other benchmarksmore than half are eliminated.The �nal column in Figure 7 gives the number of arraysthat appear in equivalent scalar language codes. The scalarlanguage codes are all publicly available C or Fortran 77programs written by third parties. The compiler-generatedcode has the same or fewer arrays on all the benchmarksexcept SP, which highlights a de�ciency in our current algo-rithm. As we have described contraction, an array is con-tracted to a scalar or left as is. SP contains a great manyopportunities to contract arrays to lower dimensional ar-rays. Though the resulting arrays cannot be manipulatedin registers, they conserve memory and make better use of

array language scalarapplication w/o contr. w/ contr. % change lang.EP 22(0/22) 0(0/0) -100.0 1Frac 8(0/8) 1(0/1) -87.5 1SP 181(18/163) 56(0/56) -69.1 48Tomcatv 19(4/15) 7(0/7) -63.2 7Simple 85(20/65) 32(0/32) -62.4 32Fibro 49(0/49) 27(0/27) -44.9 n/aFigure 7: Static arrays contracted (categorized as com-piler/user arrays). Fibro was developed in ZPL, so no equiv-alent scalar version exists.the cache. Despite this shortcoming, SP still bene�ts froma substantial performance improvement, as we see in Sec-tion 5.4.5.3 E�ect on Memory Usage and Problem SizeWhile the preceding section uses static array counts to sug-gest that contraction conserves memory, here we employ dy-namic data to discover more precisely how memory conser-vation from array contraction enables larger problems to besolved in a �xed amount of memory. The degree by whichcontraction allows larger problems to be solved is an im-portant issue for memory bound applications. We assumethe following of a single program on a particular machine:(i) all arrays are the same size, which we call the problemsize, (ii) all array elements are the same size, and (iii) aconstant amount of memory is available for array allocationindependent of problem size. The degree by which the max-imum problem size scales due to contraction is the ratio ofthe maximum problem size after and before contraction, sasb .Given the above assumptions and that maximum problemsize is inversely proportional to the maximum number of si-multaneously live arrays, l, the scaling factors becomes lbla .We subtract 1 and multiply by 100 to convert the maximumproblem size scaling factor to percent change,C(lb; la) = 100 � lb � lala :The �rst columns of Figure 8 give the dynamic lb and lavalues and the calculated C value for each benchmark.To con�rm the above analysis, we experimentally deter-mine for each benchmark the largest problem size that �tson a single node of the Cray T3E and the IBM SP-2. Bothmachines have operating system facilities to limit the pro-cess size, so we found the largest problem size that does notresult in a memory allocation failure. Columns seven andten of Figure 8 give the change in problem size, both alongone dimension of the problem domain and in total data vol-ume. The experimental data shows that these applicationsrespect the above assumptions, for the C value accuratelypredicts the change in problem volume. The one exceptionis Frac on the SP-2, which violates assumption (ii). EP,in which all arrays are eliminated, clearly bene�ts the mostfrom contraction because the contracted form uses a con-stant amount of memory, independent of the problem size.The other applications' changes in problem size vary from10% to 274% along a single dimension or 25% to 1300% intotal volume.



IBM SP-2 maximum problem size Cray T3E maximum problem sizeapplication lb la C w/o contr. w/ contr. % change (vol) w/o contr. w/ contr. % change (vol)EP 22 0 1 219 1 1(1) 216 1 1(1)Frac 8 1 700.0 15312 57302 274.3(1300.7) 14092 39872 183.0(700.7)Tomcatv 19 7 171.4 9292 15302 64.7(171.2) 12932 21282 64.6(170.9)Fibro 49 27 81.5 5832 7902 35.5(83.6) 5722 7742 35.3(83.1)SP 23 17 35.3 743 813 9.5(31.1) 913 1013 11.0(37.7)Simple 40 32 25.0 6402 7152 11.7(24.8) 6232 7022 12.7(27.0)Figure 8: E�ect of contraction on maximum achievable problem size on single IBM SP-2 and Cray T3E nodes.5.4 Run-time PerformanceThis section considers the runtime performance impact ofarray contraction and statement fusion. Though we discussonly the relative e�ect of these transformations, other stud-ies have shown that the ZPL compiler produces code thatperforms within 10% of hand coded C plus message passingand generally better than HPF [8, 17, 18, 20].In order to better understand the performance contribu-tions of fusion and contraction, we measure execution timeusing several incrementally di�erent optimization strategies.baseline : no fusion or contraction transformations are per-formedf1 : fusion is performed to enable the contraction of com-piler arrays, but contraction is not performedc1 : fusion is performed to enable the contraction of com-piler arrays, and contraction is performedf2 : c1 plus fusion is performed to enable contraction of userarrays, but the contraction is not performedf3 : c1 plus fusion is performed to improve locality (as de-scribed in Section 4)c2 : c1 plus fusion is performed to enable contraction ofuser arrays, and contraction is performedc2+f3 : c2 plus fusion is performed to improve locality (asdescribed in Section 4)c2+f4 : c2+f3 plus all legal fusion (by a greedy pair-wisealgorithm)Figures 9, 10 and 11 show the percent improvement ofeach transformation over baseline for each benchmark for avarying number of processors on the Cray T3E, IBM SP-2and Intel Paragon. Execution times are the best of threetrials on the T3E and Paragon and of at least six trials onthe SP-2, a machine that su�ers from great performancevariance from trial to trial. So that we may neutralize thee�ect of communication masking all other performance char-acteristics on large processor sets, we scale the problem sizeswith the number of processors (i.e., the amount of data perprocessor remains constant as the number of processors in-creases).These graphs demonstrate that performing contractionon both compiler and user arrays in array languages is es-sential. The predominant characteristic of the graphs is thatc2 dominates the other transformations. The elimination ofa large portion of the compiler and user arrays by contrac-tion drastically improves temporal locality, always resultingin a signi�cant performance boost (up to 400% on one appli-cation). Fibro on the SP-2 does not bene�t from contractionfor large number of processors because of interactions with

communications optimizations discussed in the next section.In the larger applications, contraction of only compiler ar-rays, c1, provides a substantive performance enhancement(up to 30%), but it is only a fraction of the potential con-traction bene�t. The smaller benchmarks, such as Fibro,EP and Frac, require no compiler arrays, so they do notbene�t from f1 and c1. Clearly, transformation c1 does notsu�ciently address the problem of unnecessary temporaryarrays in array languages.For a number of programs, transformations f2 and f3 pro-duce noticeable slowdown. It appears that they increase ca-pacity and con
ict misses in programs that are particularlysensitive to memory system performance, such as Tomcatvand Fibro. Transformation c2+f4 generally results in noimprovement beyond c2+f3, and frequently produces signif-icantly less improvement versus baseline (3% versus 16% forFibro on the T3E). SP is the one exception, because arbi-trary fusion enhances spatial locality of independent state-ments. Our fusion algorithm instead fuses dependent state-ments to enhance temporal locality. We leave to future workthe extension of our algorithm for spatial locality sensitivity.The lesson is that fusion should not be performed arbitrarilyin an array language.As the number of processors, p, varies, certain trendsbecome evident. The improvement due to contraction inEP and Frac is e�ectively independent of the number ofprocessors because these codes scale nearly perfectly withp. The improvement due to fusion and contraction growswith p for some programs, such as Simple and Tomcatv onthe SP-2, when the transformations improve portions of theprogram that make up a larger fraction of total executiontime as p grows (i.e., the transformations improve portionsof the code that do not scale well with p).The performance improvement for a transformation de-creases with p when the transformation improves a portionof the code that makes up a smaller fraction of total exe-cution time as p increase. This happens when some othersegment of the code is not scaling well and consumes a largerfraction of total execution time as p increases. SP exhibitsthis behavior because only potions of the code that scalewell bene�t from the transformations. When both scalingand non-scaling segments of a code bene�t from the trans-formations, machines characteristics (e.g., the relative costsof cache misses, communication and 
oating point opera-tions) dictate the trends. This is exempli�ed by Tomcatv,which shows level, increasing and decreasing trends on thethree machines in our experiments.5.5 Interaction with Communication OptimizationIn this section, we demonstrate that statement fusion inter-acts with communication optimizations and for this reasonshould be performed at the array level. Some optimizationscannot be performed practically at the scalar level because
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Figure 9: Benchmark performance on Cray T3E. Negative bars represent slowdown.
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Figure 10: Benchmark performance on IBM SP-2. Negative bars represent slowdown.
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they interact with other transformations that can only oc-cur at the array level. If an optimization that interacts witharray level transformations is relegated to a scalar compiler,either the array level transformations must understand andreason about the optimization behavior of the scalar com-piler or vice versa. It is unlikely that scalar compilers can un-derstand the optimization strategy of all the compilers thatcompile to it, so the array compiler must consider scalaroptimizations when performing array transformations, ef-fectively moving the scalar transformations into the arraycompiler.To achieve e�cient parallel execution, compilers mustoften perform aggressive communication optimizations [9],such as redundancy elimination, message combining andpipelining. In some cases, these communication optimiza-tions are at odds with fusion for contraction. For example,pipelining hides latency by separating the send and receiveportions of communication with computation, but fusionmay collect into a single loop some of the statements thatcould be used to hide latency, potentially disabling overlap.The experiments presented thus far resolve this con
ict byfavoring fusion, i.e., fusion is never prevented by communi-cation optimizations. We consider an alternative strategy inwhich communication optimizations are favored, i.e., fusioncannot be performed if it reduces the bene�t of communi-cation optimization. Message vectorization never con
ictswith fusion, so it is always performed.As the amount of fusion increases, the potential for con-
ict with communication optimization grows. The precedingsection demonstrates that c2+f4 is not a valuable transfor-mation, so we use the c2+f3 transformation. On the T3E,when favoring communication optimizations over fusion forcontraction, Simple, Tomcatv, SP and Fibro su�er a slow-down of 25.4%, 22.7%, 9.6% and 5.1%, respectively. On theSP-2, they slowdown by 31.8%, 66.5%, 10.5% and -10.6%,respectively. On the Paragon, they slowdown by 7.5%, 8.5%,5.0% and 0.9%. The �rst three programs slowdown sig-ni�cantly because the communication optimizations disablea large number of array contraction opportunities withoutproducing comparable communication bene�ts. Only onefusion for locality opportunity and no contraction opportu-nities are lost by favoring communication optimizations inFibro. It slows down little and in one case it speeds up,because of the additional communication optimization. EPand Frac do not slowdown because they are small codesthat do not bene�t from communication optimization, withor without fusion.We have not demonstrated that favoring contraction isoptimal, but we have shown that if a choice is to be made,fusion for contraction should be favored. This suggests thatit would be very di�cult to perform communication opti-mizations if fusion and contraction occur after scalarization.The communication transformations would have to under-stand contraction well enough to optimize without disablingit, since it is unlikely that the scalar compiler could reasonabout communication primitives once they are scalarized.The Fibro data suggests that there are delicate tradeo�sthat only an integrated approach to fusion and communica-tion optimization can address, which would further compli-cate performing fusion at the scalar level. Furthermore, weexpect to �nd that integration will become even more impor-tant on machines with low cost synchronization in hardware(e.g., SGI Origin, Sun E10000). Thus, these results sup-port our claim that these optimizations for array languagesshould be performed at the array level.

6 Related WorkThe problem of optimizing array languages at the array levelhas recently received attention by others. Hwang et al. de-scribe a scheme for array operation synthesis [14]. Multi-ple instances of element-wise F90 array operations such asMERGE, CSHIFT, and TRANSPOSE are combined into asingle operation, reducing data movement and intermediatestorage. Their work does not address the inter-statementintermediate array problem except to substitute an inter-mediate array's use by its de�nition. This statement mergeoptimization [15] enables more operation synthesis, but itis not always possible, and it potentially introduces redun-dant computation and increases overall program executiontime. Roth and Kennedy have independently developed asimilar array based data dependence representation for F90,and they describe its use in scalarization [21]. They do notaddress the fusion for contraction problem.Loop fusion in the context of scalar programming lan-guages such as Fortran 77 is well understood [26]. Thoughmost work only considers pairwise fusion, some research ad-dresses collective loop fusion, as we do. Sarkar and Gao [22]transform loop nests by loop reversal, interchange and fusionto enable array contraction. They target multiprocessorsand exploit pipelining by executing producer and consumerloops on di�erent processors, so they are free to ignore allbut 
ow dependences. Because we instead distribute itera-tion spaces, preservation of all types of dependences is crit-ical to our solution. Gao et al. [12] describe another tech-nique for loop fusion based on a max
ow algorithm. Thetechnique requires its input loop nests to be identically con-trolled, and it does not perform loop reversal nor interchangeto enable additional fusion. Furthermore, it is unclear whatthe algorithm does when a potentially contractible array isconsumed by multiple loop nests. Our collective schemeperforms reversal, interchange and fusion simultaneously toenable contraction.Carr and Kennedy recognized the importance of keepingarray values in scalars through scalar replacement [4], whichis similar to array contraction in that some array referencesbecome scalar references, but array allocation is not elimi-nated (i.e., memory usage is not reduced). Their focus is inrecognizing the opportunity in a scalar loop nest, while oursis in enabling the opportunity in an array language compilervia statement fusion.Many techniques for improving locality by loop transfor-mations have appeared in the literature [5, 16, 19, 25]. Muchof this work addresses the issue of managing the con
ictinggoals of improving locality without sacri�cing parallelism.This is a far less important issue in an array language com-piler, for the compiler can assume that only the loops thatit generates need to be parallelized; user loops can remainsequential. In this paper we have assumed that all dimen-sions of all arrays are distributed and are a potential sourceof parallelism.7 ConclusionThis paper has shown how statement fusion can be per-formed at the array level to enable array contraction andto enhance locality. We have introduced, for array state-ments, a normal form and data dependence machinery thatleverages array language properties. We have empiricallydemonstrated that our array-level transformations producesubstantial performance improvements, both in executiontime and in memory usage. We have found that the common
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