

Copyright

by

Richard Joseph Cardone

2002

The Dissertation Committee for Richard Joseph Cardone

Certifies that this is the approved version of the following dissertation:

Language and Compiler Support for Mixin Programming

Committee:

Calvin Lin, Supervisor

Lorenzo Alvisi

Don S. Batory

James C. Browne

Dewayne E. Perry

Language and Compiler Support for Mixin Programming

by

Richard Joseph Cardone, B.Sc., M.S.C.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May, 2002

Dedication

This work is dedicated to Donna and Madeline, without whom it has no meaning.

 v

Acknowledgements

This dissertation is possible because of the best traditions of humanity:

The fact that we build institutions of learning, that we revere knowledge and

discovery, and that people from all walks of life have the opportunity to express

themselves and to contribute to the progress of society. My role is incidental but

for the people who have helped me along the way. I take this opportunity to

thank those people for their support:

I thank my fellow graduate students, my cohorts, who fought my battles

with me and who made my day-to-day work enjoyable and stimulating.

I thank my friends at IBM, especially the management team who took a

risk and made this work possible. In particular, I appreciate the efforts of Houtan

Aghili, Jacob Ukelson, Kevin McAulliffe, Armando Garcia, Paul Horn, Fran Al-

len, John Turek and Alfred Spector.

I thank the professors of the Computer Science department, who have cre-

ated an open and stimulating research environment. I appreciate the interest that

my committee has taken in my work and I thank Don Batory, whose pioneering

ideas and many hours of conversation inspired my research.

 vi

I thank my advisor, Calvin Lin, who showed me what I needed to learn

and how to learn it. This research would not exist without Calvin’s openness, his

confidence in me and, most importantly, his dedication to education. I found a

mentor in Calvin; I simply would not have succeeded without him.

I thank my family, whose support and encouragement mean everything. I

thank my parents, brother and sister for their dedication and understanding. I

thank Madeline for the inspiration she gives me everyday without fail. Lastly, I

thank Donna for walking down this path with me, a path I could not walk down

alone.

 vii

Language and Compiler Support for Mixin Programming

Publication No._____________

Richard Joseph Cardone, Ph.D.

The University of Texas at Austin, 2002

Supervisor: Calvin Lin

The need to reduce the cost of software development and maintenance has

been a constant and overriding concern since the advent of electronic computing.

The difficulty, and therefore the expense, in programming large software applica-

tions is due to the complex interactions and interdependencies in application code.

These interdependencies increase costs by making code hard to understand, hard

to change, and hard to reuse. For over a half century, the need to reduce code

complexity has been the driving force behind the trend to program at higher levels

of abstraction with increased code modularity.

This dissertation takes a step towards increasing code modularity by show-

ing that mixin generic types can be used effectively to build applications from re-

usable software components. First, we address issues of language definition and

integration. We show how mixins can be integrated into a modern programming

language to support a methodology of incremental software construction. We

 viii

identify novel language and compiler features that make programming with mix-

ins convenient and efficient. Second, we address issues of implementation and

evaluation. We implement a critical subset of mixin language support in a com-

piler. We then use our compiler to show that mixins increase code reuse com-

pared to current technologies; to show that application development and mainte-

nance can be simplified using mixins; and to show that our novel language fea-

tures simplify mixin programming. In addition, we discuss language implementa-

tion issues and define a new design pattern useful in mixin programming.

 ix

Table of Contents

List of Tables ...xii

List of Figures...xiii

CHAPTER 1 INTRODUCTION 1

1.1 Overview ..1

1.2 Contributions ..3

1.3 Overview ..6

CHAPTER 2 MOTIVATION 8

2.1 The Software Challenge ..8

2.2 Limitations on Reuse...10

2.3 The Java Layers Solution ..13

2.4 Challenges of Mixin Programming ..21

CHAPTER 3 RELATED WORK 33

3.1 Increasing Modularity ...34

3.2 Implementing Mixins ..40

CHAPTER 4 LANGUAGE FEATURES 43

4.1 Constrained Parametric Polymorphism..44

4.2 Deep Conformance..55

4.3 The Implicit This Type Parameter..74

4.4 Constructor Propagation..96

4.5 Semantic Checking..110

 x

CHAPTER 5 CLASS HIERARCHY OPTIMIZATION 125

5.1 Terminology..129

5.2 Assumptions..135

5.3 Disabling Conditions...138

5.4 General Merging Algorithm ..147

5.5 Detecting Disabling Conditions ...156

5.6 Transforming Code ... 165

5.7 Adjusting Access Control..171

5.8 Discussion...184

5.9 Related Work ..185

CHAPTER 6 COMPILER IMPLEMENTATION 189

6.1 Direct Implementation...190

6.2 Integrated Implementation...193

6.3 Name Mangling in JL..195

CHAPTER 7 EVALUATION 208

7.1 Comparing JL and OO Frameworks ..209

7.2 Applying Mixin Layers in Fidget...227

7.3 Summary...247

CHAPTER 8 CONCLUSIONS 249

8.1 Results ..249

8.2 Future Work..252

Appendix A – Layered Code Micro-Benchmarks ... 255

 xi

Appendix B – Regular Expressions in Semantic Checking261

References ...263

Vita 274

 xii

List of Tables

Table 1 - Index of Related Work Sections ..34

Table 2 - JL Generics and Instantiations...45

Table 3 - Implicit Bindings in Inheritance Contexts..83

Table 4 - Generated Constructors ...100

Table 5 - Interface Width in ACE and JL ...219

Table 6 - Detailed Results for Two Load Tests...260

Table 7 - Regular Expression Meta-Characters in JL..261

 xiii

List of Figures

Figure 1 - Stacking GenVoca Layers..15

Figure 2 - Mixin Layer Instantiation...20

Figure 3 - Constructor Mismatch during Instantiation ..22

Figure 4 - Unrestricted Mixin Composition ..26

Figure 5 - Fidget Example of Mixin Layer Usage...29

Figure 6 - Type Parameter Erasure in Homogeneous Implementations51

Figure 7 - Instantiation in Heterogeneous Implementations53

Figure 8 - Deep Subclassing...56

Figure 9 - Restricting Inheritance with Deep Subtyping57

Figure 10 - Constraining Type Parameters with Deep Subtyping........................58

Figure 11 - Deep Subtyping Syntax..58

Figure 12 - Deep Interface Conformance..60

Figure 13 - Restricting Inheritance with Deep Interface Conformance................61

Figure 14 - Constraining Type Parameters with Deep Interface Conformance61

Figure 15 - Propagating Non-Public Nested Types ...63

Figure 16 - Mixing Deep Subtyping and Deep Interface Conformance64

Figure 17 - Implementing Interfaces in Java...65

Figure 18 - The Use of Deep Conformance in Fidget ...67

Figure 19 - Deep Subclass Testing ...69

Figure 20 - Deep Interface Conformance using Class Prototypes........................72

Figure 21 - Binding This in a Parametric Class ..76

 xiv

Figure 22 - Binding This in a Mixin Class ...77

Figure 23 - List Nodes in Java..78

Figure 24 - List Nodes in JL...79

Figure 25 - List Nodes in JL Using Mixins...80

Figure 26 - This-Binding in Non-Mixin Classes ...82

Figure 27 - The Need for Explicit This-Binding ...87

Figure 28 - Explicit This-Binding...88

Figure 29 - Qualified This Usage ...90

Figure 30 - The Expressiveness of This ...91

Figure 31 - More Ways to Use This ...92

Figure 32 - Invalid This Usage...92

Figure 33 - Two-Way Information Flow at Instantiation-Time93

Figure 34 - Constructor Signatures in Parent and Child97

Figure 35 - Classes with Propagatable Constructors ...100

Figure 36 - Statically Generated Parameter Lists in C++106

Figure 37 - Example Argument List ...107

Figure 38 - Constructor with Argument List Parameter108

Figure 39 - Attribute Lists of Mixin-Generated Hierarchies..............................113

Figure 40 - Populating Attribute Lists ..114

Figure 41 - Attribute List Contexts...115

Figure 42 - Regular Expression Constraint Clauses ..118

Figure 43 - Relational Expression Constraint Clauses119

Figure 44 - Programmer Defined Messages in Constraint Checking121

 xv

Figure 45 - Simple Class Flattening..126

Figure 46 - Nested Class Flattening..127

Figure 47 - Signature of Class C...132

Figure 48 - Class C’s Associated Nested Hierarchies134

Figure 49 - Signature Preservation Disables Optimization................................139

Figure 50 - Simple Nested Class Merging ..142

Figure 51 - More Complex Nested Class Merging..143

Figure 52 - Disabled Nested Class Configurations.. 144

Figure 53 - Enclosing Class Condition ...145

Figure 54 - Identifying Optimizable Fragments ..153

Figure 55 - Application of Outside-In Processing Order162

Figure 56 - Order-Defeating Configuration ..163

Figure 57 - Updating References for Non-Static Inherited Methods..................168

Figure 58 - Updating References for Overridden Methods................................169

Figure 59 - References to Relocated Bytecode ... 173

Figure 60 - References from Relocated Bytecode... 174

Figure 61 - Compilation in JL1 ..191

Figure 62 - Defining Software Components in JL1...192

Figure 63 - Name Inflation using Mixins..197

Figure 64 - Generating Identical Types with Different Names200

Figure 65 - Inheritance of This-Specialization..202

Figure 66 - Circular Dependency in Name Generation203

Figure 67 - ACE Task Object ...211

 xvi

Figure 68 - ACE Reactor and Client Objects ..212

Figure 69 - Acceptor Collaboration ..214

Figure 70 - Simple JL Timer ..217

Figure 71 - Complex JL Timer ...217

Figure 72 - Framework Evolution ..224

Figure 73 - The Singleton Reactor Feature ...226

Figure 74 - Fidget’s Architectural Layers ...231

Figure 75 - Deep Conformance in Fidget..233

Figure 76 - Incorrect BaseFidget ..236

Figure 77 - Incorrect Hierarchy ..237

Figure 78 - Sibling Pattern Hierarchy...238

Figure 79 - Correct BaseFidget ..239

Figure 80 - Method Call Run Times without JIT ..256

Figure 81 - Method Call Run Times with JIT ...257

Figure 82 - Load Rate of Different Size Classes ...259

 1

CHAPTER 1 INTRODUCTION

1.1 Overview

The 1968 NATO conference [84] on the “software crisis” popularized the

term software engineering, and ever since that time researchers have been trying

to deliver on the promise of systematic and efficient software development that

the term implies. In 1979, 43% of the federal project officers surveyed by the

General Accounting Office [35] reported that it was fairly or very common for

software developed under federal contract to be unusable as delivered. In 1995, a

comprehensive survey [106] of over eight thousand public and private software

projects reported that more than 30% of the projects were cancelled during devel-

opment, and of those that were completed, three-quarters were late, over-budget

or didn’t meet their specifications. The cancelled projects alone were estimated to

cost American industry and government $81 billion in 1995.

In addition to the results from studies, well-publicized failures of critical

software projects reinforce the perception, both inside and outside the industry,

that any large-scale software development is an expensive and risky undertaking.

Recent project losses in dollars range from the tens of millions (California DMV’s

license and registration application), to the hundreds of millions (American Air-

line’s new reservation system, Denver’s airport luggage system), to the billions

(FAA’s air traffic control system) [46,106]. As society’s reliance on software be-

comes more pervasive, the chronic software crisis becomes more acute.

 2

One approach to addressing the software crisis is to make software easier

to reuse and, in doing so, to reduce the risk and expense of developing large ap-

plications. If existing software can be reapplied in new applications, then the cost

of developing and maintaining new code can be avoided. In addition, application

quality can increase with code reuse because the code is tested in multiple envi-

ronments.

In this dissertation, we design an object-oriented programming language,

called Java Layers (JL), which extends Java [8] with support for mixins [23,117].

Mixins are types whose supertypes are specified parametrically, and they have

been shown to increase the reuse potential of code [101,103,126]. Our overall

goal is to simplify application development and evolution by increasing the flexi-

bility and reusability of code. We concentrate on large-scale applications because

of the expense they represent. Large-scale, or simply large, applications are com-

plex applications that support variation over time or variation in different

execution environments.

Programming with mixins, however, does present a number of challenges.

First, mixins differ from conventional classes in that mixins do not have their su-

pertypes specified in their declarations. As a result, mixin hierarchies are not

fixed, but instead are assembled on demand. While this under-specification is the

source of mixin flexibility, it also means programmers must manage greater vari-

ability with less type information. Unless steps are taken to offset the increased

complexity of mixin inheritance, application maintainability will suffer. Second,

 3

applications that use mixins are built incrementally in layers, and this can lead to

greater runtime overhead due to increased indirection in executable code.

In this dissertation, we show that we can harness the power of mixins and

at the same time build efficient applications that are easier to maintain than those

built using conventional techniques. We demonstrate that design methodologies,

design patterns, and language support tailored for mixin programming provide a

practical way to define reusable software components. This ability to reuse code

ultimately leads to lower software costs. We describe two evaluations using JL in

which increased code reuse made application development and evolution easier.

We now describe in more detail the contributions of this dissertation.

1.2 Contributions

The main hypothesis of this dissertation is as follows:

Large-scale software development can be made easier by using mixins

and a small number of supplemental language and compiler features.

This hypothesis expresses the idea that mixins realize their true potential

when coupled with supporting technology. We now describe the contributions we

make in augmenting mixins with supporting technology and in evaluating that

new technology.

 4

1. Feature Identification.

We identify supplemental language and compiler features important for mixin

programming. We show that mixin programming is enhanced when a small

number of supporting language and compiler features are also available. Our

contribution includes the definition of novel language features such as the im-

plicit This type parameter, constructor propagation, and pattern-based seman-

tic checking. We also define new algorithms for class hierarchy optimization.

2. Feature Implementation.

We show how the identified supplemental features can be integrated into an

existing object-oriented language. We build the Java Layers (JL) compiler,

which adds support for mixins and our supplemental features to Java. Our

contribution is to show that JL’s language features integrate well with each

other and with Java.

3. Language Application and Evaluation.

We demonstrate the effectiveness of programming large applications using

Java Layers. Our contribution is to show that by using mixins and a small

number of supplemental capabilities, we improve our ability to develop large-

scale software. In our first evaluation, we compare programming in JL with

programming using object-oriented frameworks and design patterns, the pre-

dominant approach used today to build large applications and software prod-

uct lines. We evaluate each approach for its flexibility, usability and reusabil-

 5

ity, and we show how JL can be used to avoid problems common to frame-

works.

In our second evaluation, we coordinate simultaneous changes to multiple

classes using mixin layers [103], which are mixins that contain nested types.

We show how mixin layers in JL increase code modularity and how this in-

creased modularity can be used to build a software product line from a com-

mon code-base.

4. Other Contributions

• We define the Sibling design pattern. This design pattern can be used with

mixins layers to coordinate changes to multiple classes in the same inheri-

tance hierarchy. Our contribution includes defining the Sibling Pattern,

demonstrating its usefulness, and providing language support that makes it

convenient to use.

• We design the Class Hierarchy Optimization. This optimization trans-

forms Java bytecode and, therefore, is applicable to any existing Java ap-

plication.

• We describe our mixin implementation. We document the tradeoffs in-

volved in implementing mixins and in implementing JL’s other language

features.

 6

1.3 Overview

This dissertation is organized into eight chapters. Chapter 1, Introduction,

describes the problem of the high cost of software development, introduces our

mixin-based approach to reducing that cost, and summarizes the contributions that

our approach makes.

Chapter 2, Motivation, explores the factors that make software develop-

ment difficult and proposes a mixin-based solution to address these factors. This

chapter also describes the challenges of mixin programming and introduces the

language and compiler features of Java Layers that address these challenges.

Chapter 3, Related Work, provides the high-level context for our work by

describing other approaches to increasing code modularity and to defining mixins.

Chapters 4 and 5 describe the work specifically related to each of Java Layers’

language and compiler features.

Chapter 4, Language Features, defines Java Layers support for constrained

parametric polymorphism. This chapter then describes the design and implemen-

tation of four novel language features that support mixin programming.

Chapter 5, Class Hierarchy Optimization, presents the high-level design of

the class hierarchy optimization, which is a new optimization that removes the

effects of design-time layering from runtime code.

Chapter 6, Compiler Implementation, describes the lessons that we learned

from implementing two versions of Java Layers. This chapter also describes the

challenges of implementing name mangling in Java.

 7

Chapter 7, Evaluation, describes two evaluations in which we gauge the

effectiveness of mixin programming using Java Layers. One evaluation compares

mixin programming to programming with object-oriented frameworks. The other

evaluation demonstrates how Java Layers can be used to generate cross-platform

code libraries.

Chapter 8, Conclusions, summarizes the results of our research and de-

scribes possible future work.

 8

CHAPTER 2 MOTIVATION

In this section, we describe in greater detail the problem of software reus-

ability and how current programming technology limits reuse. We then introduce

Java Layers (JL), which is our approach to increasing reuse. We talk about the

model of software development that JL uses and how mixins provide the techno-

logical foundation on which JL is built. Finally, we describe the challenges that

mixin programming presents and introduce JL’s enhancements to mixins that ad-

dress these challenges. The full specification of JL’s language and compiler en-

hancements is given in Chapter 4, Language Features, and Chapter 5, Class Hier-

archy Optimization.

2.1 The Software Challenge

Large-scale software development is difficult because applications are im-

plemented in dynamic environments that are characterized by two important types

of variation. First, variation over time results from the nearly constant flow of

new requirements and new demands that are placed on applications. This pres-

sure to change leads to the implementation of new application features, which we

define as any characteristic or capability that an application supports. As features

are added, removed or modified, unanticipated interactions and co-dependencies

between feature implementations decrease the overall modularity of the software.

Over time, these incremental changes tend to degrade the quality of an applica-

 9

tion. In many applications, design decays to the point where either an expensive

redesign is required or the application becomes so resistant to change that it must

simply be discarded.

It is hard to over-emphasize the importance of planning for variation over

time, or for the maintainability, of an application. Studies indicate that develop-

ment organizations spend 60% to 80% of their budget on software maintenance

[93]. Anecdotal evidence supports this assessment. For example, the Windows

NT’s code base grew at an annual rate of 33% in the four years after its release,

which tripled its initial size to surpass 30 million lines of code by 1997 [83]. This

level of maintenance activity occurs in software that supports the changing needs

of many users.

The second type of variation that large applications need to support is

variation in execution environments. This type of variation requires that different

versions of an application support different users, hardware platforms, or market

segments at the same time. The need to provide different features in different en-

vironments leads to the development of families of applications or software prod-

uct-lines [22,50]. The challenge here is to reduce the cost of building and main-

taining product lines by maximizing the reuse of design and code, and to do this

without sacrificing performance or maintainability. This goal is difficult to

achieve because the requirements of multiple execution environments must be

considered simultaneously.

A particular concern that arises when developing software product-lines is

the feature combinatorics problem [16]. Given a domain with n optional features,

 10

the feature combinatorics problem occurs when all valid feature combinations

must be predefined or in some way materialized in advance. In the worst case, 2n

concrete programs would have to be instantiated. To efficiently produce software

product-lines, we must be able to easily customize and reconfigure applications

for specific uses. The goal, therefore, is to maximize the flexibility and reuse of

existing code while avoiding the maintenance problems that a combinatoric ex-

plosion of code would cause.

The need to support variation over time and variation in execution envi-

ronments makes software development complex. One way to manage this com-

plexity is to avoid, as much as possible, the creation of new code by reusing code

that already exists. In general, less code means less maintenance; in software

product-lines, the ability to avoid duplicated effort determines the viability of the

application. We now describe the basic characteristics of reusable code and how

reuse is limited by current technology.

2.2 Limitations on Reuse

The goal of reuse is to build large applications from reusable software

components. The ability to reuse code depends on two properties: modularity

and easy composition. Modularity allows us to separate concerns [91], which

makes code easier to understand, maintain, and treat as a unit. Easy composition

allows us to combine the capabilities of different code modules into different ap-

plications.

 11

If application features can be implemented as reusable software compo-

nents, then we could build applications by mixing and matching features. In the

ideal, we would build custom applications by selecting and composing the fea-

tures we need without writing any new code. Of course, feature code still needs

to be written at some point; but once written, it can be used in more than one ap-

plication. Our ability to program at this higher level of abstraction depends on

feature implementations that support both modularity and composability. We

now describe how support for these two properties falls short in current program-

ming technologies.

The first deficiency is that current programming technologies cannot com-

pletely encapsulate feature implementations. In object-oriented languages like

Java, for example, the basic unit of encapsulation and reuse is the class. Once the

organization of classes in a program is fixed, it is always possible to define new

features whose implementations crosscut the existing set of classes [66,118]. For

example, it is common for features that define global program properties to affect

the code in multiple classes. Such global properties include security, thread

safety, fault tolerance, and performance constraints. Generally speaking, object-

oriented programs consist of sets of collaborating classes [44], and changes to one

class often require coordinated changes to other classes.

To illustrate the current limits on encapsulation, we use an example from

our graphical user interface (GUI) evaluation, Fidget (§7.2). Fidget implements

GUI widgets, such Window, Button, and TextField, in their own class. In Fidget,

support for color displays is an optional crosscutting feature that can be applied to

 12

a library of widgets. Using standard object-oriented techniques, however, color

support breaks encapsulation and limits reuse. There are two reasons for this.

First, color support cannot simply be inherited from a superclass because individ-

ual widgets, implemented in their own classes, provide specialized color process-

ing. Thus, the code implementing color support is scattered [51] among multiple

widget classes, making the code difficult to reuse and difficult to remove. Sec-

ond, widget classes commingle code for color support with that of other features.

This tangling [51] of feature code in a class makes the class more complex, more

interdependent with other classes and, ultimately, more difficult to reuse.

The second deficiency is that current programming technologies are lim-

ited in their ability to compose features. For example, Java’s support for compo-

sition depends primarily on single inheritance and subtype polymorphism, which

do not scale well when there are a large number of optional features.

To illustrate this scalability problem, we use another example from Fidget.

Consider the possible features that a TextField widget might have: the ability to

query or change the font; to echo input; to choose the echo character set; to allow

for selection, cut, paste, drag and drop; to support resizing; and to support differ-

ent styles of event handling—we could list more. By encapsulating each optional

feature in its own class, we can build a custom TextField widget by creating a

class hierarchy with a base class and the selected feature classes in linear order.

The result is a fixed class hierarchy that supports the chosen text field features.

Different combinations of features, however, require different hierarchies. In

some cases, these new hierarchies would require an existing feature class to have

 13

a different superclass, which leads to code replication. This code replication,

which quickly becomes unmanageable as the number of different feature combi-

nations increases, is an example of the feature combinatorics problem described in

the last section.

To alleviate the limitations in modularity and composability in current

programming languages, we propose to increase the expressiveness of languages

to better support reuse. We now describe concepts and technology behind our

language proposal.

2.3 The Java Layers Solution

In the last section, we described how code reuse is limited in current pro-

gramming languages. To address this problem, we designed Java Layers (JL) as

an extension of Java [8] that enhances support for reuse. We chose to work with

Java because of its widespread use and because of the good software engineering

characteristics that it already embodies. These characteristics include simplicity

in design, relatively pure object-oriented semantics, a high-level memory model,

integrated exception handling, and static type checking,

This section describes the programming model used by JL and the mixin

technology used to implement that model. We begin with the conceptual frame-

work that allows JL programmers to systematically plan for reuse.

2.3.1 THE GENVOCA MODEL

The GenVoca model of software development, which was introduced by

Batory and O’Malley [15], provides the conceptual foundation for programming

 14

in Java Layers. The GenVoca model consists of software components called lay-

ers, compositions of layers called type equations, and a programming methodol-

ogy that emphasizes stepwise program refinement.

A GenVoca layer encapsulates the complete implementation of a single

application feature. Layers can contain code that crosscuts the modules or con-

structs of a programming language. For example, in object-oriented languages,

layers can contain code that affects multiple classes or multiple methods. Layers

export an interface and import zero or more interfaces, where an interface consists

of all externally visible characteristics of a layer. The interface exported by a

layer defines its realm, and layers that export the same interface are members of

the same realm.

Layers are composed in type equations, which match the exported inter-

faces of actual layer parameters to the formal interface parameters of an importing

layer. Layers that export the same interface can be interchanged with one an-

other, though their implementations are different.

The example in Figure 1 is taken from the original GenVoca paper [15]; it

shows three layers and a type equation that relates them. We assume that each

layer imports the interface it needs, since realms are not shown. The arrows rep-

resent call relationships between the layer nodes. There is an externally visible

layer (layer1) on which calls are invoked. Generally speaking, a layer performs

its feature’s processing and then passes control to the next layer. This call for-

warding ends in a terminus layer (layer3). Layers can be thought of as virtual

 15

machines that process requests at their level in the hierarchy and then pass the re-

quests to the next layer for further processing.

Figure 1 - Stacking GenVoca Layers

The key GenVoca idea is that software systems can be created by layering

reusable, parameterized, software components. In Figure 1, System is the pro-

gram generated from the composition of three features, where each feature is im-

plemented in its own layer. This methodology of building programs incremen-

tally in layers is called stepwise or layered refinement. Layers are sometimes

called large-scale refinements because they implement crosscutting features that

refine program behavior.

GenVoca supports the reuse properties of modularity and composability

described in §2.2. In GenVoca, applications can be built by mixing and matching

features because layers encapsulate feature implementations in reusable and com-

posable components. GenVoca avoids the feature combinatorics problem (§2.1)

because new programs are only generated when a new combination of features is

required.

layer1

layer2

layer3

System = layer1[layer2[layer3]]]

calls

calls

 16

The GenVoca model does not specify an implementation technology, but

object-oriented languages that support parametric polymorphism [29] already

provide a number of key capabilities needed to implement the model. First, these

languages provide classes as encapsulation constructs that can model the encapsu-

lation of GenVoca layers. Second, parameterized classes can model the composi-

tion of GenVoca layers. To effectively model layer composition, however, pa-

rameterized classes cannot be fixed in a single hierarchy. We now describe how

mixin classes satisfy this need for compositional flexibility and how they provide

the foundation for JL’s implementation.

2.3.2 MIXINS

The term mixin was first used to describe a style of LISP programming

that combines classes using multiple inheritance [62,79]. Since then, however,

mixins have been more commonly defined as types whose supertypes are declared

parametrically [23,117], and it is in this sense that we use the term. JL supports

mixins and other generic types by implementing parametric polymorphism [29],

which allows types to be declared as parameters to code. Mixins are useful be-

cause they allow multiple classes to be specialized in the same manner, with the

specializing code residing in a single reusable class. In addition, mixins provide

the compositional flexibility needed to implement GenVoca layers.

To understand the benefits of using mixins, we consider an example.

Suppose we wanted to extend three unrelated Java classes—Car, Box and

House—to have a "locked" state by adding two methods, lock() and

unlock(). Without mixins, we would define subclasses of Car, Box, and

 17

House that each extended their respective superclasses with the lock() and

unlock() methods. This approach results in replicating the lock code in three

places. Using mixins, however, we would instead write a single class called

Lockable that could extend any superclass, and we would instantiate the Lock-

able class with Car, Box, and House. This approach results in only one defini-

tion of the lock code. In JL, the Lockable mixin would be defined as follows:

class Lockable<T> extends T {
 private boolean _locked;
 public lock(){_locked = true;}
 public unlock(){_locked = false;} }

The above class is parametric because it declares type parameter T. JL’s

parametric types are similar in syntax and semantics to C++ [110] template

classes. When Lockable<T> is compiled, T is not bound. To use Lock-

able<T>, T must be bound to a type to create an instantiation of the parametric

class. Each distinct binding of T defines a new instantiated type, which can then

be used like a conventional Java type.

What makes Lockable<T> a mixin, however, is that its instantiated types

inherit from the types bound to T. Mixins are distinguished from other parametric

types because the supertypes of mixins are specified using type parameters. Thus,

a mixin’s supertypes are not known at compile-time, but instead are specified at

instantiation-time.

Mixin instantiations generate new class hierarchies. For example, Lock-

able<Box> generates the following hierarchy:

 18

In the above mixin-generated hierarchy, Lockable<Box> is the leaf class

and Box is the root class. Mixins can also generate hierarchies with more than

two classes. For example, suppose we define a Colorable mixin to manage a

physical object’s color and we define an Ownable mixin to manage ownership

properties. We can now create a variety of physical objects; these objects can

support various combinations of features and can generate hierarchies that contain

several classes, as the following instantiations illustrate:

Colorable<Ownable<Car>>
Colorable<Lockable<Box>>
Lockable<Ownable<Colorable<House>>>

We can think of each of the above mixin compositions as starting with the

capabilities of some base class (Car, Box or House) and refining those capabili-

ties with the addition of each new feature. In the end, we produce a customized

type that supports all the required features. When used in this way, mixins can be

thought of as type fragments because each mixin provides only some of the capa-

bilities needed for the complete type.

Mixin classes derive their flexibility from their ability to be easily repar-

ented. This ability to inherit from different parent classes allows mixins to spe-

cialize different classes with the same feature. Reparenting is similar to adding

Box

Lockable<Box>

 19

another superclass to a class in languages that support multiple inheritance, but

mixins avoid the pitfalls of multiple inheritance [117].

The ability of mixin classes to extend different superclasses gives them the

compositional flexibility necessary to implement GenVoca layers. The encapsu-

lation capabilities of mixins, however, are limited in that they can only affect the

code of one class. Smaragdakis and Batory address this limitation by developing

the idea of mixin layers, which we now discuss.

2.3.3 MIXIN LAYERS

Mixin layers [103] are mixins that contain nested types. This nested struc-

ture can implement features that crosscut multiple classes. To see how this

works, we revisit the Fidget evaluation that we introduced in §2.2. The code be-

low shows a simplified version of the basic Fidget class and one of its mixin lay-

ers. BaseFidget contains the basic implementation of all widgets, two of which

are shown (Button and CheckBox). LightWeightFidget implements display

support, which is a crosscutting feature that affects all widget classes. Light-

WeightFidget is a mixin layer that contains nested mixin classes.

class BaseFidget {
 public class Button {…}
 public class CheckBox {…} …}

class LightWeightFidget<T> extends T {
 public class Button extends T.Button {…}
 public class CheckBox extends T.CheckBox {…} …}

Figure 2 below shows the three hierarchies that are generated when

LightWeightFidget is instantiated with BaseFidget. Note that each of the

 20

nested classes in BaseFidget is extended by its corresponding class in Light-

WeightFidget. In this way, multiple widget classes are specialized with display

support simultaneously using the LightWeightFidget mixin layer.

Figure 2 - Mixin Layer Instantiation

The LightWeightFidget mixin layer encapsulates feature code that is

scattered across multiple classes, which demonstrates that mixin layers can im-

plement large-scale refinements. With mixin layers, we now have both the modu-

larity and the composability necessary to make application code more reusable.

In JL, we use mixins and mixin layers to implement the GenVoca model and its

methodology of stepwise program refinement.

The reuse benefits of mixin layers have been documented [101,103]. The

contribution of our work is to show that mixins and mixin layers can be integrated

into a programming language so that their benefits can be more fully realized. In

the next section, we describe the challenges of mixin programming and the novel

ways that we address these challenges in JL.

BaseFidget

LightWeightFidget

CheckBox Button

CheckBox Button

LightWeightFidget<BaseFidget>>

 21

2.4 Challenges of Mixin Programming

In this section, we describe the challenges that motivate our work. Our

goal is to use mixins to produce more maintainable and more reusable code. In

the Introduction, we noted that mixins have the potential to make programming

more complex and to produce more runtime overhead. In the subsections below,

we explore these challenges in depth and we introduce mechanisms designed to

address them. In Chapters 4 and 5, we discuss the design and implementation of

these mechanisms in detail.

2.4.1 INITIALIZATION

Superclass initialization is not straightforward in mixin classes because the

superclass of a mixin is not known when the mixin is defined [126]. This under-

specification is the source of mixin flexibility, but it can also be the reason why

mixin compositions fail to compile. In this section, we describe the problem of

mixin initialization and how it is exacerbated by stepwise program refinement.

We discuss common static approaches to the initialization problem and introduce

JL’s dynamic approach, which is a flexible new way to automatically generate

constructors.

Figure 3 shows a simple case in which an invalid constructor invocation

causes a mixin composition to fail. Since mixin M’s type parameter is uncon-

strained, any class can be specified as M’s superclass. In particular, instantiating

M<A> causes a linkage failure because M implicitly calls the no-argument con-

structor for class A, which does not exist.

 22

Figure 3 - Constructor Mismatch during Instantiation

The above initialization of M<A> would succeed if a call to A’s constructor

were inserted into M’s constructor. Unfortunately, this solution substitutes one

constructor dependency for another: All of M’s superclasses would now have to

support a constructor with a single TypeA argument. We characterize such ap-

proaches to mixin initialization as static approaches because they assume fixed-

signature superclass constructors. Static approaches are common in practice, but

they limit mixin reuse by introducing new compositional dependencies.

Static approaches range from the minimalist to the all-inclusive. The

minimalist approach requires that mixin superclasses implement a small number

of constructors that take well-known arguments. This approach works well when

the same arguments are used in most, if not all, instantiations. If some class in an

instantiation needs auxiliary initialization data, then a user-defined initialization

method can be used to pass that data after object construction. This custom ini-

tialization protocol for exceptional cases is enforced by programming convention.

class A
{
 TypeA avar;
 A(TypeA a){avar = a;}
}

class M<T> extends T
{
 TypeM mvar;
 M(TypeM m){mvar = m;}
}

Problem: M<A> fails to compile.

 23

On the other hand, the all-inclusive static approach requires that mixin su-

perclasses implement a single constructor that takes any argument used in any in-

stantiation. Each class in the instantiation uses the arguments it needs and ignores

the rest. Inevitably, null references and references to dummy arguments are used

to reduce overhead in specific instantiations. Such attempts to increase efficiency

complicate code because programmers have to test arguments before using them.

There are a number of possible variations on the minimal and all-inclusive

static approaches to superclass initialization, including variations that mix the

two. Static approaches are acceptable in applications where initialization argu-

ments do not vary much or in applications that do not contain many mixins. In

large applications or in applications that exhibit significant variation in initializa-

tion data, however, a more dynamic approach is needed.

The need for a more dynamic approach is reinforced when one considers

how mixins are used. In §2.3, we described how stepwise program refinement

encourages the use of small, single-featured, mixin classes to incrementally build

applications. The finer the decomposition is, the greater the number of mixins in

an application. Most of these mixins do not need explicit initialization, but they

often have to define constructors just to forward initialization parameters to their

superclasses. These forwarding constructors increase the housekeeping chores

for programmers and become more burdensome as the number of mixins increase.

In §4.4, we describe constructor propagation, which is JL’s dynamic ap-

proach to superclass initialization. Dynamic approaches do not assume fixed-

signature superclass constructors. In JL, mixin reuse is increased because mixin

 24

constructors can adapt to their superclass constructors at instantiation-time. In

addition, constructor propagation makes stepwise program refinement more con-

venient by automatically generating forwarding constructors.

2.4.2 SELF-TYPE REFERENCES

Mixin programming alters the way we think about the self-type references

in object-oriented code. The self-type of a code fragment is the statically-known

type that contains the code. References to self-types are ubiquitous in object-

oriented code. For example, if method m in class C contains the expression new

C(), then m contains a self-type reference.

In Java, self-type references have two characteristics that make their use

convenient and effective. First, self-type references always refer to the declaring

type that contains the reference, which implies that the self-type’s name is known

when the code is being written. Second, all the capabilities of a type are available

through its self-type references.

Mixins, however, define type fragments. Mixins are used to implement a

single application feature that does not stand on its own, but must be combined

with other code to deliver its function. When a mixin is defined, the mixin name

is known, but the name of the type that ultimately combines the mixin’s function

with the function of other code is not known. Also, if a mixin is used as the self-

type for the code it contains, then only the capabilities of that mixin are available

through self-type references. Using mixins as self-types means that only some of

the capabilities specified by a mixin composition are accessible.

 25

In mixin programming, the leaf type generated by a mixin composition is

the full-featured type. This leaf type is sometimes referred to as the ultimate type

or the most derived type generated by a composition. Each distinct mixin compo-

sition generates its own ultimate type.

In §4.3, we introduce JL’s implicit This type parameter, which allows us

to express the most derived class of a mixin composition. This is implicitly de-

fined in parametric types and can be used like other type parameters. In §4.3, we

also describe how This is useful in defining recursive types.

2.4.3 CONTROLLING COMPOSITION

Mixins provide a powerful way to compose software, but supporting

mechanisms are needed to manage mixin composition. This section describes the

problems of unrestricted mixin composition and introduces three JL language fea-

tures that increase programmer control over composition.

Mixins offer great flexibility by deferring the specification of parent/child

relationships from definition time to composition time. This flexibility, however,

increases the likelihood that syntactically correct compositions generate programs

with undesirable, unpredictable or invalid behavior. Undesirable program behav-

ior occurs when mixins in a composition reduce performance or increase program

size without adding function. Unpredictable program behavior occurs when mix-

ins interfere with each other’s execution in subtle and hard-to-detect ways. Inva-

lid program behavior occurs when mixins cause compilation or runtime failures.

We categorize the challenges in controlling mixin composition as (1) those

involving type parameter bindings, (2) those involving combinations of mixins,

 26

and (3) those involving nested class structure. For each of these three categories,

we use examples to illustrate the challenge and then introduce the JL language

feature that addresses the challenge.

We use the network transport code shown in Figure 4 to illustrate the chal-

lenges of mixin composition. The TCP class provides data transport using TCP;

the Secure mixin adds data privacy; and the KeepAlive mixin automatically

exchanges liveness notifications between communicating peers.

Figure 4 - Unrestricted Mixin Composition

The first kind of composition challenge involves invalid type parameter

bindings. The instantiation Secure<TCP> compiles because all superclass refer-

ences in Secure can be resolved in TCP. On the other hand, the instantiation Se-

cure<java.util.HashMap> fails to compile because superclass references in

class TCP
{
 public void send(byte[] out){…}
 public void recv(byte[] in){…}
 public void disconnect(){…}
}

class Secure<T> extends T
{
 public void send(byte[] out)
 {byte[] buf = encrypt(out); super.send(buf);}
 public void recv(byte[] in){… super.recv(buf); …}
 public void disconnect(){… super.disconnect(); …}
}

class KeepAlive<T> extends T
{
 protected void keepAlive(){…}
 public void disconnect()(){… super.disconnect(); …}
}

 27

Secure cannot be resolved in HashMap. The source of the problem is that

HashMap doesn’t support the interface expected by Secure. This problem is

similar to the problem of unresolved constructor references described in §2.4.1,

but here the unresolved references are to superclass members.

Constrained parametric polymorphism [29,109] is a common solution to

the problem of invalid type parameter bindings. This solution allows program-

mers to explicitly restrict the types that get bound to a type parameter, which

means that invalid bindings can be detected early using static type checking.

Constrained parametric polymorphism increases code comprehensibility by allow-

ing explicit type restrictions on type parameters; it increases language usability by

allowing compilers to report meaningful error messages; and it improves code

robustness by more closely integrating type parameters into the type system. JL’s

implementation of constrained parametric polymorphism is described in §4.1.

The second kind of composition challenge involves managing the numer-

ous ways that mixins can be combined. For example, the order in which mixins

are composed can affect whether compilation succeeds and whether the generated

program behaves as expected. Referring again to Figure 4, both

KeepAlive<Secure<TCP>> and Secure<KeepAlive<TCP>> generate code

that supports a secure TCP transport with automatic keep-alive. Liveness notifi-

cations, however, are transmitted encrypted in the first instantiation and in the

clear in the second instantiation. In our example, both orderings could be sup-

ported, but this is not true in general. Indeed, sometimes a mixin can only be used

if another mixin appears either before or after it in a composition.

 28

In addition to order, the presence, absence, or number of times a mixin ap-

pears in a composition also affects program behavior. For example, the meaning

of Secure<Secure<TCP>> and whether Secure can be validly used twice in

the same composition is implementation dependant. In general, mixins can be

implemented in ways that either require or disallow the use of other mixins in the

same composition.

Mixin programming is scalable only if composition rules involving the

presence, absence, cardinality and ordering of mixins can be automated. In §2.1,

we saw that as the number of optional features increases, the number of possible

feature combinations increases exponentially. Programmers cannot be expected

to manage this level of complexity, even with good documentation. In §4.5, we

describe a way to manually encode semantic checking rules into class definitions

so that a compiler can detect invalid feature combinations automatically. JL’s

semantic checking goes beyond the syntactic capabilities of type checking and is

an alternative to previous GenVoca approaches [11,13].

The third kind of composition challenge involves the propagation of

nested class structure when mixin layers are used. In §2.3.3, we described how a

mixin layer can encapsulate the complete implementation of a feature whose code

resides in multiple classes. When an application is composed using mixin layers,

each layer expects its superclass to have a certain nested structure. Conversely,

each mixin layer needs to present a certain nested structure to its subclasses.

Figure 5 shows a configuration of Fidget classes, which are part of our

evaluation in building families of graphical user interface libraries (§7.2). The

 29

figure illustrates a composition of three layers that is generated by the instantia-

tion shown. Two of Fidget’s nested classes, Checkbox and Button, are shown

in each of the layers.

Figure 5 - Fidget Example of Mixin Layer Usage

The regularity of inheritance relationships shown in Figure 5 promotes the

use of stepwise program refinement (§2.3.1). First, each mixin layer expects its

superclass to contain Checkbox and Button, and these nested classes are ex-

pected to be subclasses of Checkbox and Button in BaseFidget. Second,

each mixin is expected to provide these nested classes to its subclasses. Mixin

layers that meet these two conditions can be composed with one another to build

complete libraries one feature at a time. In §4.2, we describe how JL enforces

these two conditions through its implementation of deep conformance. JL’s novel

BaseFidget

LightWeightFidget

ColorFidget

ButtonCheckbox

ButtonCheckbox

ButtonCheckbox

ColorFidget<LightWeightFidget<BaseFidget>>

 30

design is the first implementation of the deep conformance properties originally

defined by Smaragdakis [101].

In summary, we address the challenges of controlling mixin composition

in JL by implementing three language features: constrained parametric polymor-

phism, semantic checking, and deep conformance. These language features allow

programmers to restrict how mixins are combined by controlling the following

elements of composition:

• The types that can be bound to a type parameter

• The ordering of mixins

• The number of times a mixin can be used

• The presence or absence of a mixin

• The nested structure of actual type parameters

• The nested structure of generated types

2.4.4 RUNTIME EFFICIENCY

In this section, we discuss performance in layered applications. We de-

scribe how deeply layered code can reduce performance, and we summarize the

results of micro-benchmarks that reinforce that idea. We then introduce an opti-

mization that reduces the overhead of layering.

Stepwise program refinement (§2.3.1) uses mixins to encapsulate the im-

plementations of fine-grained application features. Applications are built by

combining mixins until all required features are included. This programming

 31

methodology can lead to applications that consist of many small classes layered in

deep hierarchies. In Java, two questions about performance are raised when code

is organized this way.

First, the use of many small classes in a program can increase load time.

In addition, the management of many classes at runtime increases the memory

used by a Java Virtual Machine (JVM).

Second, stepwise refinement often introduces the runtime overhead of ex-

tra method dispatches. In mixin-generated hierarchies, methods with the same

signature are often daisy-chained together so that each feature’s code executes

when a method is called. For example, when method m in the leaf class of a

mixin-generated hierarchy is called, m typically executes the leaf class’s feature

code and then calls m in the superclass. This second method invocation executes

the code for the superclass’s feature. This succession of method calls continues

up the hierarchy until some terminus class is reached. By contrast, conventional

implementations intermix the code for multiple features in the same method,

which avoids the cost of a method call when different features execute.

To quantify the effect of design-time layering on runtime performance, we

performed two sets of micro-benchmarks. A description of these benchmarks and

a discussion of their results are in Appendix A – Layered Code Micro-

Benchmarks on page 255. These benchmarks reinforce the concerns described

above and their results can be summarized as follows:

 32

1. Eliminating long chains of method calls through inlining can lead to

significant speedups.

2. Many small files take longer to load than fewer larger files, assuming

the total number of bytes loaded remains constant.

In addition, a recent performance analysis of mixins in C++ provides more

evidence that inlining can significantly improve the performance of mixin-

generated code. Berger, Zorn and McKinley [17] build customizable memory

allocators using mixins and show that even though mixins introduce many layers

of abstraction, aggressive method inlining results in mixin-generated code that

performs at least as well as, and sometimes better than, equivalent conventionally

written code.

The class hierarchy optimization described in Chapter 5 addresses both of

the above performance concerns. In our optimization, calls to superclass methods

with the same signature are aggressively inlined and the whole class hierarchy is

collapsed into as few classes as possible. As long as certain constraints are satis-

fied, our optimization can be applied to the bytecode of arbitrary Java class hier-

archies.

 33

CHAPTER 3 RELATED WORK

In this section, we discuss two areas of related work that provide the high-

level context for our research. The first area describes other approaches to in-

creasing the modularity of code by relating our work to prominent non-mixin

technologies that also focus on reusability. The second area describes recent

theoretical work on mixin types and relates our work to these approaches to defin-

ing mixins.

This chapter is necessarily high-level because we have not yet described

Java Layers in detail. We do, however, present detailed discussions of related

work in Chapters 4 and 5. This two-level organization allows us to discuss work

related to JL features in the context of those features. Thus, the discussion of

each JL language or compiler feature includes its own Related Work section. The

table below provides an index to these feature-specific Related Work sections.

 34

Feature Related Work

Section

Related Work

Page

Constrained Parametric Polymorphism §4.1.4 48

Deep Conformance §4.2.5 71

The Implicit This Type Parameter §4.3.5 93

Constructor Propagation §4.4.4 103

Semantic Checking §4.5.4 121

Class Hierarchy Optimization §5.9 185

Table 1 - Index of Related Work Sections

3.1 Increasing Modularity

Programming languages have steadily evolved to support higher levels of

abstraction and more powerful encapsulation capabilities. Beginning with ma-

chine and assembly code, and progressing through structured code, abstract data

types and object-orientation, programming languages have increased their ability

to separate design concerns in code. This increased modularity has led to greater

reuse and other engineering benefits. Mixins continue the trend towards greater

modularity by making object-oriented inheritance more flexible. In §2.3, we de-

scribed how Java Layers uses mixins and stepwise program refinement to build

applications from reusable software components.

In this section, we describe two other approaches to increasing reuse.

First, Aspect-Oriented Programming provides a general model for specifying

 35

crosscutting components. Second, Multi-Dimensional Separation of Concerns

provides an even more general model that addresses the separation of concerns in

all software-related artifacts, including requirements, design and code. We con-

clude our discussion of modularity by relating Java Layers to previous GenVoca

research.

3.1.1 ASPECT-ORIENTED PROGRAMMING

The Aspect-Oriented Programming (AOP) [66] model defines two basic

concepts. The first concept is that of a base language, which is the primary ab-

straction and composition mechanism that is used to organize code into imple-

mentation units. Different base languages have different implementation units.

For example, procedural, functional, and object-oriented languages respectively

define procedures, functions, and objects as implementation units. Using base

languages, application function is encapsulated in implementation units.

AOP’s second basic concept is the aspect. Aspects implement new appli-

cation features by transforming base language code. Aspects can modify code in

multiple implementation units, which allows aspects to encapsulate crosscutting

features. The modifications specified in aspects take place at predefined join

points. Join points can be defined generally in terms of base language constructs,

such as class or method declarations, which allow aspects to transform any appli-

cation written in that language [65]. Alternatively, join points can be defined in

terms of a specific application, which allow aspects to make application-specific

transformations and optimizations [77,128]. For instance, application-specific

 36

join points can be defined in terms of specific control flow patterns or field refer-

ence patterns.

AOP provides a general model for thinking about crosscutting features,

and the term aspect has become synonymous with crosscutting feature encapsula-

tion. In AOP, aspect languages are implemented in compilers called weavers,

which combine aspect code and base language code in customized ways. Indeed,

Java Layers can be thought of as an aspect language in which mixin layers are the

aspects and inheritance is used to weave code.

AspectJ [65] is an application-independent AOP extension to Java in

which aspects implement features that crosscut class boundaries. The base lan-

guage is Java; the methods and classes of Java serve as AspectJ’s join points. As-

pects can add new methods to existing classes and they can weave code before or

after the execution of methods.

 Mixin layers have many of the same capabilities as AspectJ’s aspects.

Like aspects, mixin layers can define new methods in classes. Also, by using

method overriding and explicit calls to super, mixin layers can specify code that

executes before or after existing methods. AspectJ’s aspects, however, can refine

the behavior of an arbitrary group of classes, while mixin layers can only refine

the classes nested in their superclasses. Thus, aspects are more expressive and

can address more kinds of crosscutting features than JL’s mixins. On the other

hand, determining the value and the proper use of this additional flexibility is the

subject of continuing research [64]. In addition, AspectJ must define precedence

 37

rules to determine the order in which weaved code is executed, while the order of

mixin application is implicit and clear in instantiations.

3.1.2 MULTI-DIMENSIONAL SEPARATION OF CONCERNS

Multi-Dimensional Separation of Concerns (MDSOC) [118] generalizes

AOP (§3.1.1) in two ways. First, the MDSOC model addresses the evolution of

all software artifacts, including requirements, documentation, and design, as well

as code. Second, the MDSOC model does not create a new language to imple-

ment crosscutting features, but instead uses new techniques for composing code

that is written in existing languages.

In MDSOC, different software artifacts are expressed in their own formal-

isms. For example, design is often expressed in UML [85], while code is ex-

pressed in a programming language. Each formalism separates concerns in its

domain using its own composition and decomposition mechanisms. Concerns are

implemented in the formalism’s modules, which are composed to build complete

artifacts.

The key insight of MDSOC is that all formalisms rely on a dominant de-

composition method to create modules, and this reliance ultimately leads to the

problems of crosscutting, tangling, and scattering that we described in the

Motivation chapter. For example, class-based languages use data abstraction as

their dominant decomposition method and classes as their modules. After a class

hierarchy is established, features that crosscut existing classes cannot be easily

encapsulated in a single module. For this reason, the dominant dimension of con-

cern in object-oriented languages is data organization.

 38

MDSOC defines hyperslices as sets of partially implemented modules.

Hyperslices can encapsulate concerns in any dimension, especially non-dominant

dimensions. Thus, in object-oriented code, hyperslices define crosscutting appli-

cation features as sets of partially implemented classes. A hypermodule is a set of

hyperslices and a composition rule that defines how the hyperslices are composed.

Composition rules integrate hyperslices, which can be designed and implemented

in isolation of each other. The main challenge in implementing MDSOC is defin-

ing composition rules that are both powerful and easy to use. The composition

rules used in subject-oriented programming [51,88], which preceded MDSOC,

provide a basis for the continuing research in this area.

Hyper/J [53] provides Java support for multi-dimensional separation of

concerns. Hyper/J focuses on the adaptation, integration and on-demand re-

modularization of Java code. Hyperslices in Hyper/J can be mixed and matched

to create customized applications. Hyper/J can also extract and, possibly, reuse

feature code not originally separated into hyperslices. That is, Hyper/J supports

the unplanned re-factorization of code to untangle feature implementations.

Java Layers can be viewed as an instantiation of the MDSOC model, just

as it can be viewed as an aspect language. In JL, mixins and mixin layers are hy-

perslices, mixin compositions are hypermodules, and inheritance is the only com-

position rule. JL addresses only code artifacts and JL does not support unplanned

code re-factorization as Hyper/J does. In JL, some design planning takes place in

advance to ensure that components are composable with each other. On the other

 39

hand, JL components are combined using inheritance, which is well-understood

and does not require the development of new code composition techniques.

3.1.3 GENVOCA GENERATORS

The GenVoca model [15], which we described in §2.3.1, provides the

conceptual foundation for Java Layers. GenVoca research has focused on devel-

oping domain-specific software generators that support the GenVoca model. The

domains investigated in this research include database management systems [15],

communication protocols [15], data structures [11,13,16,58], avionics [12], mili-

tary command and control simulators [39], and compilers [14]. The number and

breadth of these experiments reinforce the claim that the GenVoca model pro-

vides an effective foundation for software development.

There have also been two domain-independent GenVoca projects, both of

which influenced JL research. The first project defined the P++ [100] language,

which extends C++ to directly implement the GenVoca model. P++ uses the

realm construct to define interfaces and the component construct to define reus-

able layers. An early version of Java Layers (§6.1) also directly implemented the

GenVoca model, though our focus was on new language features that support

mixin programming.

The second domain-independent GenVoca effort developed the idea of

mixin layers [101,103] and then used them to build the Jakarta Tool Suite (JTS)

[14]. JTS is a GenVoca generator that generates domain-specific languages.

Mixins and mixin layers provide the technology foundation for software reuse in

JL (§2.3).

 40

JL departs from prior GenVoca research by focusing on the integration of

mixin support in current object-oriented languages. Many ideas in JL, however,

have precursors in previous GenVoca implementations. For example, to express

the most derived type in a mixin-generated hierarchy, JTS uses a well-known

name or a less general form of JL’s This type parameter. Thus, the need for a

most derived type was recognized before JL, but JL generalized its design and

incorporated it into a domain-independent language.

3.2 Implementing Mixins

Most mixin research falls into one of two categories. The first category

uses parametric polymorphism [29] to implement mixins. Under this approach,

mixins and other parameterized types are typically treated as type functions or

type schemas, which generate types, but are not themselves types. In languages

that already support parametric types, adding mixins can be an almost trivial ex-

tension. Mixin research in this category often uses C++ [110] template classes,

which already support mixins. Such research [101,38,126] emphasizes software

engineering concerns and often includes experiments that test the effectiveness of

different mixin programming techniques. Java Layers builds directly on this line

of research, which we describe in detail in later sections.

The second category of mixin research defines mixins as types. Under this

approach, mixin types extend their supertypes without relying on parametric

polymorphism. The research [4,5,21,40] in this area focuses on the formal se-

mantics of mixins and on the integration of mixins into existing type systems.

 41

This integration typically uses the keyword mixin to declare new types, which ei-

ther replace or work in conjunction with existing types (e.g., classes).

Recent mixin type proposals include two new programming languages.

The first of these languages, JAM [3], has been implemented. JAM integrates

mixin types into Java by adding two new keywords and by extending Java’s type

system. The JAM code below illustrates how mixin type M is declared and how it

is used to define two subclasses (Child1 and Child2) of two parent classes

(Parent1 and Parent2).

mixin M { member-declarations }

class Child1 = M extends Parent1;

class Child2 = M extends Parent2;

Since mixins are types in JAM, Child1 is a subtype of both M and Par-

ent1 in the above code. Child2 is also a subtype of M, which allows objects of

types Child1 and Child2 to be treated as type M objects. In JAM, mixin inheri-

tance can be constrained by specifying in mixin definitions the set of methods that

superclasses must implement.

JAM puts a number of restrictions on how mixins are defined and used.

For example, to preserve type system soundness, the keyword this cannot be used

as a parameter in methods defined in mixins. Other restrictions in JAM include

the inability to define constructors in mixins, the inability to express the most de-

rived type in a mixin-generated hierarchy, and the inability to compose mixins

with other mixins. This last restriction makes stepwise program refinement in-

convenient in JAM.

 42

The second recently proposed language extends Java with mixin modules

[37], which are packaging constructs that contain class and mixin type declara-

tions. This language supports extension and combination, which are composition

operations that can be applied to modules, classes and mixins. Mixin modules are

similar to JL mixins in two important ways. First, mixin modules capture the no-

tion of a most derived type using the This keyword, which is analogous to JL’s

This type parameter (§4.3). Second, mixin modules enforce a kind of deep con-

formance (§4.2) by restricting mixin inheritance: Mixins can only extend mixins

that have the same name and are inherited from another module. One limitation

of mixin modules, however, is that the only constructor allowed in mixins is the

implicit default constructor.

We conclude this section by mentioning two research proposals that do

not fall into either of the above categories, but that are mixin-related. The first

proposal, Jiazzi [76], implements a component system for Java that generalizes

the concept of a Java package. Jiazzi components are parameterized modules that

contain classes. In Jiazzi, mixin-style constructions are defined when the classes

in a component inherit from the component’s imported parameters. The second

proposal defines delegation layers [89], which combine delegation [70] and vir-

tual types [74] to change the behavior of a set of objects at runtime. In this con-

text, delegation refers to dynamic, object-based inheritance. Delegation layers are

similar to mixin layers, except mixin layers change the behavior of a set of classes

statically.

 43

CHAPTER 4 LANGUAGE FEATURES

In this chapter, we describe the Java Layers language features that address

the programming challenges discussed in §2.4. We begin by discussing JL’s im-

plementation of constrained parametric polymorphism, which is provided for

background purposes and does not represent a new contribution. We then discuss

four novel JL language features, three of which have been implemented in our

compiler.

Our design philosophy is to add simple, orthogonal features to Java to

support mixin programming. Our goal is to limit the impact of these new features

on Java and to limit unintended interactions between these features. Towards this

goal, we add generics to Java, but we do not change Java’s type system. We also

add to Java two new modifiers, the This keyword, and two optional clauses in

class declarations. Theses additions to Java are largely independent of each other,

though the implicit This type parameter is closely integrated into instantiation

mechanism for parametric types.

For each JL language feature, we present its design, algorithms, and im-

plementation status, but we defer detailed discussion on implementation topics

until Chapter 6. For now, we note that the JL compiler is a source-to-source com-

piler, so all transformations described in this chapter are implemented as source

code transformations.

In citations, we use JLS to refer to the Java Language Specification [49]

and JVMS to refer to the Java Virtual Machine Specification [71].

 44

4.1 Constrained Parametric Polymorphism

This section describes JL’s implementation of constrained parametric

polymorphism, which is an enabling technology used by JL, but is not a new con-

tribution. In §2.3.2, we described how parametric polymorphism, or generic

types, provides a basis for the implementation of mixins. In §2.4.3, we described

how code comprehensibility, robustness, and usability are enhanced when type

parameter bindings can be constrained. We begin by discussing JL’s parametric

types and type parameter constraints. We then describe how type parameter scop-

ing supports mixins and F-bounded polymorphism [28]. We conclude with re-

lated work in generic programming.

In JL, parametric types are class and interface declarations that are param-

eterized with type parameters or primitive literal parameters. Parametric types

are instantiated when all type parameters and all primitive literal parameters are

bound. Type parameters are bound to primitive or non-primitive types; primitive

literal parameters are bound to literal values. The eight primitive literal types that

can be used in parametric type declarations are boolean, byte, char, double, float,

int, long, short. Table 2 shows three parametric types and example instantiations

of each.

 45

Parametric Types Instantiations

class C<T; U; V>{...} C<String, HashMap, int>,

C<long, Vector, FileReader>

class D<T; int i; boolean b>{…} D<String, 4, true>, D<double, 20, false>

interface I<T>{…} I<StringBuffer>, I<boolean>

Table 2 - JL Generics and Instantiations

All formal parameters in parametric type declarations are uniquely named

and are bound to actual parameters when the types are instantiated. Instantiated

parametric types represent Java types and can be used wherever types are allowed

in Java. Parametric types themselves, however, are not Java types and cannot be

used in expressions unless they are properly instantiated. For example, class E

below uses type parameters T and U on lines 3 and 4. The instantiation of F on

line 3 is a valid type specification because T is bound whenever E is instantiated.

The use of G on line 4, however, is invalid because U is not bound and the expres-

sion, G<U>, is not a Java type.

 1. class E<T>

2. {
 3. F<T> f; // OK, T is bound within E.
 4. G<U> g; // Error, U is not bound.
 5. }

In JL, anonymous classes cannot be parameterized due to their spare syn-

tax. In addition, JL does not support parameterized local classes.

 46

4.1.2 TYPE PARAMETER CONSTRAINTS

JL uses the two ways to inherit in Java to define two kinds of constraints

on type parameters. JL uses an extends constraint clause to guarantee that a type

parameter binding extends one or more types. JL uses an implements constraint

clause to guarantee that a type parameter binding implements one or more inter-

faces. These clauses restrict the bindings of type parameters to subtypes of the

types specified in the constraints.1 We now illustrate the use of constraint clauses

by presenting example type declarations.

In class C below, the extends clause requires that the type bound to T be a

subtype of FileReader. Similarly, C’s implements clause requires that the class

bound to U implements the Serializable interface. In interface I, the type

bound to V must be a subclass of LinkedList that also implements the Run-

nable interface.

class C<T extends FileReader; U implements Serializable>{…}

interface I<T extends LinkedList implements Runnable>{…}

In JL, multiple constraints can be specified in each clause. Class D below

illustrates this more complex case. The class bound to T must subclass both

LinkedList and AbstractSequentialList. This bounded class must also

implement the Serializable and Runnable interfaces.

1 For constraint checking purposes, a type is considered a subtype of itself.

 47

class D<T extends LinkedList, AbstractSequentialList
 implements Serializable, Runnable> {…}

4.1.3 TYPE PARAMETER SCOPE

In a JL type declaration, a type parameter’s scope includes the type pa-

rameter declaration clause (i.e., everything between the angle brackets), any in-

heritance clauses, and the body of the type. In addition, type parameters cannot

be hidden in the body of their declaring type by nested types or by other type pa-

rameters. Thus, if type C declares type parameter T, then no type or type parame-

ter can be declared in the body of C with the name T.

Mixins are supported by using type parameters in inheritance clauses. Be-

low, class J and interface K represent simple mixins. L and M represent more

complex declarations that are also possible in JL.

class J<T> extends T {…}

interface K<T> extends T {…}

class L<T; U> extends T implements U {…}

class M<T> extends A<T> {…}

JL also supports F-bounded polymorphism [28], which allows the specifi-

cation of recursively constrained type parameters. Below in class N, type parame-

ter T is constrained by interface F, which is itself dependent on, or a function of,

T. Class O illustrates how type parameters can be used in a declaration clause be-

fore they are defined.

 48

class N<T implements F<T>> {…}

class O<T implements G<U>; U implements H<T>> {…}

4.1.4 RELATED WORK

In the previous section, we summarized JL’s implementation of con-

strained parametric polymorphism. In this section, we describe other implementa-

tions of parametric polymorphism and discuss proposals for adding parametric

polymorphism to Java. We also compare JL to one of the more prominent of

these proposals.

Support for parameterized programming [48] first appeared in program-

ming languages in the late 1970’s. This support includes the use of parameterized

modules in OBJ [43,47], Ada [6] and CLU [72], the last of which also allows con-

straints on type parameters. At about the same time, ML [78,124] also provided

support for parameterized types.

More recently, the widespread use of C++ [110] has helped popularize pa-

rameterized programming. C++ templates and important libraries that use tem-

plates, such as the Standard Template Library [107,110], have introduced param-

eterized types to large numbers of programmers. The C++ template specification

defines a Turing-complete language [36] and supports advanced features like mix-

ins, partial evaluation, manual template specialization, and lazy code generation.

Czarnecki and Eisenecker [36] use templates for meta-programming, which al-

lows them to generate highly configurable applications. The drawbacks of using

C++ templates include the lack of type parameter constraints, code bloat when too

 49

many instantiations are specified, and the difficulty of tracing compilation errors

in template code.

C++ is significant in mixin research because it provides a well-supported

platform for experimentation and a large community of programmers. VanHilst

and Notkin [125,126,127] used C++ mixins to explore new design techniques and

new ways to increase code reuse. Smaragdakis and Batory [101,103] used C++ to

demonstrate that mixin layers (§2.3.3) and stepwise program refinement (§2.3.1)

further increase the benefits of mixin programming. They also developed a num-

ber of techniques specifically for programming with mixins in C++ [104].

As a result of this research, we recognized that C++ is missing important

support for mixin programming. C++ provides mixins, but it does not provide

mechanisms that make programming with mixins convenient. JL’s new language

features address these deficiencies. There is, however, one area in which C++

support for mixin programming is well-developed: Existing C++ compilers can

already produce efficient code from mixins. Berger, Zorn and McKinley [17]

show that even though mixins introduce many layers of abstraction, aggressive

method inlining results in mixin-generated code that performs at least as well as,

and sometimes better than, conventional code. This result reinforces our opti-

mism about the potential effectiveness of the class hierarchy optimization de-

scribed in Chapter 5.

Much of the recent activity in parametric polymorphism focuses on Java.

A number of proposals have been made for implementing parametric polymor-

phism in Java [1,19,24,33,82,105], though only one of these proposals [1] sup-

 50

ports mixins. Most of these proposals implement type parameter constraints simi-

lar to the way JL does. The PolyJ proposal [82], however, takes a structural ap-

proach by specifying type parameter constraints as lists of required methods. The

Generic Java (GJ) [24] proposal forms the basis of JSR-14 [56], which is the Java

Specification Request to add generic types to the Java language. Given the im-

portance of the GJ approach to the Java community, we briefly compare it to JL.

4.1.4.1 Java Layers and Generic Java

In this section, we explore the fundamentally different approaches to pa-

rametric polymorphism that JL and GJ each implement. We first describe GJ’s

homogeneous approach, its implementation, and its limitations. We then describe

JL’s heterogeneous approach and compare it to GJ.

GJ is a backward compatible extension of Java that implements parameter-

ized types and methods. Backward compatibility means that existing libraries can

be retrofitted with generic interfaces without changing the library code. GJ uses a

homogeneous implementation, which means that all instantiations of a parametric

type execute the same compiled code. This implementation eases the transition

from legacy code because parameterized and unparameterized versions of the

same types can co-exist in an application without code duplication. In general,

homogeneous implementations are memory efficient because a single class im-

plements all instantiations of a parametric type.

Homogeneous implementations, however, also have a number of disad-

vantages. To understand these disadvantages, we describe GJ’s implementation.

GJ works by erasing type parameters at compile time and replacing them with

 51

general types that are appropriate for all instantiations. Figure 6 shows parametric

class C and its erasure, which gets compiled. In GJ, no type parameter informa-

tion is available at runtime. Instead, the GJ compiler inserts dynamic type casts

into code to guarantee type safety; it also inserts bridge methods to guarantee that

method overriding works properly.

Figure 6 - Type Parameter Erasure in Homogeneous Implementations

Type erasure loses information because actual type parameter bindings

known at compile time are not available at runtime. In general, erasure restricts

type parameter usage whenever a specific type is needed at runtime. For exam-

ple, a type parameter cannot be used as the non-array type allocated in a new ex-

pression. Once an actual type parameter is replaced with its more general erasure

type, the actual type is not known at runtime and cannot be allocated. For the

same reason, type parameters cannot be used as the type in cast, catch or in-

stanceof expressions. More subtly, type erasure restricts a class from inheriting

(directly or indirectly) from two different instantiations of the same parametric

interface. In GJ, type erasure also prevents the binding of primitive types to type

parameters.

class C<T>
{
 T f;
 T m(T t){…}
}

class C
{
 Object f;
 Object m(Object t)
 {…}
}

Erasure

 52

Homogeneous implementations impose a number of other usage limita-

tions on the programmer, three of which we list here.

First, the type parameters of a parametric class cannot be used inside the

class’s static initializers, static field declarations, or static methods. This limita-

tion is necessary because all instantiations of a parametric type share the same

compiled code. This code sharing implies that each static definition must work in

all instantiations, which means that these definitions cannot depend on instantia-

tion-specific type parameters.2 GJ softens the impact of this limitation by sup-

porting parameterized static methods, which are static methods that declare their

own type parameters.

Second, in homogeneous implementations like GJ that do not use type pa-

rameter information at runtime, reflection can be used to circumvent the dynamic

type checks inserted by the compiler. Consider, for example, parametric class C

and its erasure in Figure 6 above. If we write a program that uses C<String>,

the compiler will insert dynamic type casts into our program. These type casts

guarantee that accesses to field f and calls to method m use String values as re-

quired. In the same program, however, we could use reflection to directly access

f or directly execute m using any non-primitive type that we choose.

Third, and the most significant limitation from the perspective of Java

Layers, is that homogeneous implementations in Java cannot support mixins.

When GJ performs type parameter erasure, it loses the supertype information nec-

2 GJ also prohibits the use of a parametric class’s type parameters in the class’s static member
types. Static means single definition when applied to fields and methods, but it means no lexically
enclosing instances (JLS §8.5.2) when applied to nested types. Static nested types do not share
code between instantiations any differently than top-level types or inner classes, so there’s no need
for GJ’s restrictions on the use of type parameters in static nested types.

 53

essary for mixin instantiation. Moreover, it is not possible to use the same com-

piled class for all instantiations of a mixin because different instantiations can

have different supertypes, and supertypes are fixed in Java bytecode [71].

This brings us to the alternative implementation of parametric types that is

used in JL. JL uses a heterogeneous implementation, which means that each dis-

tinct instantiation of a parametric type executes its own specialized version of

compiled code. Figure 7 shows parametric class C and the instantiation of

C<String>, which gets compiled. Since each instantiation generates specialized

code, heterogeneous implementations like JL and C++ can experience code bloat

if a large number of instantiations are used.

Figure 7 - Instantiation in Heterogeneous Implementations

There are a number of interesting points of comparison between JL and

GJ. First, none of the restrictions on type parameter usage in GJ applies in JL,

which makes JL somewhat more expressive than GJ and, possibly, simpler to

program because there are fewer rules to remember. Second, primitive types can

be bound to type parameters in JL. Third, dynamic type casts are not inserted into

code by the JL compiler to augment type checking. As a result, reflection cannot

class C<T>
{
 T f;
 T m(T t){…}
}

class C_String
{
 String f;
 String m(String t)
 {…}
}

Instantiation
C<String>

 54

be used in JL to circumvent type checking because type parameter information is

incorporated into each generated class.

On the other hand, JL does not support the backward compatibility proper-

ties of GJ, so the migration to parameterized Java could be more difficult using

JL. In addition, JL requires name mangling (§6.3) to uniquely identify each gen-

erated class, which exposes users to compiler generated names.

Lastly, like all heterogeneous implementations in Java, JL is susceptible to

the package problem [86]. To understand this problem, consider the instantiation

R.C<S.D>, where R and S are different packages, C is a parameterized class, and

D is a class. The class generated by this instantiation, C_D, must reside in some

package. We can put C_D in R only if D is public. We can put C_D in S only if

C does not refer to package members in R. If neither of these conditions holds,

we cannot put C_D in R, S, or any other package, and the instantiation fails.

In JL, all generated classes are put in the parametric type’s package. Con-

sequently, actual type parameters are either public or they reside in the same

package as the parametric type in which they are used. An interesting future re-

search topic would explore how heterogeneous implementations of parametric

polymorphism could be smoothly integrated into a language’s access control

mechanism. The goal would be to eliminate inconveniences like the package

problem.

 55

4.2 Deep Conformance

JL’s support for deep conformance promotes the use of mixin layers and

stepwise program refinement as described in §2.4.3. Deep conformance is the

general term we use to groups together the concepts of deep subtyping and deep

interface conformance [101]. In this section, we define both of these concepts

and describe JL’s novel support for them. We then discuss work related to deep

conformance.

4.2.1 DEEP SUBTYPING

There are two kinds of deep subtyping in JL. The first kind applies to

classes and was originally defined by Smaragdakis [101]. The second kind ap-

plies to Java interfaces. We recursively define both kinds below.

Class C is a deep subclass of another class B if (1) C is a subclass of B,
and (2) for every publicly accessible nested class B.N, there is a publicly
accessible nested class C.N that is a deep subclass of B.N.

Interface J is a deep subinterface of another interface I if (1) J is a subin-
terface of I, and (2) for every nested interface I.N, there is a nested inter-
face J.N that is a deep subinterface of I.N.

Since interface members are always public, the above two definitions are

the same in all respects except that one describes classes and the other describes

interfaces. In this discussion, statements we make about classes to also apply to

interfaces and vice versa.

Deep subclassing characterizes the relationship between a superclass B

and its deep subclass C in three ways. First, for each public member class in B,

 56

there is public member class with the same name in C. These member classes in

C can be either inherited or explicitly declared in C. Second, if a public member

class is declared in C and that class has the same name as a public member class

in B, then the class in C is a subclass of the class in B. Third, deep subclassing is

applied recursively to all levels of nesting in B and C.

Figure 8 shows class D and its deep subclass E. The nested classes on the

D’s public interface are X, X.X1, Y and Z. All like-named classes on E’s public

interface are subclasses of their corresponding classes in D. If E.X, E.X.X1, or

E.Y did not inherit from their corresponding class in D, or if E.Z was defined and

it did not inherit from D.Z, then E would not be a deep subclass of D.

Figure 8 - Deep Subclassing

D

X

X1

Y Z

E

X

X1

Y

All nested classes are public

 57

JL provides the deeply modifier to enforce deep subtyping constraints.

Programmers specify deep subtypes by using deeply in extends clauses. Figure 9

shows how deeply is used to restrict inheritance in mixin layers. Classes A and B

contain nested classes. Mixin class F is defined to be a deep subtype of the class

that gets bound to type parameter T. In instantiation F<A>, F<A>.Inner1 ex-

tends A.Inner1 as required, so instantiation succeeds. In instantiation F,

however, F.Inner2 does not extend B.Inner2 type, so instantiation fails

because of a deep conformance error.

Figure 9 - Restricting Inheritance with Deep Subtyping

Figure 10 shows how the deeply modifier is used to constrain type pa-

rameter bindings. In class G, T can only be bound to classes that are deep sub-

types of A (including A). In mixin H, deeply is used in both the constraint clause

and the inheritance clause. In the constraint clause, U’s binding is restricted to

classes that are deep subtypes of A. In the inheritance clause, all instantiations of

H are deep subclasses of the class bound to U. Together, these two uses of deeply

imply that all instantiations of H are deep subtypes of A.

class A {public class Inner1 {…}}
class B {public class Inner1 {…} public class Inner2 {…}}

class F<T> extends T deeply {
 public class Inner1 extends T.Inner1 {…}
 public class Inner2 {…}
}

Instantiations
F<A> // OK, F<A> is a deep subclass of A
F // Compile error, F is not a deep subclass of B

 58

Figure 10 - Constraining Type Parameters with Deep Subtyping

The position of the deeply modifier in an extends clause affects its mean-

ing. When deeply appears after a type or type parameter, it applies only to its

immediate antecedent. When deeply appears directly after the extends keyword,

it applies to all types and type parameters in the clause. Using these rules, the two

interface definitions in Figure 11 are equivalent.

Figure 11 - Deep Subtyping Syntax

4.2.2 DEEP INTERFACE CONFORMANCE

Deep interface conformance is similar to deep subtyping, except that deep

interface conformance relates interfaces to the classes that subtype them. In this

section, we define deep interface conformance and then show how it is used to

specify nested interfaces as prototypes for nested classes.

interface I<T; U> extends T deeply, U deeply {…}

interface I<T; U> extends deeply T, U {…}

class A {public class Inner1 {…}}

class G<T extends A deeply> {…}

class H<U extends A deeply> extends U deeply {…}

 59

We have adapted the definition of deep interface conformance from

Smaragdakis’s original definition [101]. Our recursive definition below uses Java

terminology.

Class C conforms deeply to interface I if (1) C implements I, and (2) for
each publicly accessible nested interface I.N, there is a publicly accessible
class C.N that conforms deeply to I.N.

Deep interface conformance characterizes the relationship between an in-

terface I and its deeply conforming class C in two ways. First, for each member

interface in I, there is public member class with the same name in C and that class

implements the member interface. Second, deep interface conformance is applied

recursively to all levels of nesting in I and C.

Figure 12 shows interface I and its deeply conforming class C. The nested

interfaces on I’s public interface are X1, X1.X1a, and Y2. All like-named classes

on C’s public interface implement their corresponding interface in I. If C.X1,

C.X1.X1a, or C.Y2 did not exist, or if they did not implement their correspond-

ing interface in I, then C would not deeply conform to I.

 60

Figure 12 - Deep Interface Conformance

JL uses the deeply modifier introduced in the previous section to enforce

deep interface conformance. Figure 13 shows how deeply is used in implements

clauses to restrict inheritance in mixin layers. Interfaces J and K contain nested

interfaces. Mixin class F is defined to deeply conform to the interface bound to

type parameter T. In instantiation F<J>, F<J>.Inner1 implements J.Inner1

as required, so instantiation succeeds. In instantiation F<K>, however,

F<K>.Inner2 does not implement K.Inner2 type, so instantiation fails because

of a deep conformance error.

I

X1

X1a

Y2

C

X1

X1a

Y2

All nested types are public

interfaces

classes

means implements

 61

Figure 13 - Restricting Inheritance with Deep Interface Conformance

Figure 14 shows how the deeply modifier is used to constrain type pa-

rameter bindings. In class G, T can only be bound to classes that deeply conform

to interface L. In mixin H, deeply is used in both the constraint and inheritance

clauses. In the constraint clause, U’s binding is restricted to classes that deeply

conform to L. In the inheritance clause, all instantiations of H are deep subclasses

of the class bound to U. Together, these two uses of deeply imply that all instan-

tiations of H also deeply conform to L. The placement of deeply in implements

clauses follows the same syntactic rules as described in §4.2.1 for extends clauses.

Figure 14 - Constraining Type Parameters with Deep Interface Conformance

interface J {interface Inner1 {…}}
interface K {interface Inner1 {…} interface Inner2 {…}}

class F<T> implements T deeply {
 public class Inner1 implements T.Inner1 {…}
 public class Inner2 {…}
}

Instantiations
F<J> // OK, F<J> deeply conforms to J
F<K> // Compile error, F<K> does not deeply conform to K

interface L {interface Inner1 {…}}

class G<T implements L deeply> {…}

class H<U implements L deeply> extends U deeply {…}

 62

4.2.3 EXPLICITLY PROPAGATING TYPES

In previous sections, we defined deep subtyping and deep interface con-

formance in terms of public nested types. We also defined them as independent,

non-overlapping constraints on the nested structure of types. In this section, we

broaden the capabilities of deep conformance in two ways. First, we allow pack-

age or protected types to participate in deep conformance processing. Second, we

allow the processing of deep subtyping constraints and deep interface confor-

mance constraints to be interleaved with each other.

We introduce a new modifier to extend the capabilities of deep confor-

mance. The propagate modifier allows nested types to be explicitly included in

deep conformance processing.3 Deep conformance, whether it is deep subtyping

or deep interface conformance, processes explicitly propagated nested types in

addition to the public nested types that are always processed. We now describe

the two ways that this extension is used.

The first reason to use propagate is to include package or protected types

in deep conformance processing. Figure 15 shows class A, which contains pro-

tected class InnerC. Mixin F can be instantiated with A because (1)

F<A>.InnerC is a subclass of A.InnerC, and (2) F<A>.InnerC has access

control at least as permissive as the access control on A.InnerC. On the other

hand, G<A> fails to compile because G<A>.InnerC is not a subclass of

A.InnerC.

3 JL’s propagate modifier is used for both constructor propagation (§4.4) and deep conformance.

 63

Figure 15 - Propagating Non-Public Nested Types

The second reason to use propagate is to interleave deep subtyping and

deep interface conformance. Figure 16 shows class B, which contains package

accessible interface InnerI. Mixin M can be instantiated with B because (1)

M.InnerI implements B.InnerI, and (2) M.InnerI has access control

at least as permissive as the access control on B.InnerI. On the other hand,

N fails to compile because no class N.InnerI is defined that implements

B.InnerI. propagate can be used in a similar way to deeply subtype classes

nested in interfaces.

class A {propagate protected class InnerC {…} }

class F<T> extends T deeply {
 protected class InnerC extends T.InnerC {…}
}

class G<T> extends T deeply {
 protected class InnerC {…}
}

Instantiations
F<A> // OK, F<A> is a deep subclass of A
G<A> // Compile error, G<A> is not a deep subclass of A

 64

Figure 16 - Mixing Deep Subtyping and Deep Interface Conformance

4.2.4 DISCUSSION

Adding deep conformance to Java provides support for a currently under-

specified part of the language. In Java, a class that implements an interface is not

required to implement that interface’s nested interfaces [49,112]. For example,

Figure 17 shows four classes that implement interface I, which has a nested inter-

face Inner. These classes all have a member type named Inner, but this mem-

ber type is different for each class: C.Inner is the inherited interface I.Inner;

D.Inner is a newly defined interface that hides I.Inner; E.Inner is a class

that implements I.Inner; and F.Inner is a class that hides I.Inner.

class B {propagate interface InnerI {…} }

class M<T> extends T deeply {
 class InnerI implements T.InnerI {…}
}

class N<T> extends T deeply {}

Instantiations
M // OK, M is a deep subclass of B
N // Compile error, N is not a deep subclass of B

 65

Figure 17 - Implementing Interfaces in Java

The above example shows that interface implementation in Java is shal-

low, which means that Java classes do not have to implement their interfaces’

nested interfaces. Deep interface conformance provides a way for Java program-

mers to specify exactly how an interface’s nested interfaces are to be treated. In

Figure 17, class E deeply conforms to interface I; the use of deeply in the defini-

tion of E would both advertise and enforce this conformance property.

The most important benefit of deep conformance, however, is its enhanced

support for mixin programming. Deep subtyping and deep interface conformance

reinforce the use of mixins as incremental refinements by establishing a uniform

pattern of inheritance in mixin compositions. This uniformity has two benefits.

First, applications can be built in a stepwise manner because features are imple-

mented in mixin layers that have a common structure. This common structure

allows the mixin layers to be composed with one another. Second, mixin-

generated code presents predictable interfaces to users because nested type names

are preserved in subclasses.

Figure 18 illustrates how deep conformance promotes well-structured code

in the Fidget family of graphical user interface libraries (§7.2). BaseFidget and

interface I {interface Inner {…} }

class C implements I {}
class D implements I {interface Inner {…} }
class E implements I {class Inner implements I.Inner {…} }
class F implements I {class Inner {…} }

 66

LightWeightFidget are simplified versions of Fidget classes that we intro-

duced in Figure 5 in §2.4.3. The Fidget design rests on three pillars. The first

pillar is the FidgetTkIfc interface, which declares all the nested widget inter-

faces. The second pillar is BaseFidget, which deeply conforms to

FidgetTkIfc and provides the basic widget function used in all mixin composi-

tions. Checkbox and Button are examples of two widgets in BaseFidget that

implement their corresponding interfaces from FidgetTkIfc. The third pillar of

Fidget design is the use of mixins layers that incrementally add function to librar-

ies. ColorFidget, which adds color display support to a GUI library, represents

the typical structure of a Fidget mixin layer. In Fidget, every mixin’s supertype

deeply conforms to FidgetTkIfc and every mixin deeply subtypes its super-

type. The three inheritance clauses in ColorFidget that name FidgetTkIfc

are included for clarity, but strictly speaking are not necessary.

 67

Figure 18 - The Use of Deep Conformance in Fidget

The three pillars of Fidget design provide a foundation on which new

Fidget function can be built. New Fidget features are implemented in mixin lay-

ers that have the same structure as ColorFidget. These mixin layers are syntac-

tically interchangeable since they all deeply conform to the same interface. In

§7.2, we describe how different mixin compositions generate different GUI librar-

ies. From a design perspective, Fidget libraries can be built using stepwise re-

finement because each widget class inherits from its corresponding widget class

interface FidgetTkIfc {
 interface Checkbox {…}
 interface Button {…} …
}

class BaseFidget<> implements FidgetTkIfc deeply
{
 public abstract static class Checkbox
 implements FidgetTkIfc.Checkbox {…}

 public abstract static class Button
 implements FidgetTkIfc.Button {…} …
}

class ColorFidget<T implements FidgetTkIfc deeply>
 extends T deeply
 implements FidgetTkIfc deeply
{
 public static class Checkbox
 extends T.Checkbox
 implements FidgetTkIfc.Checkbox {…}

 public static class Button
 extends T.Button
 implements FidgetTkIfc.Button {…} …
}

 68

in its supertype mixin layer. In addition, different Fidget libraries present the

same basic interface to user applications (though new features can add new meth-

ods to widget classes).

4.2.4.2 Design and Implementation Alternatives

This section describes alternate ways to implement deep conformance.

We first discuss how the timing of conformance checking affects the semantics of

deep conformance. We then describe how different levels of automation affect

how programmers use nested interfaces. In both cases, we describe the approach

taken by JL.

The first implementation issue is to decide when deep conformance proc-

essing is performed. Deep conformance processing can always take place before

runtime because it checks static class structure. Processing can occur either when

types are defined (compile-time) or when type parameters are bound (instantia-

tion-time). In some cases, the kind of constraint determines when conformance

processing occurs. For example, constraints on type parameters can only be

checked at instantiation-time because that is when type parameter bindings are

known. Similarly, constraints on inheritance clauses of non-parametric types can

only be checked at compile-time because these types are not processed at instan-

tiation-time.

The interesting case, however, is deciding when constraints on inheritance

clauses of parametric types should be checked. In this case, checks can be per-

formed at either instantiation-time or at compile-time, and the time chosen deter-

mines the extent of the checking that occurs. Timing plays such a pivotal role be-

 69

cause different type information is available at different times. If checking occurs

at instantiation-time, then the actual types bound to type parameters can be used.

If checking occurs at compile-time, then type parameter constraints are often the

only type information available for conformance checking.

The timing of the conformance checks affects whether a parametric type

instantiation succeeds or not. To understand this effect, consider mixin M and its

constrained type parameter T shown in Figure 19. The figure also contains an in-

stantiation of M using class A, which is not shown. Conformance checking that

involves the second occurrence of deeply, the occurrence in M’s inheritance

clause, is affected by timing. At instantiation-time, deep subclass processing can

inspect all nested types in A, including nested types not in ConstraintClass.

At compile-time, however, deep subclass processing can only inspect nested types

in ConstraintClass, which are a subset of the nested types in any actual type

bound to T. A similar example could be constructed for deep interface confor-

mance.

Figure 19 - Deep Subclass Testing

The compile-time approach relies on type parameter constraints to per-

form deep conformance checking. These constraints are used when inheritance

clauses contain type parameters as we saw above. If no constraints are specified,

class M<T extends ConstraintClass deeply>
 extends T deeply {…}

Instantiation
M<A>

 70

however, then inheritance clauses like those in class M cannot be checked. If the

constraints are themselves parameterized, then deep conformance processing be-

comes complicated.

For these reasons, JL implements the instantiation-time approach, which

relies on the actual types that are bound to type parameters. This approach uses

more precise type information than is available at compile-time. Unfortunately,

this extra precision can sometimes cause deep conformance violations that cannot

be foreseen when a parametric class is defined. For example, violations can occur

when a mixin and its supertype use the same name for unrelated nested types. In

practice, these name conflicts should be rare because applications use deep con-

formance as part of a coordinated design, as we saw in the Fidget example in the

last section. The key point, however, is that instantiation-time conformance uses

specific type information to perform more rigorous checks.

The second implementation question involves choosing the proper level of

automation for deep interface conformance. In §4.2.2, we specified that if class C

deeply conforms to interface I, then C must declare or inherit an appropriately

named nested class that implements each nested interface in I. If one of these

nested classes is not found during conformance checking, the compiler could ei-

ther report an error or generate the missing nested class. The error reporting ap-

proach is used in the current version of JL; the generative approach was used in

an earlier version of JL (§6.1). We now compare these two approaches.

The generative approach reduces programmer effort, similar to the way

that automatically generated default constructors reduce effort. This approach

 71

also reduces the number of conformance violations because classes are automati-

cally generated when needed. On the other hand, the error reporting approach

requires that programmers be familiar with the interfaces they use, which is a rea-

sonable way to promote good programming practice. We prefer the error report-

ing approach because of its simplicity, but both approaches have merit.

In summary, we described some of the design tradeoffs that confront JL

and other implementations of deep conformance. The main point is that even

though deep conformance can be precisely defined as a set of relationships be-

tween types, its actual semantics depend on implementation details that also need

to be precisely defined. We now describe other approaches to deep conformance.

4.2.5 RELATED WORK

The notion of deep subtyping was implicitly part of the realm definition of

P++ [100], a 1996 GenVoca extension to C++ that used nested classes to achieve

stepwise program refinement. In 1998, deep subtyping was explicitly defined in

the private correspondences of Wadler, Odersky and Smaragdakis concerning

Generic Java [129]. Subsequently, deep interface conformance was defined by

Smaragdakis [101,102] as a way to express properties about classes that imple-

mented nested interfaces.

JL adopts the formal definitions of deep subtyping and deep interface con-

formance used by Smaragdakis [101]. JL contributes by providing an alternative

to the design proposed by Smaragdakis and by providing the first implementation

of deep subtyping and deep interface conformance. In the last section, we saw

how implementing deep conformance exposes certain design issues and we saw

 72

how JL addresses these issues. These same issues apply to Smaragdakis’s design,

though the design specification does not explore them. We now compare JL and

Smaragdakis’s design proposal.

The goal of Smaragdakis’s design is to provide the essentials of deep in-

terface conformance in Java, to support Java’s current interface semantics, and to

avoid adding new keywords to Java. This design can be easily adapted to exten-

sions of Java that support constrained parametric polymorphism, like Generic

Java [24].

Figure 20 shows interface I that contains nested interface InnerI.

Smaragdakis introduces the concept of class prototypes, which are analogous to

method prototypes and can appear in interface definitions. The class prototype in

I requires that any class that implements I must also contain a nested class named

NestedC, and NestedC must implement InnerI. Class C in the example meets

this requirement.

Figure 20 - Deep Interface Conformance using Class Prototypes

The use of class prototypes is simple and similar to the use of method pro-

totypes, which Java already supports. The class prototype in I above specifies the

interface I {
 interface InnerI {…}

 class NestedC implements InnerI; // class prototype
}

class C implements I {
 public class NestedC implements I.InnerI {…}
}

 73

name of the required nested class in C (NestedC), but this name does not have to

be same as I’s nested interface (InnerI) as it does in JL. Also, class prototypes

do not require new keywords; JL requires the new deeply modifier.

The most significant difference between the two approaches, however, is

how the decision to apply deep conformance is made. When using class proto-

types, the interface writer decides whether or not all classes that implement an

interface will deeply conform to it. On the other hand, the class writer in JL de-

cides whether a class deeply conforms to an interface or whether it implements an

interface using standard Java semantics. In this sense, the JL approach is more

flexible because classes can deeply conform to any interface, whether or not the

interface writer originally planned for deep conformance.

JL’s approach to deep interface conformance automatically implements

the recursive aspect of the definition (§4.2.2). Deep conformance in JL is auto-

matically recursive to all nesting levels whenever deeply is used. On the other

hand, deep conformance using class prototypes must be explicitly specified at

each nesting level in the interface source code.

Lastly, we note that JL uses the propagate keyword to process non-public

nested types and to mix the processing of deep subtyping and deep interface con-

formance. Similar capabilities could be added to the class prototype approach,

but they are not currently specified.

 74

4.3 The Implicit This Type Parameter

JL’s implicit This type parameter allows programmers to express the most

derived class of a mixin-generated hierarchy. In §2.4.2, we described how This

extends the semantics of Java’s self-type references to mixin types. In this sec-

tion, we define JL’s implicit This type parameter and describe its novel design

and implementation. The idea of implicit type parameters, and This in particular,

can be adapted to other parametrically polymorphic object-oriented languages.

We begin by describing what This means and how it is used in self-type

references. We then show how This addresses a more general problem in object-

oriented languages. After these motivating examples, we precisely define This by

specifying how it is bound. We then discuss design and implementation topics,

and we conclude with related work.

4.3.1 THE SEMANTICS OF THIS

JL’s This type parameter is conceived in the spirit of Java’s this reference.

In Java, the this object reference is used in non-static methods to refer to the ob-

ject on which the method is invoked. The this reference is an implicit argument

passed to all constructors and non-static methods. In JL, the This type parameter

is used in parametric types to refer to the most derived class instantiated by a

composition of parametric types. The This type parameter is an implicit type pa-

rameter passed to all parametric types.

In each instantiated parametric type, This is bound to a class type. De-

pending on the context, we use the term This-binding to refer either (1) to the

process of binding This to a class type or (2) to the class type that actually gets

 75

bound to This. In §4.3.3, we specify the rules for binding This. These rules de-

fine special This-bindings for parametric interfaces and for mixin types. In the

remainder of this section, we use two examples to introduce the capabilities of

This.

The top portion of Figure 21 shows the definition of class C, which explic-

itly declares type parameter T. The type parameters T and This are both used in

the definition of C. The bottom portion of Figure 21 shows an instantiation of C

with String. The instantiated class is named C_String, which follows a nam-

ing scheme that appends the actual type parameter names in declaration order to

the parametric type name.4 C_String is the most derived class generated by this

instantiation of C, so C_String is bound to This in the generated code

4 The generated names shown in this section are simplified JL names; see §6.3 for details.

 76

Figure 21 - Binding This in a Parametric Class

The second example describes This-binding in mixin classes. The top por-

tion of Figure 22 defines two classes. The parametric class D declares no explicit

type parameters but uses This in its definition. In JL, parametric types can access

their implicit type parameter even if they do not explicitly declare type parame-

ters. Mixin class M is defined and it also uses This. The bottom portion of Figure

21 shows an instantiation using M and D. The This-binding in both M and D is

M_D_, which is the most derived class in the mixin-generated hierarchy.

class C<T> {
 T _t;
 This _f;
 This m(Object o)
 {if (o instanceof This)
 _f = new This();
 return _f;}
}

C<String>

Binding

class C_String {
 String _t;
 C_String _f;
 C_String m(Object o)
 {if (o instanceof C_String)
 _f = new C_String();
 return _f;}
}

 77

Figure 22 - Binding This in a Mixin Class

4.3.2 AN OBJECT-ORIENTED PROGRAMMING PROBLEM

This section describes how This addresses a general problem involving

inheritance in object-oriented programming. Figure 23 shows two Java classes

that define the nodes used in linked lists. SingleLink defines nodes in singly

linked lists; DoubleLink defines nodes in doubly linked lists by extending

SingleLink. This use of inheritance, however, leads to an asymmetry in Dou-

bleLink: its _next field is of type SingleLink and its _prev field is of type

DoubleLink.

class D<> {
 This _d;
}

M<D<>>

Binding

class D_ {
 M_D_ _d;
}

class M_D_
 extends D_
{
 M_D_ _m;
}

class M<T>
 extends T
{
 This _m;
}

 78

Figure 23 - List Nodes in Java

DoubleLink’s asymmetry causes two problems. First, the _next field in

DoubleLink is not precisely type checked since a SingleLink object could be

assigned to the _next field in a doubly linked list. Second, manually inserted

type casts are sometimes required when using the _next field, as the code frag-

ment in Figure 23 illustrates.

We would like to define a DoubleLink class that reuses the

SingleLink class and is type-safe. In JL, both objectives can be met using pa-

rameterized types and This, as we see in Figure 24. The top portion of the figure

redefines the node classes as parametric types. The first instantiation shows that

if SingleLink<> is used alone, then This is bound to SingleLink<>. The sec-

ond instantiation shows that if SingleLink<> is used as a parent class, then This

is bound to the most derived class that is generated. In the instantiation of

DoubleLink<>, This is bound to DoubleLink<> in both generated classes to

achieve the type safety that we want.

class SingleLink {
 Object _data;
 SingleLink _next;
}

class DoubleLink extends SingleLink {
 DoubleLink _prev;
}

Code Fragment
DoubleLink d = … // Initialize variable d
DoubleLink e = d._next(); // Compile error, needs type cast

 79

Figure 24 - List Nodes in JL

Figure 25 shows an alternative definition of list nodes in which Dou-

bleLink<T> is defined as a mixin. The instantiation of DoubleLink<T> with

SingleLink<> binds all occurrences of This to the most derived class that is

generated, just as the instantiation of DoubleLink<> above in Figure 24 does.

class SingleLink<> {
 Object _data;
 This _next;
}

class DoubleLink<> extends SingleLink<> {
 This _prev;
}

SingleLink<>

Binding

class SingleLink_ {
 Object _data;
 SingleLink_ _next;
}

DoubleLink<>

Binding

class SingleLink_ {
 Object _data;
 DoubleLink_ _next;
}

class DoubleLink_
 extends SingleLink_
{
 DoubleLink_ _prev;
}

 80

Figure 25 - List Nodes in JL Using Mixins

4.3.3 BINDING THIS

We described This usage in the previous two sections. In this section, we

specify how This works by defining the binding process. This-binding occurs

either implicitly or explicitly whenever a parametric type is instantiated. We first

discuss implicit binding and then discuss explicit binding.

Implicit This-binding is sensitive to the context in which an instantiation

appears. Instantiations are in an inheritance context when they occur (1) in an

extends or implements clause of a class definition or (2) in an extends clause of an

interface definition. Otherwise, instantiations are in a non-inheritance context.

We now describe how This is implicitly bound in each of these contexts.

class SingleLink<> {
 Object _data;
 This _next;
}

class DoubleLink<T> extends T {
 This _prev;
}

DoubleLink<
 SingleLink<>>

Binding

class SingleLink_ {
 Object _data;
 DoubleLink_SingleLink_ _next;
}

class DoubleLink_SingleLink_
 extends SingleLink_
{
 DoubleLink_SingleLink_ _prev;
}

 81

4.3.3.1 Implicit Binding in Non-Inheritance Contexts

Instantiations that appear outside inheritance clauses are said to be in non-

inheritance contexts. Non-inheritance contexts include field or variable declara-

tions; formal parameters or return types of methods; cast, instanceof or allocation

expressions; type parameter constraint clauses; and non-mixed-in parameters to

other type instantiations.

When a parametric type is in a non-inheritance context, then the instantia-

tion of that type will be the most derived type in the generated hierarchy. For pa-

rametric classes, this most derived type is the class that we want to bind to This

(§4.3.1). For parametric interfaces, no class binding for This is generated, so we

use Object. Thus, the rules for implicit This-binding in non-inheritance contexts

are straightforward:

• The implicit binding for a parametric class is the class’s instantiation.

• The implicit binding for a parametric interface is java.lang.Object.

Figure 26 shows class D, which instantiates three parametric classes, A, B

and C, and a parametric interface, I (none of which is shown). None of the para-

metric types are mixins, so all instantiations in D appear in non-inheritance con-

texts. Using the two rules above, This is bound in each instantiated type as indi-

cated in the figure.

 82

Figure 26 - This-Binding in Non-Mixin Classes

4.3.3.2 Implicit Binding in Inheritance Contexts

In an inheritance context, the type being defined (the defining subtype) in-

herits from an instantiated parametric type (the instantiated supertype). The This-

binding in the instantiated supertype depends on (1) whether the defining subtype

is a class or interface and (2) whether the defining subtype is parametric or non-

parametric. We now describe how each of the four possible subtype combina-

tions supports the semantics of This.

If the defining subtype is a non-parameterized class, then This in the in-

stantiated supertype is bound to the defining subtype itself. If the defining sub-

type is a parameterized class, then This in the instantiated supertype is bound to

the This-binding of the defining subtype.

class D {
 A<int> _a;
 A<B<Vector>> _ab;
 B<String> m(C<HashMap> map){I<HashMap> imap = map; …}
}

Instantiation This-Binding
---------------- ----------------
A<int> A_int
A<B<Vector>> A_B_Vector
B<String> B_String
C<HashMap> C_HashMap
I<HashMap> java.lang.Object

 83

When the defining subtype is an interface, the instantiated supertype must

also be an interface. If the defining subtype is a non-parameterized interface, then

This in the instantiated supertype is bound to java.lang.Object. If the defining

subtype is a parameterized interface, then This in the instantiated supertype is

bound to the This-binding of the defining subtype. Table 3 summarizes implicit

This-binding in inheritance contexts.

Defining Subtype This-Binding in Instantiated Supertype

Non-Parametric Class Defining subclass

Parametric Class This-binding of defining subclass

Non-Parametric Interface java.lang.Object

Parametric Interface This-binding of defining subinterface

Table 3 - Implicit Bindings in Inheritance Contexts

To see how This-binding works, we present examples of each of the four

cases described in the table above. Our examples show code fragments that in-

stantiate types and use the simplified naming convention for instantiations de-

scribed in §4.3.1.

In the code fragment below, non-parametric class D extends class C<>.

This is bound to D in C_ (the instantiation of C) using the non-parametric class

rule.

 84

class C<> {…}
class D extends C<> {…}

Below, class E<> extends class C<>. The declaration of field e binds This

to E_ in both C_ and E_. Also shown is the declaration of field f, which instanti-

ates mixin F<T> with C<>. In F<C<>>, This is bound to F_C_ in both generated

classes, C_ and F_C_. The parametric class rule is used in the declarations of

fields e and f.

class C<> {…}
class E<> extends C<> {…}
E<> e;
class F<T> extends T {…}
F<C<>> f;

Below, interface J extends interface I<>. This is bound to

java.lang.Object in I_ using the non-parametric interface rule.

interface I<> {…}
interface J extends I<> {…}

Below, interface K<> extends interface I<>. The declaration of field k

binds This to java.lang.Object in both K_ and I_. This is bound in K_ using the

interface rule for non-inheritance contexts (§4.3.3.1); This is bound in I_ using

the parametric interface rule. Also shown is class D, which binds This to D in

both K_ and I_. In this case, the non-parametric class rule determines the binding

in K_ and the parametric interfaces rule determines the binding in I_.

 85

interface I<> {…}
interface K<> extends I<> {…}
K<> k;
class D implements K<> {…}

The simple naming scheme that we have been using is fine for illustrative

purposes, but is not adequate for JL’s implementation. One problem is that the

same name is used for instantiations with different This-bindings. For instance, in

the last example, the name K_ is used for instantiations of K<> with This bound to

java.lang.Object and with This bound to D. Clearly, both versions of K_ cannot

represent the same type because each version can declare different fields and

methods using This. Since types are distinguished by name in Java, This must be

used along with explicitly declared type parameters to distinguish instantiations.

We leave the details of JL’s naming scheme until §6.3, but we note that

even when This is used to distinguish instantiations, implicit This-binding does

not always instantiate the precise type that we need. To allow for greater control

of over type generation, JL provides a way to explicitly bind This, which we now

describe.

4.3.3.3 Explicit Binding

In this section, we describe how JL generates types and how This-binding

affects type generation. We then consider cases in which implicit This-binding

does not generate the types we need. To address these cases, we introduce ex-

plicit This-binding, which allows programmers to override default This-binding.

In Java, types are identified by their fully-qualified names. In JL, para-

metric types are not Java types (§4.1); they are type functions or type schemas that

 86

generate Java types when they are instantiated. Each distinct instantiation of a

parametric type produces a distinct Java type. Therefore, only instantiations gen-

erated from the same parametric type with the same actual parameters can have

the same Java type.

In JL, a parametric type name is combined with all its actual type parame-

ter names, including the name of the type bound to This, to uniquely identify the

type of an instantiation. This process of name mangling is described in detail in

§6.3. For the purposes of this discussion, we now extend the simple naming

scheme of the previous sections to incorporate the This-binding:

The name of an instantiated type consists of the parametric type’s name,
the name of the This-binding, followed by the names of the actual type pa-
rameters in declaration order. We precede the This-Binding component
with a colon (:) to distinguish it.

Figure 27 uses this new naming scheme to illustrate how the default This-

binding is not always appropriate. Class C implements interface I<>, which binds

This in I<> to C. In addition, class D<T> constrains type parameter T with I<>,

which binds This in I<> to java.lang.Object.

The lower two portions of Figure 27 show the instantiations generated by

C and D<T>. The instantiation D<C> (not shown) would fail because C does not

implement the interface required by type parameter T. More precisely, D<C>

would fail to compile because C is a subtype of I_:C, not I_:Object.

 87

Figure 27 - The Need for Explicit This-Binding

The constraint clause in the above example uncovers an undesirable inter-

action between type parameter constraints and This. Classes that do not imple-

ment I<> cannot be bound to T, which means the constraint clause is working as

expected. On the other hand, classes that do implement I<> never bind This in

I<> to java.lang.Object (§4.3.3.2), so they too cannot be bound to T. Thus, no

class can satisfy the constraint on type parameter T. This example shows how

implicit This-binding prohibits certain uses of parametric interfaces in constraint

clauses, even though the intended semantics are reasonable.

The restriction on constraint clause usage points to a more fundamental is-

sue. The types generated by parametric types depend on the context in which in-

stantiation takes place. Mixing types generated in inheritance contexts with those

generated in non-inheritance contexts often leads to mismatches. For example,

using the definitions from Figure 27, the code fragment below does not compile

 interface I<> {This _this;}
 class C implements I<> {…}
 class D<T implements I<>> {…}

Generates

C
I_:C

C

Generates

D<T> I_:Object

 88

because C is not a subtype of I_:Object, the same reason constraint checking

failed above.

I<> _ifc = new C(); // Compile error.

Explicit This-binding allows programmers to control the binding of This

in all contexts. Figure 28 redefines the constraint clause from the previous exam-

ple using explicit This-binding notation. The instantiation of D<C> (not shown)

would now compile because T’s constraint is satisfied. Alternatively, redefining

C as “class C implements I<:Object> {…}” would also allow the origi-

nal definition of D<C> in Figure 27 to compile.

Figure 28 - Explicit This-Binding

This is explicitly bound by specifying a colon (:) followed by a class type

as the first actual parameter to a parametric type. Any class can be explicitly

bound in a parametric interface. Only subclasses of the parametric class being

 interface I<> {This _this;}
 class C implements I<> {…}
 class D<T implements I<:C>> {…}

Generates

C
I_:C

C

Generates

D<T> I_:C

 89

instantiated can be explicitly bound in a parametric class.5 This restriction pre-

serves the notion of This as a class type generated by an instantiation.

In §6.3, we describe JL’s naming scheme for instantiated types that ig-

nores This when it is safe to do so. For an important class of instantiations, JL’s

naming scheme avoids the compatibility issues described in this section and the

need for explicit This-binding. We now discuss This-binding in nested parametric

types.

4.3.3.4 Qualified This Usage

This section describes JL support for qualified This names, which allows a

nested parametric type access to the This type parameters of its enclosing para-

metric types. In JL, all parameterized types have their own This-binding; this is

true even if one parameterized type happens to be nested within another. The

scope of a type parameter includes the body of the declaring type, including any

nested parametric types (§4.1.3). Generally, a nested type cannot redefine a type

parameter if that type parameter is already defined in an enclosing scope. The

implicit This type parameter, however, is the exception to this rule, so special

syntax is provided to access all in-scope This parameters.

Figure 29 shows three parametric classes, A<T>, B<U> and C<>. B ac-

cesses the This parameter of A<T>, and C accesses the This parameters of both

A<T> and B<U>. Qualified This names have the form X.This, where X is an iden-

tifier that represents an enclosing parametric type name. X.This is replaced by the

This-binding of X during instantiation.

5 As usual, subclass is used inclusively here to include the parametric class being instantiated.

 90

Figure 29 - Qualified This Usage

4.3.4 DISCUSSION

In previous sections, we defined JL’s implicit This type parameter. In this

section, we discuss design and implementation topics involving This. We first

compare This to explicitly declared type parameters and then describe the com-

pile-time information flow required to implement This.

The implicit This type parameter differs from explicitly declared type pa-

rameters in two ways. First, a nested parametric type’s This parameter hides its

enclosing parametric type’s This parameter. By contrast, explicitly declared type

parameters cannot be hidden because they cannot be re-declared inside their

scope. By using qualified This expressions (§4.3.3.4), hidden This parameters

can be accessed throughout their scope just like explicitly declared type parame-

ters.

The second difference between This and explicitly declared type parame-

ters is that This has an implicit type constraint when it appears in parametric

classes (§4.3.3.3). In parametric classes, This can only be bound to subclasses of

class A<T> {
 class B<U> {
 A.This _athis;

 class C<> {
 A.This _athis;
 B.This _bthis;
 }
 }

}

 91

the instantiated class in which it appears. This constraint is automatically satis-

fied when This is implicitly bound and is checked by the compiler when This is

explicitly bound.

Except for these two differences, This can be used like any other type pa-

rameter. In particular, the scope of This is the same as the scope of all other type

parameters, which includes type parameter declaration clauses, inheritance

clauses, and the bodies of types (§4.1.3).

The semantics of This, however, are richer than other type parameters be-

cause of the way This is bound. Consider, for example, class A<T> in Figure 30.

A<T> contains nested class InnerA, which uses This to inherit from the most de-

rived subclass of A<T>. Class D generates two instantiations of A<T>. In both

instantiations, This is bound to D, which means that both InnerA classes inherit

from D. Note that the semantics of InnerA change if it inherits from A<T> in-

stead of This.

Figure 30 - The Expressiveness of This

Figure 31 illustrates other semantically interesting uses of This. Class

B<T> contains a parametric nested class InnerB, which inherits from the most

// InnerA extends the most derived subclass of A<T>.
class A<T> extends T {
 static class InnerA extends This {…}
}

// D is bound to This in both instantiations of A<T> in the
// composition below. Both InnerA classes extend D.
class D extends A<A<LinkedList>> {…}

 92

derived subclass of it enclosing class, B<T>. Class C<T> defines a field type that

instantiates A<T> with the most derived subclass of the field’s declaring class,

C<T>.

Figure 31 - More Ways to Use This

Figure 32 shows invalid uses of This that can be easily detected by the

compiler. A parametric class that inherits from This or from a member of This

would generate class hierarchies with circular inheritance dependencies. Also,

interfaces cannot inherit from This because they cannot inherit from classes.

Figure 32 - Invalid This Usage

The last discussion topic concerns the implementation of This. The chal-

lenge in implementing This is managing information that flows in both directions

// InnerB<> extends the most derived subclass of B<T>.
class B<T> {
 static class InnerB<> extends B.This {…}
}

// A<T> from the previous figure is instantiated with the
// most derived type generated by the instantiation of C<T>.
class C<T> {A<This> _fld; …}

// Circular dependencies.
class D<> extends This {…} // compile error
class E<T> extends This.Inner {…} // compile error

// Interfaces cannot extend classes.
interface I<T> {
 interface InnerI<> extends I.This {…} // compile error
}

 93

in mixin-generated hierarchies. This information flow is needed to name instanti-

tions using the naming convention described in §4.3.3.3. At instantiation-time,

This-binding information flows from leaf to root and is used to name supertypes.

At the same time, type information flows from root to leaf and is used to name

subtypes. Figure 33 depicts this two-way information flow. The precise way in-

stantiations are named in JL is described in §6.3.

Figure 33 - Two-Way Information Flow at Instantiation-Time

Before concluding our discussion, we note that This is an important com-

ponent of the Sibling design pattern, which we discuss in §7.2.3.4. We now dis-

cuss work related to This and the notion of most derived type.

4.3.5 RELATED WORK

Thorup proposes to add genericity to Java using virtual types [120], which

are types that automatically adapt when they are subtyped [67,74]. Using virtual

types, a child class that inherits from a parent class can cause types declared in the

parent to change and become more specialized. Thorup’s implementation of vir-

tual types for Java solves the object-oriented programming problem described in

the linked list example in §4.3.2. The implementation also allows the type of this

A

B

C

This-binding
information

type
information

 94

to be expressed, which means that the most derived type in any class hierarchy

can be specified.

JL's implicit This type parameter can be seen as a limited, static, virtual

typing mechanism. JL combines the power of mixins, which are not present in

Thorup's proposal, with an expression of the most derived type generated by an

instantiation of parametric types. In JL, This can only be used in parametric

types. In Thorup’s proposal, virtual types bring a full range of generic capabili-

ties to all Java types, including the ability to express the most derived type. This

expressiveness, however, comes at the cost of increased dynamic type checking.

JL, on the other hand, avoids runtime overhead by processing This statically at

instantiation-time.

Bruce and colleagues [26,27] propose a parametrically polymorphic im-

plementation of Java with some virtual typing capabilities. Their proposal aug-

ments Generic Java6 [24] with ThisType and an exact type operator. ThisType is

defined as the public interface of this. Support for ThisType breaks the equiva-

lence between subtyping and subclassing in Java. This break requires the intro-

duction of matching for type checking, which requires a new programming model

in which subclasses match their superclasses but subclasses do not always subtype

their superclasses.

JL, on the other hand, does not change Java’s type system nor does it

change the semantic relationship between subclassing and subtyping. In JL, This

refers to a class type, which often does not correspond to the public interface of

6 See §4.1.4.1 for a discussion of Generic Java.

 95

this. Bruce points out two pitfalls to using class types as JL does. First, interfaces

used as standalone types have no class type, so This cannot be bound. Second,

calls to methods requiring an actual parameter of type This cannot be statically

type checked because the type of the receiving object is not generally known at

compile time. JL avoids the first problem by implicitly binding This in all situa-

tions, including in interfaces, when no explicit binding is given. JL avoids the

second problem by limiting the use of This to parameterized types, which allows

This to be statically bound at instantiation-time.

Czarnecki and Eisenecker [36] can also reference the most derived type

generated by C++ template classes. Their approach involves the use of a separate,

manually configured repository class that is passed as a type parameter to tem-

plate classes during instantiation. The type of the instantiation itself is specified

in the configuration class. As in JL, all processing takes place statically. The

most derived type can be referenced from within the template instantiation, but

some of the type’s members cannot be accessed due to the way C++ processes

templates.

A form of virtual typing has also been implemented in domain-specific

GenVoca [15] generators. In these generators, the types that can be refined are

known in advance, and this knowledge is typically built into the domain-specific

compiler. In some GenVoca implementations, such as P3 [14], programmers can

express the most derived type generated by a composition of GenVoca compo-

nents. Here, the implementation of most derived type is distinct from the mecha-

 96

nism of component parameterization; in JL, the implementation extends the

mechanism of component parameterization.

4.4 Constructor Propagation

Constructor propagation is a new dynamic approach to superclass initiali-

zation developed for Java Layers. The main goal of this approach, especially

when compared to the static approaches described in §2.4.1, is to enhance the

flexibility and reusability of mixins. The constructor propagation algorithm de-

scribed in §4.4.2 specifies how subclass constructors are adapted to their super-

class constructors. The contribution of this algorithm is that the problem of su-

perclass initialization for mixins (§2.4.1) is solved with the addition of a single

keyword to the language and with an implementation that is orthogonal to other

JL feature implementations. We introduce constructor propagation in this section;

we describe its algorithm, its usage, and related work in the following sections.

In Java Layers, programmers use the new propagate modifier to designate

non-private constructors as participants in the constructor propagation algorithm.

Constructors designated in this way, as well as the default constructor, are called

propagatable.7

Constructors are propagated from parent to child class, with propagatable

constructors in the parent only able to affect propagatable constructors in the

child. In the simplest case, when the child has no explicitly declared constructors,

constructor propagation acts like constructor inheritance and replicates appropri-

7 JL’s propagate modifier is used for both constructor propagation and deep conformance (§4.2).

 97

ately modified parent constructors in the child. In more complex cases, construc-

tor propagation changes the signatures and bodies of existing child class construc-

tors. These changes allow the child class constructors to automatically pass ar-

guments to each of the propagatable parent class constructors.

Figure 34 shows the signatures of the propagatable constructors in parent

class P and its child class C. During constructor propagation, the signatures of the

C’s two constructors are changed to take the String parameter from P’s con-

structor. Though not shown, C’s constructors are also modified to explicitly in-

voke P’s constructor with a String argument.

Figure 34 - Constructor Signatures in Parent and Child

In parametric types, constructor propagation is performed during instantia-

tion. This instantiation-time processing allows a mixin class’s constructors to be

generated using its superclass’s constructors, which are now known. In a mixin

hierarchy, constructor propagation automatically adjusts constructor signatures so

that all classes in the hierarchy can be properly initialized.

P’s Constructor
propagate P(String)

C’s Original Constructors
propagate C(int)
propagate C(long)

C’s Propagated Constructors
propagate C(int, String)
propagate C(long, String)

propagation

 98

Both parametric and non-parametric classes can contain propagatable con-

structors. JL’s current support, however, extends only to parametric classes who

source code is being compiled. Full support for constructor propagation requires

adding the new propagate attribute to the class file representation of constructors.

This type of extension was anticipated by Java’s architects and can be easily im-

plemented in an upwardly compatible way (JVMS §4).

Constructor propagation does not depend on any other JL language feature

and could be integrated into Java as a standalone feature, though the need for do-

ing so in a language without mixins is arguably small. We now describe the con-

structor propagation algorithm and illustrate its usage.

4.4.2 ALGORITHM

Informally, the propagation algorithm takes the formal parameters of each

propagatable superclass constructor and appends them to the signatures of copies

of all propagatable subclass constructors. In this way, the subclass’s original

propagatable constructors are used as prototypes for constructor generation and

are then discarded after the algorithm is applied.

More precisely, for parent class P and its direct child class C, the propaga-

tion algorithm performs the following:

1. for each propagatable constructor p originally in P
2. for each propagatable constructor c originally in C
3. Create copy c' of c
4. Append p’s parameters to c', mangling names when necessary
5. Insert a call to p as the first statement in c'
6. Add c' to C
7. Discard all of C’s original propagatable constructors

 99

On lines 1 and 2 above, a nested loop processes each propagatable con-

structor in P with each propagatable constructor in C. We process only those

propagatable constructors that exist in each class at the start of the algorithm. On

line 3, C’s current constructor is copied to c'. On line 4, the signature of c' is aug-

mented with the formal parameters of P’s current constructor, p. Each formal

parameter from p, in left to right order, is appended to c', with the parameter name

mangled if a name conflict would otherwise occur. On line 5, a call to p is in-

serted into c', allowing p to obtain the parameters it needs from c'. On line 6, c' is

inserted into C. After all propagatable constructors are processed, C’s original

propagatable constructors are deleted (line 7).

In Java, explicit constructor calls (JLS §8.8.5.1) use the super or this

keywords with an argument list. Explicit constructor calls can appear only in the

first statement of a constructor body. JL reports a compilation error if a construc-

tor designated as propagatable already contains an explicit constructor call. This

restriction guarantees that line 5 in the algorithm generates valid constructor code,

which can contain at most one explicit constructor call.

The restriction on explicit constructor calls can be relaxed to increase JL’s

flexibility: If a propagatable constructor contains an explicit call to another

propagatable constructor in the same class (i.e., the explicit call uses this), then

valid code can still be generated. This relaxed restriction simply allows super-

class constructor parameters to pass through some number of intermediary sub-

class constructors before arriving at the superclass.

 100

4.4.3 DISCUSSION

In this section, we describe the behavior of the constructor propagation al-

gorithm defined in §4.4.2. Figure 35 defines four simple classes, three of which

have explicitly declared propagatable constructors. These classes contain only the

constructors shown. Table 4 lists four instantiations using these classes and the

constructors that are generated.

Figure 35 - Classes with Propagatable Constructors

Instantiations Signatures of Generated Constructors

 N<A> N_A(TypeA a)

 M M_B(TypeM m)

 M<A> M_A(TypeM m, TypeA a)

 M<M<A>> M_A(TypeM m, TypeA a),

 M_M_A(TypeM m, TypeM m1, TypeA a)

Table 4 - Generated Constructors

The instantiations in Table 4 generate classes with names derived from the

names of the composed classes. These derived class names are reflected in the

class A
{
 propagate A(TypeA a){…}
}

class M<T> extends T
{
 propagate M(TypeM m){…}
}

class N<T> extends T
{}

class B
{
 propagate B(){…}
}

 101

names of the constructors in the right-hand column of the table.8 All generated

constructors are themselves propagatable as line 3 in the constructor propagation

algorithm implies (§4.4.2). We now describe each of the four example instantia-

tions in detail.

The first instantiation, N<A>, shows how constructors are generated in

mixins that declare no explicit constructors. In this case, superclass A’s construc-

tor is propagated with the default constructor in N. The result is that the construc-

tor in instantiated class N_A simply forwards its parameter to A’s constructor.

The second instantiation, M, shows how no-argument superclass con-

structors leave subclass constructors unchanged. In this case, the no-argument

constructor in B does not propagate any parameters, so the constructor in instanti-

ated class M_B takes the same parameters as M’s constructor. The outcome would

be the same if B used the default constructor.

The third instantiation, M<A>, shows how the signatures of two propa-

gatable constructors are combined when both constructors have formal parame-

ters. In this case, superclass A’s constructor is propagated with the constructor

from M. The result is that the constructor in instantiated class M_A takes the pa-

rameter from M’s constructor (m) followed by the parameter from superclass A’s

constructor (a).

The fourth instantiation, M<M<A>>, shows how constructor propagation

accumulates parameters in a class hierarchy. In this case, the constructor for in-

stantiated class M_A is first generated as it was in the previous example. Next,

8 The generated names are simplified versions of the names JL actually generates; see §6.3.

 102

M_A’s generated constructor becomes the superclass constructor that is propagated

with M’s constructor. The result is that the constructor in instantiated class M_M_A

takes the parameter from M’s constructor (m) followed by the parameters from su-

perclass M_A’s constructor (m renamed to m1 and a).

In mixin-generated hierarchies, constructor propagation copies formal pa-

rameters from root class constructors to leaf class constructors. Glue code is then

inserted to forward actual parameters from leaf to root during execution. In lay-

ered applications, mixin classes often implement features that require no initiali-

zation; constructors in these mixins exist only to forward parameters to superclass

constructors. In the examples above, we saw how constructor propagation auto-

matically generates forwarding constructors and thereby reduces the work for pro-

grammers. In our Fidget evaluation (§7.2), we show that the benefit from this

reduction can be significant.

Constructor propagation, however, must be used with some restraint be-

cause the number of generated constructors can grow geometrically. Consider,

for example, a hierarchy of three classes in which the root class contains 3 propa-

gatable constructors and each of the other classes contains 4 propagatable con-

structors. The total number of constructors generated in the leaf class alone is

(3)(4)(4) = 48. This multiplicative effect has the potential to create a large num-

ber of constructors, many of which will probably never be used. Despite this po-

tential for abuse, conservative use of constructor propagation is both possible and

effective (Chapter 7). In practice, a compiler can limit the number of constructors

generated or allow the user to selectively reduce the set of generated constructors.

 103

4.4.4 RELATED WORK

In this section, we relate constructor propagation to other approaches to

superclass initialization in mixin programming. First, we describe the predomi-

nant use of static approaches in existing work. Next, we describe an approach

that is still static, but increases flexibility by using some dynamic features. Fi-

nally, we compare constructor propagation with a dynamic approach to superclass

initialization that uses C++ templates [110].

4.4.4.1 Static Approaches

Static approaches to superclass initialization assume fixed signatures of

superclass constructors. In §2.4.1, we described how this assumption limits the

reusability and flexibility of mixins. Despite these limitations, static superclass

initialization is the most common approach used in mixin programming because

of its simplicity and, we argue, the lack of language support for alternative ap-

proaches. We note that static approaches and constructor propagation can be used

in the same application.

VanHilst and Nokin [126] recognized the superclass initialization problem

in their graph traversal application, but the application’s small number of mixins

could easily be managed with static initialization. The same researchers also used

mixins to rebuild a text sorting program [125] and a recycling machine program

[127]. Here, the number of collaborating objects was fixed and still relatively

small, so superclass initialization could again be handled statically.

The superclass initialization problem has been recognized in a number of

GenVoca-related studies, including one that focused on mixin programming in

 104

C++ [104] and another that defined the initial version of Java Layers [30]. In the

latter report, a preliminary version of constructor propagation was designed and

implemented (§6.1).

Static superclass initialization is used in all GenVoca-related research

prior to Java Layers. This category includes P++ [100], which is a domain-

independent language extension to C++ that supports the GenVoca model. This

category also includes the domain-specific P3 [11] extension to Java and the Jark-

arta Tool Suite [14], which is used to implement P3.

4.4.4.1 A More Flexible Static Approach

Static superclass initialization as described in §2.4.1 can be made more

flexible without using a fully dynamic approach like constructor propagation.

One alternative, for example, uses an argument class and a programming conven-

tion that requires all constructors in an application to define the argument class as

their only formal parameter. This argument class approach is static because con-

structor signatures are fixed, but mixin compositions do not fail because a single,

well-known constructor interface is supported by all classes.

Eisenecker, Blinn and Czarnecki [38] define argument classes that store

initialization data in fields. By convention, classes access their initialization data

from pre-assigned fields in the argument class. Under this approach, the argu-

ment class is updated whenever any application class requires new initialization

data.

For even greater flexibility, initialization data can be kept in a hash table

in the argument class. This makes the argument class insensitive to changes in

 105

initialization data. Under this design, programmers establish a key naming con-

vention for table entries so that classes can appropriately access their initialization

data. Variations on this design can use data structures other than hash tables for

the argument class.

When argument classes are used, constructors do not reflect the precise in-

terface used to initialize classes. Instead, users learn through documentation or

some other convention what data is needed for the different classes; runtime er-

rors occur if the wrong data is supplied. On the other hand, when constructor

propagation is used, constructors reflect the precise interfaces used to each initial-

ize classes and runtime errors are avoided through static type checking.

4.4.4.2 A Dynamic Approach Using C++ Templates

Eisenecker, Blinn and Czarnecki [38] define a dynamic approach to super-

class initialization for C++ mixins [36,104,110]. This approach extends the idea

of argument classes described in the previous section to that of automatically gen-

erated lists of arguments. This argument list approach is dynamic because the

argument types passed to constructors are automatically customized for each

mixin instantiation.

Central to the argument list approach is the use of heterogeneous value

lists [54], which are lists generated at instantiation-time that contain elements of

different types. These elements contain fields that are assigned values at runtime.

In particular, argument lists are defined using the C++ types shown in Figure 36.

Argument lists are variable length, singly linked lists of heterogeneous elements

that are constructed by instantiating Param.

 106

Figure 36 - Statically Generated Parameter Lists in C++

Figure 37 shows how an argument list containing a string and an integer is

constructed. Param is instantiated twice to create a list that contains a string

value followed by an integer value. The parameters of the constructors called

during the creation of object p are statically type checked. The output statement

shows how values in the argument list are accessed; the output statement prints

the text shown in the figure.

struct NIL {};

template<class T, class Next_ = NIL>
struct Param
{
 Param(const T& t_, const Next_& n_ =NIL()): t(t_),n(n_)
 {}

 const T& t;
 Next_ n;
 typedef Next_ N;
}

 107

Figure 37 - Example Argument List

Eisenecker et al. use argument lists as parameters to mixin class construc-

tors. Each mixin class constructor takes a customized argument list as its only

parameter. In Figure 38, the authors define the Customer class’s constructor,

which takes an argument list of type ParamType. An interesting feature of the

Customer class is that it uses the types defined in the type parameter Config_ to

build the argument list for its constructor.9 This use of an auxiliary class brings us

to the next level of design in the argument list approach.

9 The C++ typename keyword indicates that a type parameter member is a type definition.

int main
{
 Param<char*, Param<int> > p(“Madeline”, Param<int>(8));

 cout << p.t << “ is ” << p.n.t << endl;
}

Printed text: Madeline is 8

 108

Figure 38 - Constructor with Argument List Parameter

Eisenecker et al. use a number of generative programming techniques and

concepts [36] to make the use of argument lists as transparent as possible to the

user. The first technique used defines a configuration repository class for each

distinct mixin instantiation. Configuration repositories define the types of the ini-

tialization parameters stored in the argument lists of all mixin constructors in an

instantiation. These repositories also contain the type of the generated leaf class

of the hierarchy. The types defined in the configuration repository classes are

used as type parameters to Param to create argument lists. In Figure 38 above,

the Config_ type parameter represents a configuration repository.

The second generative programming technique uses a generic parameter

adapter to generate a constructor for the leaf class of a mixin-generated hierarchy.

The purpose of this adapter is to generate a conventional constructor that takes

template<class Config_>
class Customer
{
 public:
 typedef Config_ Config;
 typedef Param< typename Config::LastnameType,
 Param< typename Config::FirstnameType > >
 ParamType;

 Customer(const ParamType& p)
 :lastname_(p.t),firstname_(p.n.t)
 {}

 private:
 typename Config::FirstNameType firstname_;
 typename Config::LastNameType lastname_;
}

 109

individual parameters, which are then used to build an argument list. This con-

ventional constructor passes the argument list it constructs to its superclass con-

structor. The parameter adapter is implemented as a mixin class, which becomes

the new leaf class in any mixin composition in which it appears.

The third generative programming technique uses a configuration genera-

tor to automate the creation of configuration repositories. Configuration genera-

tors allow users to avoid creating configuration repositories by hand. Configura-

tion generators are meta-programs that produce mixin compositions, which are

then instantiated. The main idea is that a user selects the features required by an

application and the configuration generator uses that selection to determine which

mixins should be instantiated. Each application requires its own configuration

generator program.

The argument list approach does provide a dynamic solution to the super-

class initialization problem for mixins, but its flexibility comes at a cost that often

reduces flexibility in other areas of mixin programming. For example, by requir-

ing the parameter adapter mixin to always be the leaf class in a mixin composi-

tion, programmers are prevented from specifying other classes as the leaf. This

restriction prevents programmers from using the special properties of leaf classes

for their own purposes. These properties include that the leaf class defines an in-

stantiation’s ultimate programming interface and that the leaf class is a subtype of

all other mixins in the instantiation.

More significantly, however, is the loss of flexibility due to the use of con-

figuration repository classes or configuration generators. When configuration re-

 110

positories are used, instantiating a new combination of mixins requires the defini-

tion of a new configuration repository class, assuming the mixin constructors have

parameters. In addition, changes to the parameters of existing constructors force

changes to one or more configuration repositories. When configuration genera-

tors are used, creating new instantiations and changing constructor parameters

require coordinated changes to the configuration generator program.

Eisenecker et al. argue for the use of configuration generators, in part, to

avoid the maintenance overhead associated with configuration repository classes.

Configuration generators can provide a number of other capabilities to support

mixin programming, such as the detection of invalid combinations of mixins, but

they do represent auxiliary code whose maintenance is tightly coupled with an

application’s mixins classes.

JL’s constructor propagation, on the other hand, does not require the defi-

nition or maintenance of any auxiliary data structures or programs. It does, how-

ever, require the addition of a new modifier to the language. Constructor propa-

gation can be thought of as a special purpose meta-programming mechanism. It is

possible that this mechanism could be subsumed by a more general meta-

programming approach, which would be an interesting research topic for future

study.

4.5 Semantic Checking

This section describes the design of JL’s semantic checking facility. In

§2.4.3, we described how the presence, absence, ordering, and number of times a

 111

mixin appears in a composition can affect program behavior. We also described

how even a small number of composable mixins can be permuted in a large num-

ber of ways—possibly an infinite number of ways if duplicates are allowed.

To emphasize this scalability issue, consider an application that contains

one hundred mixins that implement the same interface. These mixins represent

all the features that can be composed with one another to build a full-featured

type. How do programmers know which mixin combinations to use and which

combinations to avoid? Type checking is of limited value because we assume

that the mixins have compatible interfaces. Programmers can resort only to

documentation or the code itself, both of which require a significant investment

on the part of the programmer and the development organization.

The goal of semantic checking is to simplify application construction by

prohibiting syntactically valid but semantically undesirable mixin combinations.

Programmers can use semantic checking to explicitly restrict how classes are

combined. These restrictions are expressed as pre-conditions and post-conditions

on the use of inheritance and the use of type parameters. These conditions are

difficult or impossible to express using type checking alone. JL’s semantic

checking provides a simple, flexible way for programmers to specify to the com-

piler the class compositions that are known to be invalid.

Semantic checking does not, however, guarantee compositional correct-

ness, much less program correctness. Semantic checking only enforces composi-

tion constraints that programmers manually encode into class definitions. In addi-

tion, our contribution does not include an implementation of semantic checking.

 112

We have, however, manually applied semantic checking in our ACE evaluation

(§7.1.5).

We begin by presenting the model that underlies JL’s semantic checking

facility. We then describe how semantic attributes are added to classes and how

rules are created to check those attributes. We conclude with a discussion of our

design and related work.

4.5.1 THE SEMANTIC MODEL

JL’s semantic checking facility models two key concepts. The first con-

cept is that of a semantic attribute, which is an identifier or tag chosen by a pro-

grammer to represent a meaningful characteristic in an application. For example,

an application can define a thread_safe attribute to indicate that certain methods

are thread-safe, or a secure attribute to indicate that a communication protocol

uses encryption. The meaning of an attribute is established by programming con-

vention; this meaning is only valid among classes that cooperate and adhere to the

established convention.

The second key concept is the ordered attribute list, which defines a space

in which classes can express their semantic characteristics and test their semantic

constraints. At compile-time, each class hierarchy is associated with its own list

of totally-ordered semantic attributes. Attributes are added to lists using provides

clauses in class definitions. Attribute lists are tested using requires clauses in

class definitions. For convenience, we sometimes say the “attribute list of a

class” instead of saying “the attribute list of the hierarchy of a class.”

 113

Figure 39 shows an instantiation of parametric classes, the two hierarchies

it generates, and the attribute list associated with each hierarchy. We will use this

instantiation as a running example to describe semantic checking. The instantia-

tion uses mixins classes and non-parametric classes. Mixin class B takes two type

parameters, the first of which binds to B’s superclass. We use the name of the leaf

class in a hierarchy to name the hierarchy’s attribute list.

Figure 39 - Attribute Lists of Mixin-Generated Hierarchies

Figure 40 shows how attribute lists are populated. The top portion of the

figure shows the provides clauses of the classes used in instantiation

A<B<C,X<Y>>. The bottom portion of the figure shows how attributes from each

class are placed in their associated list in declaration order. The lists are filled

from left to right, starting with leaf classes and proceeding to root classes.

Instantiation: A<B<C, X<Y>>>
Mixin classes: A, B, X
Non-parametric classes: C, Y

Generated Class Hierarchies

Attribute
List A_

Attribute
List X_

C_

B_

A_

Y_

X_uses

 114

Figure 40 - Populating Attribute Lists

Attribute tests, which are also specified in class definitions, are evaluated

in one of three attribute list contexts. The global context of an attribute list is the

whole list, which consists of all the attributes declared in all classes of the associ-

ated hierarchy. The superclass context of an attribute list is defined in relation to

a class C in which a test is specified. C’s superclass context is the sublist that

contains only those attributes declared in C’s superclasses. Likewise, C’s sub-

class context is the sublist that contains only those attributes declared in C’s sub-

classes. Figure 41 illustrates the attribute list contexts for mixin B defined above.

class A<T> extends T provides (a1,g,a2){…}
class B<T,U> extends T provides (b1,b2){…}
class C provides (c1,g){…}

class X<T> extends T provides (x1,yin){…}
class Y provides (y1,yang){…}

a1 g a2 b1 b2 c1 g

Attribute List A_

Attribute List X_

x1 yin y1 yang

Instantiation: A<B<C, X<Y>>>

 115

Figure 41 - Attribute List Contexts

We have described how attribute lists are created and partitioned; we now

describe how they are used to test compositional semantics.

4.5.2 EXPRESSING SEMANTIC CONSTRAINTS

JL’s semantic checking facility enforces constraints on ordered attribute

lists. The one-to-one relationship between attribute lists and class hierarchies

means that by constraining attribute lists, we can constrain the creation of class

hierarchies.

Semantic checking takes place when non-parametric classes are compiled

and when parametric classes are instantiated. Programmers define attributes and

constraints in class definitions. The semantic checking facility generates attribute

lists for all class hierarchies as described in the previous section. These lists are

then tested to see if they conform to all their constraints. If an attribute list fails to

satisfy any constraint, then compilation aborts with an error message.

a1 g a2 b1 b2 c1 g

Attribute List A_

B’s Global Context

B’s Subclass Context B’s Superclass Context

 116

Classes define constraints using requires clauses, which read but do not

alter attribute lists. The constraint language uses regular expression pattern

matching [42,69] and a count operator to test for the presence, absence, ordering,

and cardinality of attributes in the target list context. A class can define zero or

more requires clauses using the following grammar, which we simplify for pres-

entation purposes: 10

RequiresClause :: requires RequiresQualifier? ConstraintBlock?
RequiresQualifier :: sub | super | unique | Identifier
ConstraintBlock :: “{“ Constraint (“;” Constraint)* “}”
Constraint :: RegexConstraint | RelationalConstraint

In the above grammar, a question mark (?) means zero or one occurrences

and an asterisk (*) means zero or more occurrences. Reserved words are in bold

font and non-terminals are in italics. Double quotes and parentheses are meta-

characters used to specify lexical tokens and term grouping, respectively.

The RequiresQualifier term specifies the context in which constraints are

applied to the class’s associated attribute list. If a requires clause has no Re-

quiresQualifier, then constraints are applied in the global context. If the sub

qualifier is used, then constraints are applied in the subclass context. If the super

qualifier is used, then constraints are applied in the superclass context. If an Iden-

tifier is used, then the identifier must name a type parameter declared in the class.

In this case, constraints are not applied to the attribute list associate with the class,

10 The grammar for compound constraint expressions is not shown. Compound constraints can
contain regular expressions, relational expressions, parentheses, conjunction, and disjunction.

 117

but instead they are applied to the (whole) attribute list of the class bound to the

named type parameter.

The unique qualifier specifies that the declaring class can appear only

once in a hierarchy. This qualifier is shorthand for an idiom that uses both a pro-

vides and a requires clause to achieve the same effect. The unique qualifier is

the only qualifier that does not have to be followed by a ConstraintBlock in a Re-

quiresClause. If a ConstraintBlock does follow unique, however, then its con-

straints are applied in the global context.

A ConstraintBlock contains a non-empty list of constraint expressions,

which are either regular expressions or relational expressions. Each expression

evaluates to true or false; expressions that evaluate to false indicate that a con-

straint has failed, which aborts compilation. Because of the well-understood and

conventional nature of regular and relational expressions, we leave the specifica-

tion of their grammar as an implementation task. Instead, we now describe con-

straint expressions and how they are used.

Regular expressions are used to match patterns in attribute lists. Each ex-

pression specifies a pattern of attributes, which causes JL to search the target at-

tribute list context for a match. Regular expressions check attributes for their

presence, absence and ordering in list contexts.

Figure 42 shows the four requires clauses in mixin B’s definition. All

constraint clauses evaluate to true in instantiation A<B<C,X<Y>> (Figure 40).

The first clause requires that the subclasses of B supply both the a1 and a2 attrib-

utes. The second clause requires that the superclasses of B supply either (1) c1 or

 118

(2) c3 followed by c4, with zero or more intervening attributes. The third con-

straint clause allows only one instance of B to appear in a hierarchy. This clause

also requires that some class in that hierarchy supply attribute g. The last con-

straint clause is evaluated in the global context of attribute list X_ (Figure 40),

which is the list associated with the class bound to U. This constraint requires that

attribute z not appear in the list.

Figure 42 - Regular Expression Constraint Clauses

The above example illustrates that regular expressions in JL use a conven-

tional syntax [42]. JL’s regular expressions are similar to those in common tools

[41], such as grep, sed, awk, and emacs, and in common languages, such as Perl

[130] and Python [73]. Appendix B describes JL’s pattern matching syntax in

more detail.

 In JL, constraints are also specified using relational expressions, which

enforce cardinality constraints among attributes. In addition to a relational opera-

tor (<, >, ==, !=, <=, >=), relational expressions contain integers, the addition op-

erator (+), the subtraction operator (-), and the attribute count operator (#). The

count operator returns the number of times an attribute appears in the target con-

text.

class B<T,U> extends T
 provides (b1,b2)
 requires sub {a1; a2}
 requires super {c1 | c3*c4}
 requires unique {g}
 requires U {!z}
{…}

 119

Figure 43 shows how relational expressions extend the capabilities of

regular expression pattern matching. Mixin X defines two constraint clauses, both

of which use the count operator and evaluate to true in instantiation

A<B<C,X<Y>> (Figure 40). The count operator immediately precedes an attrib-

ute, which is its parameter. The first constraint requires that the number of yang

attributes exceed the number of yin attributes by one in the superclass context.

The second constraint states that the number of yin attributes must equal the

number of yang attributes in the global context.

Figure 43 - Relational Expression Constraint Clauses

Together, the above two constraints specify the invariant that only

matched pairs of yin-yang attributes exist whenever mixin X is used. This abil-

ity to count attributes allows the coordinated use of mixins in programs. For

example, if mixin J acquires a resource, such as a lock or file handle, and mixin K

releases that resource, then we can use relational expression constraints to guaran-

tee proper J-K pairing in generated hierarchies.

4.5.3 DISCUSSION

JL’s semantic checking facility uses a simple model in which classes ad-

vertise their properties by inserting names into an ordered list. Classes test these

class X<T> extends T
 provides (x1,yin)
 requires super {#yang == #yin + 1} // Matched pair idiom
 requires {#yin == #yang} // uses two clauses
 {…}

 120

lists for the properties they need and, if a test fails, compilation also fails. The

goal of semantic checking is to invalidate class compositions that are known to be

undesirable. For mixin class instantiations, semantic checking is especially useful

because restrictions on the ordering and on the repetitive use of mixins can be

conveniently expressed, which is not the case using conventional type systems.

The semantic checking facility is orthogonal to Java and to JL’s other lan-

guage features. Semantic checking executes statically when class hierarchies are

defined and has no effect on code that executes at runtime. A class’s provides

and requires clauses define a sublanguage that can raise compilation errors, but is

otherwise completely independent of all other language processing.

The most important characteristic of JL’s semantic checking is its simplic-

ity. One simplifying factor is that JL models the semantic characteristics of

classes in single inheritance hierarchies, which leads to a separate (linear) list of

attributes for each hierarchy. More complex approaches to semantic checking can

model the semantic characteristics of tree structures, such as trees that represent

multiple inheritance hierarchies. These tree modeling approaches are complicated

because attribute streams need to be merged at tree nodes. In the next section, we

describe a GenVoca implementation of semantic checking that merges multiple

attribute streams.

Another simplifying factor in JL’s semantic checking is that constraints

are expressed using only regular expression pattern matching and attribute count-

ing. This minimalistic constraint language is based on well-understood theory

and on the common usage of regular expressions in programming. Most pro-

 121

grammers are familiar with regular expressions from the file systems, tools and

languages that they already use [42], so semantic checking in JL requires little

training.

To increase usability, we recommend that implementations of semantic

checking support meaningful error messages. For example, programmers should

be able to annotate constraint definitions with error messages that are printed

whenever a constraint fails. Figure 44 shows simple constraint annotations using

string literals; other more elaborate approaches are also possible.

Figure 44 - Programmer Defined Messages in Constraint Checking

4.5.4 RELATED WORK

A number of ad-hoc methods have been used to restrict how parametric

types are instantiated. These methods rely on side-effects that cause compilation

errors when undesirable compositions are attempted. For example, one approach

[36] intentionally excludes certain declarations from undesirable specializations

of C++ templates. If these undesirable specializations are attempted, then unre-

solved reference errors will be reported by the compiler. Similarly, other ap-

proaches [36,101] use access control violations in C++ to generate compilation

errors if undesirable compositions are attempted.

class X<T> extends T
 provides (x1,yin)
 requires super {#yang == #yin + 1 “Need one unpaired yang”}
 requires {#yin == #yang “The cosmos is out of balance”}
 {…}

 122

These ad-hoc approaches only strengthen the case for supporting explicit

compositional constraints at the language level. First, ad-hoc approaches have

limited expressiveness. For example, constraining subclasses is often difficult

when these ad-hoc approaches are used [101]. In addition, defining a specializa-

tion in advance to explicitly invalidate each undesirable composition is not practi-

cal in large systems. Second, and most importantly, ad-hoc approaches cannot

provide informative error messages when constraints are violated. The compiler

can only describe the side-effect that aborted compilation, not the semantic condi-

tion that was violated. In addition, the error messages produced will vary from

compiler to compiler. For usability reasons alone, ad-hoc approaches are inade-

quate for large-scale programming.

In contrast to ad-hoc approaches, semantic checking is explicitly sup-

ported in some GenVoca (§2.3.1) implementations using design rules [13], which

model type equation parameterization. In GenVoca, a type equation is repre-

sented by a tree whose nodes are the types that appear in the type equation. The

tree’s edges connect actual type parameters to the node that uses them. All con-

straint processing is based on the upflow and downflow of semantic information

through this tree. These flows contain attribute name/value pairs that move in

both directions in the tree—from leaves to root, and from root to leaves. When

necessary, upflows are merged and downflows are split.

GenVoca attribute names are associated with one of four values: assert,

negate, any or inherit. These values can be modified as they flow through the

tree. Predicates, which are defined over attributes, also take one of four values:

 123

true, false, assert and negate. Predicates are combined using conjunction or dis-

junction to create compound logical expressions. These expressions test whether

a semantic constraint holds at a particular node in the tree.

Semantic checking in JL differs from semantic checking in GenVoca im-

plementations in two fundamental ways. First, JL models class hierarchies rather

than type equation parameterization, which means that JL can use lists rather than

trees to represent its semantic attribute space. This simpler organization allows

JL to avoid the splitting and merging of attribute flows that occur in GenVoca.

Second, JL’s static approach uses attributes that do not have values and ordered

attribute lists that are immutable once they are constructed. Constraint checking

in JL takes place only after all lists are built. On the other hand, GenVoca’s dy-

namic approach incorporates the notion of data flow and the use of attributes

whose values change. Despite its relative simplicity, JL’s semantic checking can

express all the constraints that have been described in the GenVoca literature to

date.

Perry’s Inscape [92] environment allows pre-conditions, post-conditions

and obligations to be expressed for functions in languages such as C [63]. In-

scape’s semantic rules can statically guarantee certain properties of a program’s

runtime state and, to some degree, its correctness. In large systems that have

many functions, Inscape may process thousands of rules during compilation.

In contrast with Inscape, JL’s semantic checking is designed only to re-

strict inheritance and the binding of type parameters, both of which are static op-

erations. In JL, pre-conditions, post-conditions and obligations are expressed for

 124

class compositions. These compositions often contain fewer than ten classes and

are unlikely to contain more than a few dozen classes, so the number of rules

processed at one time is usually limited. JL’s goals are less demanding than those

of Inscape, so JL’s design can be simpler than Inscape’s.

 125

CHAPTER 5 CLASS HIERARCHY OPTIMIZATION

In §2.4.4, we described the runtime costs of excessive design-time layer-

ing. In this chapter, we address these concerns about mixin performance by pre-

senting the high-level design for the class hierarchy optimization. This optimiza-

tion minimizes the effects of layering in executable code by reducing the number

of classes in a hierarchy and by inlining methods. The optimization is designed to

work on any valid Java bytecode, not just bytecode generated by Java Layers. In

particular, existing Java applications can be optimized.

Our optimization reduces the depth of an existing class hierarchy by recur-

sively combining adjacent classes in the hierarchy. This pairwise class merging

(or flattening, compressing or collapsing) eliminates the parent class from the hi-

erarchy but preserves the signature of the child class. We defer the precise defini-

tion of class signature and merging until §5.1, but the basic idea is that the opti-

mized child class can be used in place of the unoptimized child and parent classes

with few restrictions.

Figure 45 shows an unoptimized hierarchy consisting of three classes, A, B

and C (Object, the parent of A, is not shown). A is the root and C is the leaf of

the hierarchy being optimized. After optimization, only the leaf C remains.

 126

Figure 45 - Simple Class Flattening

Although the idea of merging classes in a hierarchy is simple and intuitive,

a number of complicating factors make this an interesting problem. These com-

plicating factors include handling name collisions, adjusting references, guaran-

teeing accessibility when code is moved across packages, and flattening classes

that contain nested classes. The policies used to handle these complications affect

the semantics of the optimization, and often more than one policy can be reasona-

bly applied in a situation. In addition to choosing among competing policies, we

must also define when the optimization should not be applied and when the simul-

taneous optimization of multiple hierarchies is necessary.

To illustrate this last point, Figure 46 shows the optimization of parent

class Y and child class X, both of which contain nested classes. In the example,

the four hierarchies with leaf classes X, A, B, and C are transformed. We merge Y

into X, Y.A into X.A, and B' into B. We also relocate C into X. In general, our

optimization will recursively optimize hierarchies at arbitrary nesting depths.

A

B

C

Root

Leaf

C

Optimization

 127

Figure 46 - Nested Class Flattening

The class hierarchy optimization is actually a mapping of unoptimized

Java packages to optimized Java packages. The optimization doesn’t change or

delete existing bytecode; instead all class files that participate in the optimization

are copied into a new jar file (Java archive file [8]). This new jar file contains the

bytecode of the optimized class hierarchies. The jar file also contains other code

from packages that participated in the optimization, the details of which we will

describe (§5.1.9).

Our contribution is the high-level design of the class hierarchy optimiza-

tion. We present a high-level specification that describes the goals, policies and

algorithms for implementing the class hierarchy optimization. We do not discuss

bytecode representation, how bytecode is manipulated, or how this high-level de-

sign is translated into a lower, bytecode-level design. Instead, we rely on the

well-defined properties of Java bytecode (§5.2.3) to avoid discussing lower level

mechanism.

Optimization

X

A B

B'

A C

Y

B C A

X

= private class

 128

In addition, the implementation of the class hierarchy optimization is not

part of the Java Layers compiler described in this dissertation, nor is the imple-

mentation a contribution of this dissertation. The implementation is part of ongo-

ing work related to Java Layers.

Though we can imagine an optimization analogous to our class hierarchy

optimization for interfaces, we choose not to investigate interface hierarchy opti-

mization for three reasons. First, we believe that interface hierarchy optimization

will have only a marginal effect on application performance. Applications tend to

use relatively small numbers of interfaces. Moreover, interfaces contain almost

no executable code, which keeps them small and limits opportunities for further

optimization. Second, interfaces are often explicitly defined to convey semantic

information or to enable a class to be used in certain contexts. Both of these uses

reduce the applicability of any interface hierarchy optimization. Finally, multiple

inheritance complicates the task of merging interfaces and increases the imple-

mentation effort.

We begin our design presentation by defining terminology that we use

throughout the discussion. We then formalize our assumptions and list conditions

that disable the optimization. Next, we present the general class merging algo-

rithm. We then discuss the details of the algorithm concerned with detecting dis-

abling conditions, updating references, and adjusting access control. We con-

clude by discussing design alternatives and related work.

 129

5.1 Terminology

In this section, we define the terms and concepts that underlie our design.

The policy and algorithm discussions in later sections depend on the precision of

the terms defined here. The terminology in this section relies on the Java Lan-

guage Specification [49], which we abbreviate as JLS in citations.

5.1.1 JAVA TYPES

Non-primitive Java types can be class types (JLS §8) or interface types

(JLS §9). Types that are declared in the body of other types are called nested

types. Top-level types are types that are not nested. A nested type is lexically

contained in one or more enclosing types; a nested type is declared in the body of

its immediately enclosing type. Nested classes can be static or non-static; non-

static nested classes are also called inner classes (JLS §8.1.2).

Paraphrasing JLS §8.1.3, the optional extends clause in a class definition

specifies the direct superclass of the class. A class is said to be a direct subclass

of the class it extends. If class definition does not have an extends clause, then

the direct superclass of the class is implicitly Object (Object is the only class with

no direct superclass). The subclass relationship is the transitive closure of the di-

rect subclass relationship. Class P is a superclass of class C if C is a subclass of

P.

Superinterfaces and subinterfaces are defined in a similar manner for

classes (JLS §8.1.4) and interfaces (JLS §9.1.2). We use supertype and subtype

when speaking generically.

 130

When we speak of optimizing class hierarchies in this discussion, we are

referring to hierarchies of Java class types since our design does not include inter-

face hierarchy optimization.

5.1.2 INPUT CLASS

The input class to the class hierarchy optimization is a top-level class in a

class hierarchy that the user specifies. For example, X is the input class for the

optimization shown in Figure 46 on page 127.

5.1.3 CLASS MERGING

The class merge operation moves the bytecode from superclass P into its

direct subclass C and then eliminates P. After the operation, P is said to be

merged into C.

During optimization, n merge operations and m move (without merging)

operations, 0 ≤ n,m, relocate the bytecode originally in P. When the optimization

completes, P’s bytecode resides in some class D. D is the ultimate destination

class for P.

5.1.4 PACKAGE RESIDENCE

Package residence extends the concept package membership (JLS §7.1),

which includes only top-level types. The residents of a package are all types de-

clared in the compilation units (JLS §7.3) of the package, including all nested

classes, nested interfaces, local classes and anonymous classes. A type is a pack-

age resident if it is a package member or if it is lexically enclosed in a package

member.

 131

5.1.5 CHANGE BARRIER

The change barrier is the set of packages whose resident types cannot be

modified or eliminated during optimization. In hierarchies being optimized, a

class is said to be behind the change barrier if (1) the class is a change barrier

package resident, or (2) the class is a superclass of a change barrier package resi-

dent.

The idea of a barrier becomes apparent when traversing a class hierarchy

from leaf to root: the first class encountered that is a change barrier package resi-

dent immediately causes all its superclasses to be behind the change barrier.

Classes behind the change barrier never have their code relocated or inlined by

the class hierarchy optimization.

The change barrier always contains all standard packages, including all

java and javax packages [8]. In addition, implementations should allow the

change barrier to be augmented with user-specified packages. Since types behind

the change barrier never change, packages in the change barrier are not written to

the output jar file.

5.1.6 CLASS SIGNATURE

The signature of a class consists of (1) the class’s fully qualified name

(JLS §6.2), (2) the non-private members and non-private constructors that are de-

clared in the class or inherited by the class, and (3) the interfaces implemented by

the class or any of its superclasses.

Figure 47 shows parent class P, its child class C, and the signature of C. P,

C and the interfaces they implement are defined in the default package. C’s signa-

 132

ture consists of C’s name, the members C inherits from P, the non-private mem-

bers and constructors C declares, and the interfaces implemented by P and C. C

does not inherit (JLS § 8.4.6) constructors, private members, or hidden members

from P, so they are not part of C’s signature.

Figure 47 - Signature of Class C

5.1.7 CLASS SIGNATURE PRESERVATION

If class C with signature S is transformed into class C' with signature S',

then signature S is preserved if (1) C and C' have the same fully qualified name,

(2) all members and constructors in S are also in S' and (3) all interfaces imple-

mented in S are also implemented in S'. S' widens S if S' is signature preserving

and S' contains constructors, members or implemented interfaces not found in S.

The most basic goal of our optimization is to preserve the signature of the

input class while collapsing its hierarchy as much as possible. By preserving the

class P implements P_Ifc {
 private int _i;
 protected double _fld;
 P(String s){…}
 protected void m1(){…}
 class InnerP {…}
}

class C extends P
implements C_Ifc {
 Thread _fld;
 C(int i){…}
 public void m2(){…}
 interface InnerP {…}
 class InnerC {…}
}

Signature of Class C:

Name: C

Members/Constructors:
 _fld (of type Thread),
 m1(),
 m2(),
 InnerP (interface type),
 InnerC

Implemented Interfaces:
 P_Ifc, C_Ifc

 133

input class’s signature, code that uses the unoptimized version of the class can run

using the optimized version without being recompiled.

5.1.8 ASSOCIATED NESTED HIERARCHIES

For class C with signature S, let N be the set of nested classes in S. The

set of the associated nested hierarchies of C is defined as the union of (1) the hi-

erarchies of leaf classes n∈ N and (2) the associated nested hierarchies for each

class n.

This recursive definition is useful because it represents the set of all hier-

archies that can be optimized for a given input class. Specifically, in addition to

its own hierarchy, the optimization of input class C recursively optimizes C’s

non-private nested classes, whether they are declared or inherited. These nested

classes are leaf classes in C’s associated nested hierarchy set.

Figure 48 shows an example input class C and its associated nested hierar-

chies. All classes in the figure are non-private. All classes in the figure except

for C itself are part of C’s associated nested hierarchies. The leaf classes in C’s

associated nested hierarchies are A, B, and Z.

 134

Figure 48 - Class C’s Associated Nested Hierarchies

5.1.9 PARTICIPATING PACKAGES

For input class C, let C* be the set of all classes in C’s hierarchy or in any

of C’s associated nested hierarchies. The participating packages for input class C

is the minimal set of packages PC such that for each c∈ C*, c resides in some

package in PC. PC is minimal because each package p∈ PC contains at least one

class in C*.

Less formally, the participating packages for input class C are those pack-

ages that contain at least one class from a hierarchy being optimized.

5.1.10 PARTICIPATING PACKAGE TYPES

The set of participating package types consists of all types that reside

(§5.1.4) in participating packages.

C

A

B

B2

B3

Z

B1

A1

A2

Z1

Z2

Leaf classes of C’s associated nested hierarchies: A, B, Z

 135

Participating package non-hierarchy types are participating package types

excluding those types in the hierarchies that are being optimized.

Participating package classes are the subset of the participating package

types that are classes. Likewise, participating package interfaces are the subset

of the participating package types that are interfaces.

5.2 Assumptions

In this section, we describe assumptions that we make about the use, input

and operating environment of the class hierarchy optimization.

5.2.1 CLOSED WORLD ASSUMPTION

In general, it is not possible to determine where all references to a type re-

side. Like most executable code, Java bytecode specifies the types on which it

depends, not the types that depend on it. Since the class hierarchy optimization

changes and even eliminates types, the optimization can invalidate existing refer-

ences. References will not be invalidated if the user guarantees the following

closed world assumption:

All references to types changed or eliminated by the optimization re-

side in the input class’s participating packages.

The closed world assumption creates a well-defined set of types that need

to be examined and, possibly, altered by the optimization. Types within this set

 136

are kept in a consistent state with regard to any changes made by the optimization;

types outside this set are assumed not to be affected by the optimization.

During execution, the class hierarchy optimization loads all bytecode in

participating packages. The optimization proceeds under the assumption that all

references that need to be considered are in the loaded bytecode, including all re-

flective references. The restriction imposed by this assumption do not severely

limit the use of our optimization use because (1) the intent of class flattening is to

eliminate superclasses that are not needed by existing code, (2) the user can des-

ignate that specific classes be preserved to maintain existing references (§5.3.2),

and (3) the user can stipulate that specific uses of reflection can be ignored

(§5.3.11).

5.2.2 SOURCE CODE COMPATIBILITY ASSUMPTION

A compiled Java program is source code compatible if its bytecode could

be recompiled from legal Java source code, whether or not the source code is ac-

tually available. Source code compatibility is stronger then binary compatibility

because in addition to successfully loading, verifying and linking, the bytecode

does not exhibit any of the source-level inconsistencies described in the JLS §13.

We assume source code compatibility in our high-level design to avoid the

inconsistencies that can result from separately evolving class files, which are is-

sues best handled at the implementation level.

5.2.3 JVM PROPERTIES

The transformations described in this specification rely on the architecture

of the Java Virtual Machine (JVM) and the binaries it executes, called class files.

 137

The Java Virtual Machine Specification [71] defines the instructions (bytecodes),

symbol tables, and other structures that appear in class files. Since the high-level

transformations described in this specification must be implemented in code at the

class file level, we need to be sure that class files contain all information required

for optimization and that they can be appropriately manipulated.

The class hierarchy optimization modifies class files by creating, deleting,

renaming and relocating initializers, constructors and members; by deleting

classes; by inlining code; and by adjusting references as a result of the above

modifications. Java name obfuscators11 and application packaging tools [121]

currently perform these modifications to class files. These transformations are

possible because the Java Virtual Machine Specification (JVMS) guarantees the

following bytecode properties:

• Java is strongly typed. Every variable and every expression has a type

that is known at compile time, though certain checks are performed at

runtime (JVMS §2.4).

• Every type, method and field referenced in a class or interface is rep-

resented in the class file of that class or interface (JVMS §4).12

• All references are symbolic. In a class file, classes or interfaces, and

their fields and methods, are referenced using fully qualified names.

For fields and methods, these symbolic references include the name of

the class or interface type that declares the field or method, as well as

11 Two of the many available obfuscators are at www.condensity.com and www.preemptive.com.
12 In the JVMS, initializers and constructors are treated as special kinds of methods.

 138

the name of the field or method itself, together with appropriate type

information (JVMS §2.17.3).

• Class files contain the complete implementations of classes or inter-

faces, including references to all their declarations (JVMS §4).

Taken together, the above properties guarantee that our optimization has

access to all the information it requires to perform its code transformations. In a

class file, references are stored as fully qualified names in the constant pool

(JVMS §4.4). During class merging, we can locate all references to any type,

method or field by searching the names in the constant pools of all participating

package types. When we change a declaration’s name or location, we can per-

form the appropriate fix-up at all sites that reference that declaration. During

method inlining, we use constant pool information in the same way that current

JVMs do when they inline code [9,61].

5.3 Disabling Conditions

This section describes the disabling conditions that prevent a superclass

from being merged into its direct subclass. Many disabling conditions are needed

to maintain existing class references; others are needed to preserve the nested

structure of lexically related classes. Classes without disabling conditions are said

to be enabled for optimization, which allows these classes to be eliminated from

the optimized code. We have identified the following eleven disabling condi-

tions.

 139

5.3.1 SIGNATURE PRESERVATION

A class cannot be merged if it is part of the input class’s signature.

In Figure 49, input class X contains public nested classes A and B. B can-

not be merged into A because B is public and, therefore, part of the signature of X

that the optimization is preserving.

Figure 49 - Signature Preservation Disables Optimization

5.3.2 USER-SPECIFIED PRESERVATION

The user can specify that any class be preserved, and the optimization will

not merge that class.

5.3.3 CHANGE BARRIER PRESERVATION

Classes behind the change barrier cannot be merged or changed in any

way.

5.3.4 CHANGE BARRIER REFERENCES

Classes referenced from behind the change barrier cannot be merged. This

restriction is necessary because references behind the change barrier cannot be

adjusted to refer to the merged class.

Optimization X

A

B X

A

B

All classes are public

 140

5.3.5 MERGING STATIC AND NON-STATIC CLASSES

A static superclass cannot be merged into a non-static subclass. Static

classes can have static members, which are generally prohibited in non-static

classes (JLS §8.1.2).

A non-static superclass cannot be merged into a static subclass. Non-static

classes can reference instance members of enclosing classes, something which

static classes are prohibited from doing (JLS §8.5.2).

Top-level classes are treated as static when these conditions are tested.

5.3.6 EXPLICIT ALLOCATION

Class types explicitly allocated with the new keyword in a participating

package type cannot be merged.

The justification for this condition is as follows: When parent class P is

merged into its child class C, P is eliminated and all existing references to P are

replaced with references to C. This substitution requires the selection of an ap-

propriate constructor for C in allocation expressions. Since constructor selection

cannot be performed using only syntactic information, the merging of P is not

permitted.

5.3.7 MULTIPLE SUBCLASSES

Classes with multiple subclasses in the participating packages cannot be

merged.

The justification for this condition is as follows: When parent class P is

merged into its child class C, P is eliminated and all existing references to P are

replaced with references to C. If another subclass, C', of P exists, then construc-

 141

tors in C' would now have to call appropriately selected constructors in C. Since

constructor selection cannot be performed using only syntactic information, the

merging of P is not permitted.

5.3.8 LEXICAL NESTING

The Lexical Nesting condition helps preserve the lexical relationship be-

tween enclosing and nested classes during optimization. This preservation is im-

portant because lexically related classes have access to each others private mem-

bers, access that must be maintained in optimized code.

We define the Lexical Nesting condition in terms of three classes. Let

class EnclosingP contain nested member class P, and let C be a direct subclass of

P. If the ultimate destination class of C is immediately enclosed in the ultimate

destination class of EnclosingP, then P satisfies the Lexical Nesting condition.

Otherwise, P cannot be merged into C, and P is said to violate the Lexical Nesting

condition.

Figure 50 shows the simplest configurations for merging nested classes.

In optimization (a), P and C are both nested in X. The ultimate destination of C is

C, which is enclosed in X. The ultimate destination of P’s enclosing class (X) is

also X, so the Lexical Nesting condition is satisfied.

In optimization (b), the pattern of inheritance is more complex but still

regular: Enclosing classes form one hierarchy and nested classes form another.

The enclosing class of the ultimate destination of C and the ultimate destination of

Y are the same class (X), so the Lexical Nesting condition is satisfied.

 142

Figure 50 - Simple Nested Class Merging

Figure 51 shows that more complex configurations of nested class also can

be merged. Optimization (c) is like optimization (b) in Figure 50, except J now

intervenes between X and Y in the enclosing class hierarchy. The enclosing class

of the ultimate destination of C and the ultimate destination of Y (and J) are the

same class (X), so the Lexical Nesting condition is satisfied.

In optimization (d), K intervenes between P and C in the nested class hier-

archy. The ultimate destination of both P and K is C. The enclosing class of C and

the ultimate destination of Y are the same class (X), so the Lexical Nesting condi-

tion is satisfied.

Optimization
X

C

X

C

P

X
C

Optimization

X
C

Y
P

(a)

(b)

 143

Figure 51 - More Complex Nested Class Merging

Figure 52 shows configurations in which the Lexical Nesting condition

disables the merging of class P. In case (e), P is disabled because Y is not merged

into X, which distinguishes this case from case (b) above. In case (f), a disabling

condition has previously been discovered in J. Since J is disabled, Y is prevented

from being merged into X, which disables P.

Optimization
X

C

X
C

Optimization

(c)

(d)

X
C

Y
P

J

X
C

Y
P

K

 144

In case (g), P is disabled because C is not immediately enclosed by X. The

immediacy requirement in the Lexical Nesting condition maintains the relative

nesting positions of enclosing and nested classes, which preserves original code

structure during optimization. This preservation simplifies the use and implemen-

tation of our optimization because optimized code has a predictable structure that

is relatively easy to ensure.

Figure 52 - Disabled Nested Class Configurations

5.3.9 ENCLOSING CLASS

Let class E enclose nested type N, which can be an interface or class

nested at any depth in E. The Enclosing Class condition states that E cannot be

merged if E’s ultimate destination class would be enclosed in a subtype of N.

X
C

Y
P

(e) (f)

X
C

Y
P

J X

C

Y
P

(g)

K

 = enabled = disabled

 145

An important consequence of the Enclosing Class restriction is that opti-

mized enclosing classes cannot inherit from their nested classes. In Figure 53, on

the left, class E cannot be merged into its subclass M. Here, the ultimate destina-

tion class of E is M, which is enclosed in subclass D of N. If this condition were

not enforced, the configuration on the right of Figure 53 would result from merg-

ing E into M. This configuration cannot be generated by legal Java source code

because D inherits from its nested class N, so we prohibit it in the class hierarchy

optimization.

Figure 53 - Enclosing Class Condition

Together, the Lexical Nesting and Enclosing Class conditions preserve the

relationship between enclosing and nested classes during class merging. If we

ignore the purely syntactic manipulations of references and names, the Lexical

Nesting condition guarantees that the bytecode of a nested class is immediately

Enclosing class E is
disabled

N
M

D

 = enabled = disabled

Invalid configuration if E
is merged into M

M
D

E
N

 146

enclosed in the same bytecode after merging as before merging. Similarly, the

Enclosing Class condition guarantees that after merging, an enclosing class never

subtypes a type it contains.

5.3.10 CLASS LITERAL USAGE

The use of a class name in a class literal (JLS §15.8.2) expression pre-

vents the specified class from being merged. Class literals are expressions of the

form N.class, where N is the name of a class, interface, array or primitive type.

These expressions evaluate to the Class object of the named type, which requires

that the type exists.

5.3.11 REFLECTION

A reflective call in a participating package type that has not been desig-

nated as safe is a disabling condition for all types being optimized. Reflective

calls are calls to java.lang.Class or to any class in the

java.lang.reflect package [8]. We now describe the tradeoffs involved in

supporting reflection and the rationale behind our approach.

The challenge of optimizing Java hierarchies in the presence of reflection

is to strike a reasonable balance between safety and utility. Since the types refer-

enced by reflective code can depend on input data, determining which types are

reflected upon is undecidable in general. Optimizations that modify or eliminate

types can change the behavior of reflective code and, therefore, are unsafe. On

the other hand, reflective code often inspects types outside the input class’s par-

ticipating packages and, therefore, would not be affected by our optimization.

 147

Our goal is to guarantee safety while at the same time not unnecessarily restrict-

ing optimization.

To balance these opposing concerns of safety and utility, we borrow from

the approach used by Tip et al. in the Java Application Extractor (Jax) [121]. We

abort optimization when reflection is used in any participating package type, ex-

cluding types in the standard packages (e.g., java and javax). Before aborting,

the location and description of every reflective call encountered is displayed. The

user can then designate reflective calls, individually or in groups, as safe and re-

run the optimization. This approach is conservative by default, simple because it

avoids trying to understand how reflection is being used, and flexible because re-

flection can be ignored under the user’s direction.

5.4 General Merging Algorithm

In this section, we present the algorithm for merging a superclass into its

subclass. We begin our discussion by restating the goals of the class hierarchy

optimization using the terminology defined in §5.1. Our goal is to compress a

class hierarchy into as few classes as possible while preserving the signature of

the input class and the signatures of the leaf classes of all associated nested hier-

archies. Method inlining is performed as hierarchies are compressed.

The class hierarchy optimization is useful only if it safely transforms code.

Safe transformations preserve program behavior and allow optimized classes to be

used in place of their unoptimized counterparts. In §5.2, we described the as-

sumptions that our optimization makes and that users must guarantee for safe exe-

 148

cution. In §5.3, we described conditions that our optimization detects that prevent

types from being merged unsafely. We now describe our algorithm.

5.4.1 ALGORITHM OVERVIEW

Our class merging algorithm consists of three stages. The initialization

stage loads into memory all data needed during optimization. This data is ana-

lyzed and organized for later use. Next, the identification stage detects the por-

tions of hierarchies that can be optimized. Identification includes testing classes

for disabling conditions. Finally, the merging stage actually collapses super-

classes into their subclasses and then eliminates the superclasses. In this stage,

class members are moved and renamed, references are updated, methods are

inlined, and access control is adjusted. We now present our procedure for class

hierarchy optimization, starting with initialization.

5.4.2 INITIALIZATION

The goal of initialization is to load into memory and then organize all data

needed during optimization. Let class C be the input class to the optimization

procedure. The procedure terminates immediately if C is behind the change bar-

rier. Otherwise, initialization proceeds as follows:

1. Load C’s class file.

2. Load the class files of all of C’s superclasses.

3. Load the class files of C’s associated nested hierarchies.

4. Construct the participating package set.

5. Load the participating package types.

 149

6. Set each class’s mergeable attribute.

7. Initialize analysis information.

We define H to be the set of class hierarchies consisting of input class C’s

hierarchy and all associated nested hierarchies of C (§5.1.8). For convenience, we

refer to “classes in the hierarchies of H ” as “classes in H.”

We construct the set of participating packages for C by aggregating the

packages of all classes in H, using package residence (§5.1.4) as our selection cri-

terion. Once we know the participating packages, we load all participating pack-

age types that have not been previously loaded.13 Since types in the standard

packages like java or javax cannot contain references to classes in H, we do not

load resident types from standard packages.

Each participating package type has a mergeable attribute that indicates

whether the class can be merged into its subclass. The possible values for merge-

able are enabled, disabled, or undecided. We say a type is enabled, disabled, or

undecided depending on the value of its mergeable attribute. During initializa-

tion, all classes in H are undecided. All other participating package types are dis-

abled. Undecided classes will be enabled or disabled before any class merging

occurs (§5.4.3).

Lastly, initialization also extracts analysis information from participating

package types. Analysis information consists of the reflective data and the refer-

ence data used during later stages of the optimization. We will introduce the vari-

13 Loading participating package types is implementation dependent and usually requires the abil-
ity to load all class files from file system directories.

 150

various kinds of analysis information as we encounter them. Analysis data can be

collected during initialization or at any time before they are actually needed.

Once initialization is complete, we determine the classes that can be optimized.

5.4.3 IDENTIFYING OPTIMIZABLE HIERARCHIES

After initialization, we identify the classes that can be merged into their

subclasses. All classes in H are candidates for optimization, but some may have

disabling conditions that prevent merging. We define a new set H' to contain the

fragments of the hierarchies in H that can be merged. A fragment of a Java class

hierarchy is a subset of the hierarchy that contains a leaf class, a root class, and all

intermediate classes on the inheritance path between the leaf and root. Fragments

are the basic unit of optimization for the algorithm described in §5.4.4, which

merges a fragment’s non-leaf classes into its leaf class.

We begin our discussion by defining the outside-in processing order,

which is used in constructing H'. We then present the algorithm that builds H'.

5.4.3.1 Outside-In Processing Order

A key characteristic of the H' construction algorithm is that it implements

the outside-in processing order. This ordering specifies that (1) if L is a leaf class

in H and class E in H encloses L, then E is processed before L, and (2) the next

class processed after class A is A’s direct superclass or, if no superclass exists, an

unprocessed leaf class in H. The ordering gets its name from the fact that in H,

enclosing (outside) classes are processed before their nested (inside) leaf classes.

The outside-in processing order is useful in detecting disabling conditions,

which we discuss in §5.5. In particular, the outside-in processing order is used as

 151

a heuristic that increases the accuracy of the leaf() method, which we define in

§5.5.4.1. The leaf() method is used to detect the Lexical Nesting (§5.5.4) and En-

closing Class (§5.5.5) disabling conditions.

5.4.3.2 The H' Construction Algorithm

The pseudo-code below specifies how H' is constructed. The algorithm in-

spects the input class’s hierarchy first and then iteratively inspects nested class

hierarchies. Classes found to have disabling conditions become leaf classes in

fragments in H'. We now present the H' construction algorithm.

 1. H' = H.copy()
 2. c = input class
 3. worklist = an empty list
 4. Fragment(c, worklist)
 5. while worklist not empty
 6. c = worklist.pop()
 7. Fragment(c, worklist)
 8. terminate construction algorithm

 9. procedure: Fragment(c, worklist)
10. while c != null and c.isUndecided()
11. if c has a disabling condition
12. then c.disable()
13. else c.enable()
14. if c.isDisabled() and c is not a leaf class in H'
15. then make c the leaf class of a new fragment in H'
16. append to worklist the nested classes in c that are leaf classes in H
17. c = c’s superclass or null if c has no superclass

After initialization (§5.4.2), all classes in H are undecided. The above al-

gorithm begins by populating H' with a copy of the contents of H, assigning the

input class to c, and creating the empty worklist (lines 1-3). Lines 4-8 drive the

 152

algorithm and implement the outside-in processing order. Lines 9-17 define the

Fragment procedure that creates fragments in H'.

In line 4, the Fragment procedure is called with the input class and the

empty worklist as parameters. Upon return, if worklist contains nested classes, the

while loop on lines 5-7 executes. Line 6 removes the first class from worklist and

assigns it to c. On line 7, Fragment is called again. Any call to Fragment causes

the number of classes in worklist to either increase or stay the same. Eventually,

the loop in lines 5-7 terminates because all classes in (finite) H' are processed.

Line 8 terminates with H' completely constructed.

The Fragment procedure on line 9 consists of a while loop (lines 10-17)

that processes all classes in H' exactly once. The mergeable attribute for class c is

changed in lines 11-13 from undecided to either enabled or disabled, which pre-

vents c from being processed more than once. Lines 14-15 create a new fragment

with disabled leaf class c if c is not already a leaf. Line 16 appends c’s nested

classes to worklist, but only those that were leaf classes in H (i.e., only associated

nested hierarchy leaf classes). Line 17 controls the traversal of c’s hierarchy.

A key characteristic of the construction algorithm is that it implements the

outside-in processing order (§5.4.3.1). The Fragment procedure imposes this or-

dering in two ways. First, the procedure processes a class’s complete hierarchy

before returning, which satisfies the second condition of the ordering definition.

Second, the Fragment procedure populates worklist with the nested leaf classes it

encounters as it traverses a class’s hierarchy. Since nested leaf classes only ap-

pear in worklist if their enclosing class has been processed, the first condition of

 153

the outside-in ordering definition is also satisfied. The construction algorithm be-

gins by processing the input class, which is the top-level class that spawned H,

and then processes the worklist.

Figure 54 illustrates the effect of the construction algorithm. Fragments in

H' represent the groups of classes from the original hierarchies in H that can be

merged with each other.

Figure 54 - Identifying Optimizable Fragments

H' encodes important information for detecting disabling conditions (§5.5)

and for bytecode merging (§5.4.4). First, all class merging takes place in the con-

text of some fragment in H' or, conversely, each fragment in H' represents zero or

more merge operations. Second, all classes in fragment h'∈ H' are merged into the

leaf class of h'. This means that a class c is an ultimate destination class only if c

C

B

D

A

Obj

H

Y

X

Z

W

Obj

 = enabled = disabled Obj = Object

B

A

H'

C

D

Y

X

W

Z

Obj

 154

is the leaf class of some fragment in H'. Lastly, fragments can be processed in any

order because all required reference information (i.e., the set of ultimate destina-

tion classes) is known as soon as H' is constructed.

We defer our description of disabling condition detection until §5.5, and

continue by discussing how fragments are merged once H' is constructed.

5.4.4 CLASS MERGING

Classes in the fragments in H' are merged in a pairwise manner, starting at

the leaf, according to the following procedure:

1. for each h'∈ H'
2. leaf = leaf class of h'
3. sc = superclass in h' of leaf or null if none exists
4. while sc != null
5. MergePair(leaf, sc)
6. sc = superclass in h' of leaf or null if none exists

Merging only takes place between classes in the same fragment. In the

above procedure, each fragment h' in H' is collapsed into its leaf class. The class

hierarchy optimization completes when all fragments h' in H' have been merged.

Step 5 above merges the immediate superclass of a leaf class into the leaf

class. This pairwise merge is repeated until all superclasses in the fragment have

been consumed. The bulk of the work in merging classes occurs in this step,

which we now describe in detail.

5.4.5 PAIRWISE CLASS MERGING

In this section, we describe the pairwise merging algorithm in which su-

perclass P is merged into its direct subclass C in fragment h'∈ H'. The algorithm

 155

in §5.4.4 guarantees that C is always the leaf class in h'. The pairwise merging

algorithm has two steps.

5.4.5.1 Step 1: Move Code

We move bytecode definitions from P to C. These definitions include all

initializers, constructors, fields, methods and interfaces. In addition, we also

move some of P’s nested classes into C. Specifically, all nested classes in P are

moved into C, except those that are enabled for optimization. We can defer proc-

essing enabled nested classes until the main merging algorithm selects their frag-

ment (§5.4.4). This deferral avoids moving code that will later be merged, which

increases the algorithm’s efficiency.

Moving bytecode definitions between classes often requires renaming or

other transformations. For example, members in P that were previously hidden

by members in C are renamed upon relocation to avoid name conflicts. Construc-

tors in P are converted to private methods in C to preserve C’s signature. In addi-

tion, references to relocated definitions are updated to reflect the definitions’ new

locations. We defer the discussion of these transformations until §5.6.

Another type of transformation caused by code movement has to do with

access control. When P and C are in different packages, access control often

needs to be adjusted to preserve the validity of references. These adjustments are

performed on relocated definitions, on C itself, and on constructors and members

in participating package types. The details of access control adjustment are de-

scribed in §5.7.

 156

5.4.5.2 Step 2: Update Supertypes

We replace C’s superclass with the superclass of P. We also selectively

add the interfaces implemented by P to the list of interfaces implemented by C.

Each interface I implemented by P is added to C’s implementation list if C does

not already implement I or some sub-interface of I.

Our discussion of the general merging algorithm is complete, though a

number of details still need to be explored. The next section describes how dis-

abling conditions are detected during the construction of H'. Subsequent sections

describe how code is transformed and how access control is adjusted during class

merging.

5.5 Detecting Disabling Conditions

In this section, we describe how disabling conditions (§5.3) are detected in

classes in H' (§5.4.3). The analysis required to detect disabling conditions differs

from conventional compiler analysis [2,7,81] because it is not concerned with

data flow, control flow, or resource utilization. Instead, our analysis is concerned

with the structure of class hierarchies and its goal is to determine if a hierarchy

can be transformed and if classes can be eliminated.

Our goal is to show that we can test for all the disabling conditions listed

in §5.3 as we construct H' using the algorithm defined in §5.4.3. Specifically, the

tests we describe all take place in the context of line 11 of the construction algo-

rithm on page 151. We assume that all set up and initialization for the construc-

tion algorithm is complete. In particular, we only test for disabling conditions on

 157

classes whose mergeable attribute is undecided (§5.4.2). After our tests, the mer-

geable attributes in all participating package types are set to either enabled or dis-

abled.

To be enabled for optimization, an undecided class must not exhibit any

disabling condition. Disabling conditions can be tested in any order because they

are independent of each other. As soon as a violation of any condition is detected,

the class is disabled and no further testing for that class is performed.

Tests for some disabling conditions require the extraction of analysis in-

formation (§5.4.2) from the class files of the participating package types. We de-

fine the analysis information needed for a test as we describe that test’s imple-

mentation.

5.5.1 DETECTION USING NO ANALYSIS INFORMATION

Testing for Signature Preservation (§5.3.1) simply means disabling all

original leaf classes in H'. Testing for User-Specified Preservation (§5.3.2) means

disabling any classes the user explicitly told us to preserve. Testing for Change

Barrier Preservation (§5.3.3) means that as we traverse the hierarchies in H', we

disable classes that are behind the change barrier (§5.1.5).

5.5.2 DETECTION USING REFLECTIVE INFORMATION

Reflective information is the subset of analysis information that can be re-

trieved using Java’s reflective APIs. Before testing for disabling conditions, we

count the number of subclasses each class in H' has in the set of participating

package types. Testing for Multiple Subclasses (§5.3.7) means disabling any

class in H' that has more than one subclass. Testing for Merging Static and Non-

 158

Static Classes (§5.3.5) means that the modifiers on each class in H' are inspected

during traversal. A superclass is disabled if its subclass has an incompatible static

designation.

5.5.3 DETECTION USING REFERENCE INFORMATION

In this section, the disabling condition tests rely on analysis information

extracted by scanning the class files of the participating package types. Imple-

mentations will most likely scan class files once during initialization and collect

all the data that will be needed later. For this discussion, let P be the class we are

testing for disabling conditions.

Testing for Change Barrier References (§5.3.4) means disabling P if any

class behind the change barrier contains a reference to P. Testing for Explicit Al-

location (§5.3.6) means scanning all loaded participating package types for the

use of P in allocation statements and disabling P if a use is found. Testing for

Class Literal Usage (§5.3.10) means scanning all loaded participating package

types for references to P’s class file and disabling P if a use is found.

Lastly, testing for Reflection (§5.3.11) means scanning all loaded partici-

pating package types for reflective calls. Each call found is checked against a

user-supplied list of reflective calls that should be ignored. If a reflective call is

found that is not explicitly ignored, the optimization aborts and no classes are

merged.

5.5.4 DETECTING THE LEXICAL NESTING CONDITION

This section describes the Lexical Nesting (§5.3.8) test, which is more

complex than previous tests because two hierarchies in H' are considered at once.

 159

We begin our discussion by defining the leaf() method, which we use in the algo-

rithm that detects Lexical Nesting. After defining this algorithm, we describe

how it depends on the outside-in processing order of the H' construction algorithm

(§5.4.3).

5.5.4.1 The leaf() Method

The leaf() method is defined on all participating package types as follows:

If type T is enabled, then T.leaf() returns the leaf class of the fragment in H' in

which T resides. If T is disabled, then T.leaf() returns T. Otherwise, T.leaf() re-

turns null.

The leaf() method allows us to approximate the value of ultimate destina-

tion classes (§5.1.3) while we build H'. In §5.5.4.3, we describe how the leaf()

method uses the outside-in processing order.

5.5.4.2 The Lexical Nesting Test

We now describe the test that detects the Lexical Nesting condition. Let

class EnclosingP contain nested class P, and let C be a direct subclass of P. We

apply the Lexical Nesting test shown below to P to determine if P can be merged

into C. The test terminates as soon as P either satisfies the condition or is dis-

abled.

 160

1. If EnclosingP is undecided, we disable P.

2. If C.leaf() has an immediately enclosing class, we assign this en-

closing class to EnclosingCLeaf. Otherwise, we disable P.

3. If EnclosingP.leaf() equals EnclosingCLeaf.leaf(), P satifies the

Lexical Nesting condition. Otherwise, we disable P.

In Step 1 of the test, an undecided EnclosingP indicates that P is being

processed before its enclosing class has been processed. In this case, the ultimate

destination class for EnclosingP cannot be accurately characterized, so P is con-

servatively disabled.

In Step 2, C’s leaf() method is called. If C is enabled, then C.leaf() returns

the leaf class of the fragment in H' in which C resides. If C is disabled, then

C.leaf() returns C. In §5.5.4.3, we explain why C is guaranteed to be enabled or

disabled at this point in the processing, which means C.leaf() always returns a

class. If the class returned is nested, we assign its enclosing class to Enclosing-

CLeaf. Otherwise, the Lexical Nesting condition is violated and P is disabled.

In Step 3, the leaf() method is used twice in a comparison. Step 1 guaran-

tees that EnclosingP.leaf() returns a class. If this returned class matches the value

returned from EnclosingCLeaf.leaf(), then the two enclosing classes have the

same leaf class in H'. By having the same leaf class, the enclosing classes also

have the same ultimate destination class.14 In this case, the Lexical Nesting con-

14 If a leaf class is a top-level class, then it is also an ultimate destination class. If a leaf class is
nested, however, it can still be moved (but not merged) into other enclosing classes by the optimi-
zation. Nested leaf classes in H' become ultimate destination classes after all moves are per-
formed.

 161

dition is satisfied. Otherwise, if the enclosing class values do not match, P is dis-

abled.

5.5.4.3 Using the Outside-In Processing Order

The Lexical Nesting test relies on the outside-in processing order

(§5.4.3.1) implemented by the H' construction algorithm (§5.4.3.2). Recall that

the outside-in processing order specifies that (1) if L is a leaf class in H and class

E in H encloses L, then E is processed before L, and (2) the next class processed

after class A is A’s direct superclass or, if no superclass exists, an unprocessed leaf

class in H.

The outside-in processing order is used in two ways. First, we note that

classes already processed by the H' construction algorithm are either enabled or

disabled. If class c has been processed, then (1) c resides in some fragment

h'∈ H', and (2) all of c’s subclasses in h' have also been processed. In particular,

the leaf class of h' has been processed and is known. This allows us to define

c.leaf() to return the leaf class of h'. Above, in Step 2 of the Lexical Nesting test

in §5.5.4.2, C.leaf() returns the appropriate leaf class in H' because C has been

processed.

Second, the outside-in processing order is used as a heuristic to increase

the likelihood that EnclosingP has already been processed, which means we can

often avoid the conservative assignment in Step 1 of the test. For example, Figure

55 shows a typical configuration of mixin layers. When H' is constructed, the en-

closing class hierarchy with leaf X is processed before either nested class hierar-

 162

chy, which have leaves A and D. As a result, when the nested classes are proc-

essed, the Lexical Nesting condition can be precisely tested (Step 2 above).

Figure 55 - Application of Outside-In Processing Order

Figure 56, on the other hand, illustrates a configuration in which a nested

class is processed before its enclosing class. The hierarchy with leaf U is proc-

essed first by our ordering, which means that the Lexical Nesting tests on classes

K and L encounter an undecided enclosing classes V and W. In this situation, we

conservatively disable merging on K and L in Step 1 in the Lexical Nesting test.

As an alternative, we could process leaf class J’s hierarchy first to avoid

encountering undecided enclosing classes.15 We do not claim, however, that un-

decided enclosing classes can always be avoided.

A precise mathematical treatment of the outside-in processing order, as

well as other orderings and approaches to testing the Lexical Nesting condition,

15 Under this new processing order, L is enabled for merging instead of disabled.

D

X

A

C F

Z

B E

Y

 163

are subjects for further research and beyond the scope of this dissertation. We

simply note that the outside-in processing order is simple and works well in regu-

larly structured hierarchies like those in Figure 55, which are the cases that we

have encountered in practice using JL.

Figure 56 - Order-Defeating Configuration

5.5.5 DETECTING THE ENCLOSING CLASS CONDITION

The Enclosing Class condition (§5.3.9) is tested whenever classes that

contain at least one nested type are processed. We begin our test by letting P be a

class that contains a nested type. The Enclosing Class condition states that P can

be merged into its direct subclass C only if C’s ultimate destination class is not

enclosed in a subtype of a type enclosed in P.

To implement our Enclosing Class test, we use the leaf() method defined

in the Lexical Nesting discussion in §5.5.4.1. As in that discussion, we rely on

K
V

J
U

L
W

U is processed first

V and W are undecided
when K and L are
processed using the
outside-in processing
order

 164

the outside-in processing order of the H' construction algorithm (§5.4.3). This

ordering guarantees that C.leaf() returns a (non-null) class. Please refer to §5.5.4

for details.

We let leaf class L = C.leaf(). If L is a top-level class, then P satisfies the

Enclosing Class condition and the test terminates. If L is a nested class, we create

the set NestedTypes, which contains the transitive closure of all types enclosed

by P. That is, NestedTypes contains all types nested in P at all nesting depths.

We then apply the following procedure to each enclosing type E of L, starting

with L’s immediate enclosing type and working outward. The test terminates

when all enclosing types satisfy the procedure below or when P is disabled.

1. If E is undecided, then we disable P.

2. If E.leaf() is a subtype of a type in NestedTypes, then we disable

P. Otherwise, E satisfies this procedure.

One subtlety in the above algorithm is that we use leaf() to discover P’s ul-

timate destination class. We can use leaf() in this way because as long as enclos-

ing class E is enabled or disabled, E.leaf() returns its ultimate destination class at

that level of nesting. By applying leaf() at each successive nesting level starting at

L, we discover L’s ultimate destination class one level at a time. If at any point

we encounter an undecided class, we conservatively disable P.

In §5.5.4, we described how processing order does not always minimize

the number of undecided classes encountered during testing; the same limitation

 165

applies here. In §5.7, we define the ultimate() method that uses the same traversal

of nesting levels described above to return ultimate destination class names.

5.6 Transforming Code

When superclass P is merged into its direct subclass C, the bytecode in P’s

class file is moved to C’s class file and P is deleted. In this section, we describe

the code transformations performed when bytecode is relocated and when classes

are eliminated. We also describe how methods are inlined in merged classes.

Class merging relocates bytecode definitions that represent fields, meth-

ods, nested types, initializers, and constructors. Aside from the access control

considerations discussed in §5.7, three important tasks accompany bytecode mo-

tion. First, all relocated constructors and any other relocated definitions that con-

flict with existing subclass definitions have to be renamed. Second, all references

to relocated or eliminated definitions have to be updated. Third, methods are

sometimes inlined instead of, or in addition to, being moved.

To perform these tasks, we first collect analysis information and create the

InRefs set. InRefs is the set of all references from participating package types to

(1) constructors and members of enabled classes, and (2) enabled top-level

classes. InRefs is constructed using the class file information of participating

package types (§5.2.3). Whenever we move, rename, or eliminate a bytecode

definition, we use InRefs to locate all code that needs to reflect that change. In

many cases, references are updated to point to a new bytecode definition.

 166

The following subsections describe how definitions are relocated, how

classes are eliminated, and how methods are inlined. These activities occur in the

context of the class merging algorithm in §5.4.4. In particular, merging occurs

from leaf to root in the fragments of H'. In our discussion, we use classes P and C

as defined above.

5.6.1 RELOCATING DEFINITIONS

In this section, we describe how different types of bytecode definitions are

moved from P to C and when they need to be renamed. Unless otherwise speci-

fied, references are always updated to point to the relocated bytecode using the

InRefs set described above. In general, these references can reside in any partici-

pating package type.

We begin with P’s initializers, which are renamed if necessary to avoid

name conflicts when they are moved to C. Initializers are not part of the class sig-

nature, so renaming has no effect on C’s signature. Implementations need to

combine or chain together the bytecode for the special <clinit> initializer

method called by the JVM (JVMS §3.9). Care must also be taken to order the

execution of initialization code in the merged class to match that of the original

classes (JLS §12.4). After merging, all references to P’s initializers reside in C

and are updated appropriately.

P’s constructors are converted into uniquely named private methods in C

when they are relocated. P’s constructors are not inherited by C, so renaming has

no effect on C’s signature. The Multiple Subclass (§5.3.7) and Explicit Alloca-

tion (§5.3.6) disabling conditions guarantee that the only calls to P’s constructors

 167

are from constructors in P or C. After merging, all references reside in C and are

updated appropriately.

Members of P that are inherited by C are moved into C without renaming.

All references to these members are updated to point to the relocated bytecode.

Private fields, private nested types, and private static methods in P are re-

named to avoid name conflicts when moved into C. After merging, all references

to these private definitions reside in C and are updated appropriately.

Fields, nested types, and static methods in P that are hidden by members

in C are renamed to avoid name conflicts when moved into C. These hidden

members of P are not inherited by C (JLS §6.4.2), so renaming them can only

widen C’s signature. Since P’s hidden members could be accessed using fully

qualified names or the super keyword, references outside of C may need to be

updated.

Instance methods in P that are overridden in C are not inherited by C (JLS

§6.4.2), so they can be renamed. Since instance method lookup is dynamic, we

update virtual calls to P’s overridden methods to refer to C’s overriding methods,

not to P’s relocated methods. This type of reference update differs from all other

updates because it does not point to the relocated bytecode from P, but instead to

bytecode that already exists in C.

On the other hand, non-virtual calls to P’s overridden methods are updated

to point to P’s relocated methods. These non-virtual calls use the super keyword

and only reside in C. In addition, P’s private instance methods are moved to C

 168

and renamed if necessary (JLS §8.4.6.3). Reference updates to these private

methods also point to the relocated bytecode.

Figure 57 and Figure 58 illustrate the how references to instance methods

are updated when the methods are relocated. In both figures, class P is merged

into its child class L. Before optimization, participating package class X makes a

virtual call to method P.m(). After optimization, relocated code is shown in bold

font and method references are adjusted.

In Figure 57, L inherits P.m() before optimization. After optimization, P

is eliminated and the reference to m() in X now points to L.m().

Figure 57 - Updating References for Non-Static Inherited Methods

In Figure 58, however, L.m() overrides P.m() before optimization. Af-

ter optimization, P.m() is relocated to L and renamed m'(). The reference to

m() in X does not point to this relocated code as it did in the previous example.

Optimization

X
… ((P)obj).m();
…

P
void m(){…}

L

X
… ((L)obj).m();
…

L
void m(){…}

= static reference

 169

Instead, X now references L.m(), which is L’s original overriding method. In

addition, L’s non-virtual call to super.m() references m'() after optimization,

P’s relocated code.

Figure 58 - Updating References for Overridden Methods

We have described how each type of bytecode definition is relocated and

how references to them are updated. Before concluding our discussion, we note

that all relocated constructors and all relocated overridden instance methods can

be made private in C. We explained above why this is true for constructors, we

now discuss the privatization of overridden instance methods. Before optimiza-

tion, overridden instance methods can be either called non-virtually from C using

super or called not at all because of dynamic dispatch. Thus, when these methods

are relocated to C and made private, no access violations can occur. The benefit

of making relocated constructors and overridden instance methods private is that

Optimization

X
… ((L)obj).m();
…

L
void m(){m'();}
void m'(){…}

= static reference
void m()
{super.m();}

X
… ((P)obj).m();
…

P
void m(){…}

L

 170

the invokespecial bytecode can continue to be used at C’s call sites (JVMS §7.7).

Keeping invokespecial requires less code transformation and results in less run-

time overhead. As a final note, implementations are free to delete relocated

methods that are private and not referenced.

5.6.2 ELIMINATING CLASSES

After P is merged into C, P is deleted. Using the InRefs set, all references

to P in any participating package type are updated to point to C. The Multiple

Subclass disabling condition guarantees that P is superclass only to C. The Ex-

plicit Allocation disabling condition guarantees that P is never explicitly instanti-

ated. In all other expressions that P can appear in, C can be safely substituted be-

cause C’s signature is a superset of P’s signature. Access control adjustment is

considered in §5.7.

5.6.3 INLINING METHODS

In this section, we describe minimal inlining policies that address the

problem of excessive method call overhead described in §2.4.4. We encourage

implementations to explore other policies that can increase the overall effective-

ness of inlining [2,9,61,81].

 The simplest inlining policy that decreases method indirection in mixin-

generated code is a policy that inlines constructors and overridden instance meth-

ods that have been merged from P into C. Recall that these relocated definitions

can only be called from C because they are private (§5.6.1). If only one such call

site exists, then inlining can even reduce C’s overall size because the private

 171

method can be deleted. If multiple call sites exist, then a heuristic that considers

inlined code size and the number of call sites should be used.

A more aggressive inlining policy could consider all private methods in C

as candidates for inlining, not just those that were originally constructors or over-

ridden instance methods in P. This more aggressive policy, as well as other alter-

native policies, can be carried out when P is merged into C. In addition, our de-

sign does not prohibit policies that take place at other times during optimization

or policies that consider more than two classes at once.

5.7 Adjusting Access Control

When superclass P is merged into its subclass C, the bytecode in P’s class

file is moved to C’s class file and P is deleted. In the previous section, we de-

scribed how bytecode is transformed during class merging in all respects except

those related to access control. We now complete our discussion on bytecode

transformation by presenting algorithms that guarantee that references to and from

relocated bytecode have access to their target declarations.

Before beginning our discussion, we introduce working definitions of the

four types of access control available to Java declarations (JLS §6.6):

• private – access only from within the body of the top-level class

that encloses the declaration.

• package – access from types in the same package (default access).

• protected – package access plus access from subclasses.

 172

• public – access from all types without restriction.

Access control is adjusted in the context of the class merging algorithm in

§5.4.4. When references are updated during bytecode relocation (§5.6.1) or class

elimination (§5.6.2), the target declarations may need their access control ad-

justed. When P and C are in the same package, references remain valid without

any changes to access control. When P and C are in different packages, however,

references to declarations with package or protected access can be invalidated by

class merging.

Figure 59 shows one way that references to relocated bytecode can be in-

validated. The hierarchy shown has three classes that span two packages, R and

S. Field f has package accessibility in class R.Z and is referenced from class

R.X. The class hierarchy optimization merges R.Z into S.Y. After optimization,

field f is in S.Y and the reference to f is still in R.X. This reference is now inva-

lid because R.X does not have package access to S.Y.

 173

Figure 59 - References to Relocated Bytecode

Figure 60 shows one way that references from relocated bytecode can be

invalidated. Optimization merges R.Y into S.X and moves the reference to field

f out of package R and into package S. This reference is now invalid because f is

only accessible inside package R. Note that even if f were made public in R.Z,

the field could only be accessed from S.X if class R.Z were also made public.

R.X

… f = 5; …

public R.Z

int f;

public S.Y

 = disabled = enabled

Package S Package R

 174

Figure 60 - References from Relocated Bytecode

Access control problems occur when bytecode contains or uses package or

protected access control. When the bytecode is relocated across package bounda-

ries, previously valid access patterns can be invalidated. These access problems

can be avoided by (1) making public all relocated package and protected declara-

tions, and by (2) making public all package and protected declarations referenced

from relocated bytecode.

This public promotion approach to access control is simple to use and to

implement. The main drawback of public promotion is that it weakens modular-

ity. Classes that were crafted as abstract data types lose much of their data hiding

capability and expose their internal representation to all other classes. Moreover,

public promotion is imprecise because all declarations are changed, even those

that are not actually referenced across packages.

To avoid the deficiencies of public promotion, we use a minimal promo-

tion approach to access control. Our approach weakens access control on declara-

public R.Y

… Z.f = 5; …

S.X

 = disabled = enabled

R.Z

static int f;

input class

 175

tions as little as necessary to guarantee that all existing references remain valid

after optimization. For example, if declarations with package accessibility are

moved between packages and all references remain valid, then access control is

either not changed or made more restrictive. This selective adjustment is based

on the needs of actual references, which makes minimal promotion more precise

than public promotion.

In general, a promotion algorithm is dynamic if existing references are

used to determine how access control is adjusted. A promotion algorithm is static

if it does not consider existing references. Public promotion is static. Depending

on the specific bytecode being relocated, we will see that minimal promotion is

sometimes static and sometimes dynamic.

We use analysis information and special methods to execute the dynamic

parts of the minimal promotion algorithm. We use the InRefs set defined in §5.6

to discover the references to relocated declarations and enabled top-level classes.

In addition, we define the ultimate() method that returns the names of the ultimate

destination classes in H'. This method runs only after H' has been constructed and

all participating package types are either enabled or disabled.

To demonstrate its plausibility, we now sketch the implementation of the

ultimate() method. A.ultimate() returns the name of the ultimate destination class

for class A. A.ultimate() calls A.leaf() (§5.5.4.1) and assigns the result to L. If L is

a top level class, then we append L to its package name and return the fully-

qualified name. Otherwise, L is a nested class and its immediate enclosing class

is E. We make a recursive call to E.ultimate(). The results from E.ultimate() are

 176

combined with L to construct the fully qualified name of the ultimate destination

class, which is returned.

We present the minimal promotion algorithm in two parts. The first part

considers the static aspect of minimal promotion. The algorithm for static access

control consists of rules that adjust control based solely on the bytecode defini-

tions that are moved. The second part of our discussion considers the dynamic

aspect of the minimal promotion algorithm. We identify four dynamic cases in

which reference data must be consulted and we define a procedure to handle each

case. Throughout our discussion, we use classes P and C as defined above.

5.7.1 STATIC ACCESS CONTROL RULES

This section describes the static part of the minimal promotion algorithm.

Access control can be determined statically when it does not depend on reference

patterns in the code. If P and C are in the same package, then package and pro-

tected declarations keep their current access control. All existing references into

and out of relocated bytecode maintain valid access after class merging because

accessibility has not changed.

On the other hand, if P and C are in different packages, then the problems

of reference invalidation described above can occur. These cross package merg-

ing problems are addressed using dynamic algorithms, which we present in the

next section. There are, however, five cases in which access control can be stati-

cally determined even if P and C are in different packages. These cases are as

follows:

 177

1. Private declarations in P remain private when they are moved to C.

References to these private declarations remain valid after relocation

because both the references and the declarations they point to are

moved into C. Initializers are treated as private declarations for access

control purposes.

2. In §5.6.1, we described how constructors in P are always made into

private methods in C. This is a special case of statically determined

access control.

3. Also in §5.6.1, we describe how overridden instance methods in P are

made into private methods in C. This is another special case of stati-

cally determined access control.

4. Public declarations in P remain public when they are moved to C, ex-

cept for the constructors and overridden instance methods that we just

mentioned. References to public declarations maintain valid access

because the declarations are still public in C.

5. References from relocated bytecode to public declarations do not re-

quire access control adjustment because the target declarations are still

accessible from the bytecode’s new location. These referenced public

declarations can reside in any participating package type.

The five static cases listed above describe much of the access control proc-

essing that takes place during class merging; we now describe the remaining dy-

namic cases.

 178

5.7.2 DYNAMIC ACCESS CONTROL RULES

This section describes the dynamic part of the minimal promotion algo-

rithm. Access control is determined dynamically when it depends on reference

patterns in the code. When P and C are in different packages, then the problem of

reference invalidation described in §5.7 can occur. We identify four cases where

static access control assignment is not sufficient and where reference data must be

consulted. We then define a procedure to handle each of these cases.

Each dynamic procedure updates access control on a specific class of

definitions. The first procedure updates access control on relocated package dec-

larations; the second procedure updates relocated protected declarations. The

third procedure updates classes that have their superclasses merged into them.

The fourth procedure updates declarations that are referenced from relocated

code, but are not themselves relocated.

Each dynamic procedure is described in it own subsection. The proce-

dures use the InRefs set and the ultimate() method as described in §5.7. In each

subsection, our overall goal is to merge superclass R.P into its subclass S.C,

where R and S represent the different packages in which classes P and C reside.

We define the ultimate destination class for all relocated members as follows:

UltimatePkg.UltimateClass = R.P.ultimate()

 179

The package of R.P’s ultimate destination class is represented by Ulti-

matePkg; the class is represented by UltimateClass. We now describe the four

dynamic procedures.

5.7.2.1 Adjusting Relocated Package Declarations

The procedure below adjusts access control on non-overridden, relocated

members that have package access. For each member m with package access in

R.P that is not overridden in S.C, we perform the following:

1. If any reference to m in InRefs ultimately resides in a package differ-

ent from UltimatePkg, then assign m public access.

2. Otherwise, if UltimatePkg equals R, or if any reference to m in InRefs

ultimately resides in a type T different from UltimateClass, then assign

m package access.

3. Otherwise, assign m private access.

The above procedure compares the ultimate destination of non-overridden,

relocated package members to the ultimate destination of their references. In step

1, package members are made public if relocation invalidates any reference. In

step 2, package members keep their package access control if they are ultimately

referenced from classes in UltimatePkg other than UltimateClass.16

Interestingly, in step 3, package members are made private if they are not

ultimately referenced from outside of UltimateClass. This strengthening of ac-

16 Step 2 can be fine tuned to not handle cases in which T and UltimateClass share a common
enclosing type, but this is a minor adjustment.

 180

cess control is justified because programmer intent to expose members within

their original package does not automatically translate into intent to expose them

within a different package after relocation. Note that if the original and ultimate

packages for P are same, access control is never strengthened.

5.7.2.2 Adjusting Relocated Protected Declarations

The procedure below adjusts access control on non-overridden, relocated

members that have protected access. For each member m with protected access in

R.P that is not overridden in S.C, we perform the following:

1. Define InRefsm as the set that contains the ultimate destination classes

in which all references to m in InRefs reside.

2. If there exists a pm.cm∈ InRefsm such that (1) pm is different from Ulti-

matePkg and (2) cm is not a subclass of UltimateClass, then assign m

public access.

3. Otherwise, assign m protected access.

The above procedure compares the ultimate destination of non-overridden,

relocated protected members to the ultimate destination of their references. If a

reference ultimately resides in a class that is not a subclass of and is not in the

same package as UltimatePkg.UltimateClass, then the referenced member is made

public. Otherwise, the member’s access control remains protected.

 181

5.7.2.3 Adjusting Merged Classes

The procedure below adjusts access control on subclasses that absorb their

superclasses, which are then eliminated. References to these superclasses are

changed into references to the merged subclasses. Our access control procedure

executes one of two cases depending on whether the ultimate destination class is

top-level or nested.

Case 1: If UltimatePkg.UltimateClass is a top-level class, then for each

type T that contains a reference to R.P, we let Tu = T.ultimate(). We then perform

the following test:

If UltimatePkg.UltimateClass has package access and Tu resides in a dif-

ferent package than UltimatePkg, then we assign Ulti-

matePkg.UltimateClass public access.

Case 2: If UltimatePkg.UltimateClass is a nested class, then for each type

T that contains a reference to R.P, we let Tu = T.ultimate(). We then perform the

following test:

1. If UltimatePkg.UltimateClass is public, no adjustment is necessary and

the test terminates.

 182

2. Otherwise, if the package that Tu resides in is different than Ulti-

matePkg, and Tu is not a subclass of UltimatePkg.UltimateClass, then

we assign UltimatePkg.UltimateClass public access.

3. Otherwise, if the package that Tu resides in is different than Ulti-

matePkg, and Tu is a subclass of UltimatePkg.UltimateClass, then we

assign UltimatePkg.UltimateClass protected access.

4. Otherwise, if UltimatePkg.UltimateClass is private and if Tu and Ulti-

matePkg.UltimateClass do not share a common enclosing type, then

we assign UltimatePkg.UltimateClass package access.

The procedures in the above two cases terminate as soon as Ulti-

matePkg.UltimateClass has public access control. All adjustments represent the

minimal weakening of access control necessary to maintain the validity of exist-

ing references. In Case 1, top-level types can only have public or package access,

so only one adjustment is possible.

In Case 2, nested classes can have all four levels of accessibility, so three

adjustments are possible. Steps 2 and 3 cover all configurations in which Tu and

UltimatePkg.UltimateClass are in different packages; step 4 covers the case when

they are in the same package.

5.7.2.4 Adjusting Stationary Declarations

The previous three dynamic procedures adjust access control on relocated

code. The procedure in this section adjusts access control on package and pro-

 183

tected declarations that are not moved during optimization, but that are referenced

from bytecode that is moved. We begin by defining terms used in the procedure.

Declarations not moved by our optimization are called stationary declara-

tions. These declarations can be constructors, members or top-level types. We

detect stationary declarations by first identifying stationary types. Stationary

types are participating package types that are disabled and, if they are nested,

have only disabled enclosing types. A declaration is stationary if and only if the

declaration either is a stationary type or resides in a stationary type.

Our procedure processes each declaration referenced in R.P’s bytecode.

For each declaration d pointed to by some reference in R.P’s bytecode, we per-

form the following:

1. If d is public or private, then d is not changed.

2. If d is not a stationary declaration, then d is not changed.

3. If d resides in package UltimatePkg, then d is not changed.

4. If d is a protected declaration that resides in a superclass of Ulti-

matePkg.UltimateClass, then d is not changed.

5. Otherwise, we assign d public access.

The above procedure changes d’s access control to public only when tests

1-4 fail. Test 1 eliminates declarations handled by our static procedure. Test 2

eliminates declarations handle by other dynamic procedures. Tests 3 and 4 elimi-

nate package and protected stationary declarations that can still be referenced

 184

from R.P’s relocated bytecode. If no test is satisfied, the stationary declaration is

made public.

5.8 Discussion

The class hierarchy optimization takes inlining a step further by merging

classes as well as methods. Class merging and method inlining are both repack-

aging techniques that move code to improve performance. Both transformations

preserve program semantics by executing existing code, though the location and

context of that code is changed.

We started with the simple idea of flattening Java class hierarchies and

then worked through the details of its high-level design. We found that determin-

ing when optimization can be applied is as difficult as actually performing the op-

timization. We also found that handling Java’s nested types, package system, and

access control semantics represent the most challenging aspects of the design. If

there is a lesson here, it is that simply expressed type transformations are not nec-

essarily simple to implement in a real language. Recent work in refactoring [122]

supports this conclusion.

Our design establishes the basic concepts, transformations, and data struc-

tures used in the class hierarchy optimization. There are, however, many possible

variations that implementations may choose to explore. We list some of these al-

ternatives here:

 185

1. Nested hierarchies with private leaf classes can be included in the set

of associated nested hierarchies so that they can also be optimized

(§5.1.8).

2. The immediacy requirement in the Lexical Nesting condition can be

relaxed to increase the number of optimizable classes (§5.3.8).

3. Alternatives to the outside-in processing order (§5.4.3.1) can be ex-

plored to more precisely determine when classes should be disabled

(§5.5.4).

4. Multiple access control adjustment strategies can be supported, includ-

ing public promotion and variations on minimal promotion (§5.7).

5. Certain disabling conditions, such as merging static and non-static

classes (§5.3.5), can be relaxed by inspecting the actual classes being

optimized.

6. Interface merging can be explored.

5.9 Related Work

This section discusses three areas of work related to JL’s class hierarchy

optimization. We describe how our optimization relates to an application com-

pression tool, to refactoring tools, and to other optimizations that also depend on

class hierarchy structure.

5.9.1 THE JAVA APPLICATION EXTRACTOR (JAX)

The Java Application Extractor (Jax) [121] implements a number of trans-

formations that reduce the size of Java programs. These transformations remove

 186

unused classes, methods and fields from programs. To reduce program size, Jax

can eliminate a class after merging it into its superclass. Jax does not, however,

merge two classes if runtime objects become larger as a result of the merge. This

restriction implies that if a class contains live, non-static fields, then the class can-

not be merged into its superclass. In addition, Jax does not merge a class and its

superclass if a live, non-abstract method m is declared in both classes.

The goal of JL’s class hierarchy optimization is not to reduce program

size, but to merge as many classes as possible in a set of related hierarchies. In

JL, classes with live, non-static fields are merged. In addition, JL can merge two

classes that both contain a live, non-abstract method m. On the other hand, JL has

a number of disabling conditions, such as Explicit Allocation (§5.3.6) and Multi-

ple Subclasses (§5.3.7), that restrict merging in ways that Jax does not.

Jax and JL also differ in a number of minor ways. Jax merges interfaces

into classes, while JL does not. Also, Jax uses public promotion to handle cross-

package access control in merged code. JL specifies the minimal promotion algo-

rithm, but encourages implementations to offer multiple approaches to access

control, including public promotion. Both Jax and JL perform method inlining,

but Jax inlines methods only if program size does not increase.

Lastly, Jax and JL share a number of common traits. Both optimizations

distinguish between application classes that can be optimized and system classes

that are never modified. In addition, JL adopts Jax’s approach to managing re-

flection and dynamic loading. Both optimizations rely on programmers to charac-

 187

terize the safe and unsafe uses of these facilities. In Jax, programmers specify the

unsafe uses; in JL, programmers specify the safe uses.

5.9.2 REFACTORING

Object-oriented classes are refactored [75,80,87,94,122] when their struc-

ture is changed in behavior-preserving ways. Refactoring includes the creation,

deletion, and renaming of classes, methods and fields; it also includes changing a

class’s superclass. The class hierarchy optimization refactors Java code, but it

differs from most refactoring tools in intent. The goal of our optimization is to

create efficient code, whereas the goal of refactoring tools is to improve program

design.

These different goals lead to differences in technology and usage. The

class hierarchy optimization processes bytecode and applies the same transforma-

tion to all input. In addition, the optimization runs with as little programmer in-

teraction as possible. Refactoring tools, on the other hand, process source code

and their output is expected to be edited by programmers. Moreover, refactoring

tools are often implemented as browsers so that programs can be restructured in-

teractively.

5.9.3 DETERMINING CLASS HIERARCHY STRUCTURE

The class hierarchy optimization uses the closed world assumption

(§5.2.1) to limit the classes it examines. This need to define a limited set of

classes at compile-time is not unique to our optimization. For example, the

JOVE™ [60] and TowerJ™ [123] native Java compilers support optimizations

 188

that require static access to all classes that can be encountered at runtime, includ-

ing classes dynamically loaded by the application.

Since the release of Java 1.2, however, packages can be sealed [115] in

Java archive (JAR) files [8]. A sealed package is one in which all classes in the

package must be loaded from the same JAR file. Zaks, Feldman and Aizikowiz

[131] have shown that sealed packages can be used to increase the number of

statically devirtualized method calls. More specifically, since package classes in

sealed packages have no visibility outside the package, and since no new classes

can be added to a sealed package, sealed packages provide enhanced information

for resolving method calls at compile-time. As a possible subject for future work,

the class hierarchy optimization could use sealed packages to reduce its reliance

on the closed world assumption.

 189

CHAPTER 6 COMPILER IMPLEMENTATION

This chapter describes the implementation of Java Layers. We actually

describe the implementation of two different versions of the language. The first

version of Java Layers (JL1) served as a prototype and test bed for exploring ideas

on software construction. JL1 explicitly implements the GenVoca model (§2.3.1)

and was used to perform our ACE evaluation (§7.1). JL1 is presented in §6.1.

The second version of Java Layers (JL) builds on lessons learned design-

ing and implementing JL1 (§6.1.1); this is the version of Java Layers described

throughout this dissertation. The distinguishing characteristic of JL is its focus on

integration with current programming languages. Our emphasis on integration is

practical: Mixins extend common object-oriented programming techniques, so to

reach the widest audience, mixin implementations should extend common object-

oriented languages. JL’s implementation is presented in §6.2.

In this chapter, we also explore an interesting implementation problem

that highlights how feature interaction makes language design a subtle art. The

problem involves naming JL’s instantiated types. JL’s heterogeneous implemen-

tation (§4.1.4.1) specializes code for each distinct instantiation of a parametric

type, and each of these specializations must be uniquely named. In §6.3, we de-

scribe a name mangling technique that accounts for Java’s package system and for

JL’s implicit This type parameter (§4.3).

 190

6.1 Direct Implementation

The first version of Java Layers (JL1) [30] reflects three design goals. The

first goal is to implement the main elements of the GenVoca model (§2.3.1) by

supporting the concepts of layers, realms and type equations. This direct support

of the GenVoca model allows programmers to create and compose software com-

ponents; it also allows applications to be built using the methodology of stepwise

program refinement. The second goal is to implement language features that

make component programming easier. These features are the precursors to the JL

features described in Chapter 4. The third goal is to localize our modifications to

Java primarily in the new layer construct. This approach compartmentalizes

JL1’s implementation and allows programmers to work in standard Java until they

are comfortable with component programming.

JL1 is implemented as a source-to-source compiler that transforms JL1

source code into Java source code and then invokes a Java compiler to produce

bytecode. The JL1 compiler is approximately 16K lines of Java code, not count-

ing grammar files or test code.

In JL1, GenVoca components are defined using the layer construct. Lay-

ers belong to one or more realms, which are defined as Java interfaces. Layers in

the same realm can be substituted for one another. Type equations are used to

combine layers, Java classes, and Java interfaces into applications. The inputs

and output of the JL1 compiler are shown in Figure 61.

 191

Figure 61 - Compilation in JL1

Figure 62 uses JL1 layers to redefine the transport example introduced in

§2.4.3 on page 25. The TransportIfc interface defines the transport realm,

which is populated by classes that implement TransportIfc and layers that ex-

port TransportIfc. The figure shows two realm members, the TCP layer and

the Secure layer. Both of these layers are transformed by the JL1 compiler into

Java classes that implement TransportIfc. The Secure layer declares con-

strained type parameter T, which the mixin keyword designates as the placeholder

for the superclass of the class generated by Secure. Figure 62 defines a type

equation that generates a hierarchy of three classes. The leaf class, Trans, im-

plements a secure TCP transport class. The superclass of Trans is the class gen-

erated by Secure, and the root of the hierarchy is the class generated by TCP.

Layer
Definitions

Java Classes
and Interfaces

Type
Equations

Java Classes
and Interfaces

JL1 Compiler + +

 192

Figure 62 - Defining Software Components in JL1

Figure 62 illustrates how JL1 layers support their own form of mixin in-

heritance. JL1 also defines its own version of deep conformance (§4.2), a most

derived type expression (§4.3), constructor propagation (§4.4) and semantic

checking (§4.5). In JL1, these features are only used inside layer constructs.

We now describe what we learned from JL1 and how we incorporated that

knowledge into the second version of Java Layers.

6.1.1 LESSONS FROM DIRECT IMPLEMENTATION

One of the most important lessons that we learned from implementing JL1

is that the benefits of generic programming should be available in all types, not

layer TCP exports TransportIfc {
 public void send(byte[] out){…}
 public void recv(byte[] in){…}
 public void disconnect(){…}
}

layer Secure<mixin T implements TransportIfc>
 exports TransportIfc
{
 public void send(byte[] out){…}
 public void recv(byte[] in){…}
 public void disconnect(){…}
}

public interface TransportIfc { // Realm
 public void send(byte[] out);
 public void recv(byte[] in);
 public void disconnect();
}

class Trans = Secure[TCP]; // Type equation

 193

just in the special layer construct. JL1 is specialized to support stepwise program

refinement, which is a developing software engineering methodology. JL1 does

not, however, provide parametric classes and interfaces that conveniently support

traditional generic programming. This limitation makes JL1 useful for research,

but less desirable as a general purpose programming language.

In the second version of Java Layers (JL), we eliminate JL1’s layer con-

struct by implementing mixins in classes and interfaces. This revised implemen-

tation supports both mixin programming and traditional generic programming. JL

also supports deep conformance and constructor propagation in both parametric

and non-parametric types. In addition, certain JL1 capabilities, such as automatic

interface generation, proved not to be useful in practice and are not included in

JL. Similarly, certain capabilities missing from JL1 are included in JL. For ex-

ample, the occasional need to selectively apply deep conformance to non-public

nested types led us to include the propagate keyword in JL (§4.2.3).

6.2 Integrated Implementation

The main impetus for designing a second version of Java Layers (JL) was

to show that mixins integrate well with generics in Java. In §4.1.4, we list recent

proposals for adding parametric polymorphism to Java. These proposals, along

with Thorup’s proposal (§4.3.5) for adding virtual types to Java, represent the lat-

est thinking on adding generics to Java. JL’s generic types share much of the syn-

tax, semantics, and capabilities of these other proposals. JL, however, is the only

 194

compiler of Java generics that implements mixins, and JL’s extended support for

mixin programming distinguishes it further.

There are two important benefits in designing JL as an integrated generic

solution. First, JL’s parametric classes and interfaces can be used as traditional

generics, which means JL reaches a wide audience before mixin programming is

even considered. Second, JL is practical to implement. Languages that already

support parametric types can support mixins with modest changes to their gram-

mars—our implementation of JL proves this. Conversely, object-oriented lan-

guages that support mixins can easily support non-mixin parametric types as well.

JL represents a research platform in which the interaction between mixin

and non-mixin generic programming can be studied. Our ultimate goal is to inte-

grate into mainstream languages what we learn about mixin programming using

JL, just as F-bounded polymorphism [28] and constrained type parameters

[29,109] have been integrated into languages.

JL is implemented as a source-to-source compiler that transforms JL

source code into Java source code and then invokes a Java compiler to produce

bytecode. The JL compiler is approximately 18K lines of Java code, not counting

grammar files or hundreds of test cases.

The current implementation of the JL compiler does not completely im-

plement the JL language. We have already mentioned that the semantic checking

facility is not implemented (§4.5). In addition, the compiler does not write ex-

tended attributes to class files, which leads to other limitations. For example, type

parameter bindings, instantiation expressions, and the propagate attribute on con-

 195

structors are not saved in bytecode, so this information is only available when

source code is loaded. The release notes on JL’s web site [57] lists the limitations

of the current implementation.

One of the more interesting implementation challenges encountered when

writing the JL compiler involved naming instantiated classes and interfaces,

which we now describe.

6.3 Name Mangling in JL

In this section, we specify how instantiated parametric types are named in

JL. In §4.1.4.1, we noted that JL’s heterogeneous implementation requires that

uniquely instantiated parametric types must be uniquely named. In §4.3.3.3 on

page 85, we used a simplified naming scheme that incorporated the implicit This

type parameter into generated names. Using that scheme, instantiation names in-

clude the parametric type name, a representation of the This-binding name, and

the names of the types bound to all other type parameters.

The simplified naming scheme is similar to the name mangling [68] ap-

proach used in C++ template [110] instantiations. In C++, name mangling essen-

tially concatenates the template name and, in declaration order, the names of the

types that get bound to the type parameters.

There are two reasons why the name mangling used in C++ and the simple

scheme used in §4.3.3.3 will not work in JL. First, the length of fully-qualified

type names in Java not only makes them inconvenient to use, but possibly too

long to fit in command-line buffers of some operating systems. Second, in mixin-

 196

generated hierarchies, the This-binding of a parent instantiated type depends on

the This-binding of its child, and the This-binding of a child indirectly depends on

the This-binding of its parent. In §6.3.2.2, we describe how we break this circular

dependency so that instantiations can be named.

The following subsections describe how JL’s naming scheme addresses

the above two issues. We first describe how JL bounds the length of instantiated

type names using hashing. We then describe how JL provides special support for

This during instantiation, including an algorithm that uses name tokens to break

the circular dependency involving This-bindings.

6.3.1 HASHING

In Java, a type is identified by its fully-qualified name, which can include

package and enclosing type components. For safety and precision, only fully-

qualified names are used to name instantiations in JL. For example, if String is

specified as an actual type parameter, then the name java.lang.String is used.

Fully-qualified type names in Java applications tend to be long. One fac-

tor that increases name length is Java’s package naming convention [8]. For ex-

ample, PropagateRecord is a nested class used in the JL compiler implementa-

tion. Using the recommended naming convention, its fully-qualified name is

edu.utexas.cs.jl.compiler.JLCConformer.PropagateRecord. When used as a type

parameter, PropagateRecord would significantly lengthen an instantiation’s name

if a simple name scheme like that in §4.3.3.3 were used.

The name length problem becomes acute, however, when mixins are used.

To understand the problem, consider the declaration of Leaf in Figure 63. Leaf

 197

inherits from a composition of mixin classes. All types shown are in the

edu.utexas.cs.myapp package. Using a naming scheme similar to that in

§4.3.3.3 on page 85, the name generated for the superclass of Leaf contains 228

characters. This naming scheme combines a parametric type name with all its ac-

tual type parameter names, including its This type name, to generate a unique in-

stantiation name. Obviously, the use of longer names, more type parameters, or

deeper mixin hierarchies only exacerbates the problem.

Figure 63 - Name Inflation using Mixins

The generation of type names with hundreds or even thousands of charac-

ters introduces usability concerns. In Java, the type name is also used as the class

file name. Long file names are not only difficult for programmers to key in, but

they are difficult to use if they exceed the operating system’s command line input

buffer, which can be as little as 260 bytes in current systems.17 In addition, file

systems and file utilities can impose their own limitations on file name lengths.

17 Microsoft Windows NT™.

The Name Generated for Leaf’s Superclass

MyType1<
 :edu.utexas.cs.myapp.Leaf, edu.utexas.cs.myapp.MyType2<
 :edu.utexas.cs.myapp.Leaf, edu.utexas.cs.myapp.MyType3<
 :edu.utexas.cs.myapp.Leaf, edu.utexas.cs.myapp.MyType4<
 :edu.utexas.cs.myapp.Leaf, edu.utexas.cs.myapp.BaseType>>>>

package edu.utexas.cs.myapp;
class Leaf
 extends MyType1<MyType2<MyType3<MyType4<BaseType>>>>
{…}

 198

To avoid the usability problems of long type names, JL generates a unique

string for each instantiated type and then uses a hash of that string to construct the

actual instantiation name. We now describe this name generation algorithm,

which is called recursively in instantiations that contain other instantiations. The

algorithm begins by substituting fully-qualified names for all actual type parame-

ter names in an instantiation. The This-binding name appears as the instantia-

tion’s first parameter and is preceded by a colon (:).

The algorithm then normalizes all type parameter literals and removes all

white space to create a canonical representation of an instantiation expression.

This canonical representation is a string, which is hashed to an unsigned 32 bit

number. The instantiation name is then constructed by concatenating the para-

metric type name with an underscore character (_) and the hexadecimal hash

number. The length of the generated name is no greater than the parametric type

name plus nine characters. For example, the name generated by JL for the super-

class of Leaf in Figure 63 is MyType1_246332E.

JL hashes strings using an adaptation [18] of Holub’s hash function [52],

which is based on Weinberger’s generic hashing algorithm [2]. Since JL gener-

ates names using all of the 232 possible values returned by the hash function, name

collisions are unlikely to occur in practice.18 For correctness, however, the JL

compiler can check existing files before writing new instantiations to file. If files

with the same name contain different types, then compilation aborts. This check

18 We have never experienced a name collision.

 199

is not currently performed because, as we note in §6.2, JL attributes like type pa-

rameter bindings are not written to Java class files.

6.3.2 NAME MANGLING WITH THIS

This section describes two issues involving instantiation and the implicit

This type parameter. The first issue concerns the replication of nearly identical

types during instantiation, which can happen when parametric types do not use

This. The second issue concerns the circular dependency involving This-bindings

that we mentioned above in §6.3.

6.3.2.1 Avoiding Duplicate Type Generation

In this section, we first describe how the implicit This type parameter can

cause unnecessary code replication. To address this problem, we introduce the

concept of This-specialization and use this concept to avoid generating unneeded

code specializations. We then describe how This-specialization is implemented.

Figure 64 shows how nearly identical versions of a class can be generated

during instantiation. The figure defines parametric class Base<T> and two non-

parametric classes, A and B, which inherit from Base<int>. Also shown are two

distinctly named instantiations of Base<int>. These two instantiations are gen-

erated because This is bound to A in one instantiation and to B in the other. As

described in §6.3.1, the types bound to This are part of the string that gets hashed

when naming an instantiation. Different instantiation names represent different

instantiation types, thus two distinct hierarchies are generated by the code in

Figure 64.

 200

Figure 64 - Generating Identical Types with Different Names

The above example exposes two problems. First, memory is wasted when

types that are different only in name are replicated during instantiation. In the

above instantiations, the two versions of Base<int> differ only in their This-

bindings, which are never used because This is never referenced. Second, since A

and B do not share a common Base<int> supertype, objects of types A and B

cannot be treated as the specializations of the same parametric type. This limits

the expressiveness and flexibility of the language.

To avoid needless code replication and to generate hierarchies that more

precisely reflect inheritance relationships, we introduce the concept of This-

specialization in JL. A parametric type is This-specialized if its implementation

depends on This. Instantiations of This-specialized types generate different byte-

class Base<T>
{
 T _fld;
}

class A extends Base<int> {}

class B extends Base<int> {}

Generated Hierarchies

Base_E43068E

A

Base_E53068E

B

different classes

 201

code depending on their This-binding, so these instantiations must be uniquely

named.

On the other hand, parametric types that are not This-specialized generate

the bytecode that differs only in name no matter what type gets bound to This.

Instantiations of these parametric types that differ only in their This-bindings can

use the same name, which means that we ignore This when it is not used. For pa-

rametric types that are not This-specialized, instantiations are named as if This

did not exist in JL, which solves the problem of replicated bytecode.

In terms of implementation, we need to distinguish between This-

specialized types and those that are not This-specialized in order to correctly

name instantiations. A parametric type P is This-specialized if (1) its implicit

This type parameter is used or referenced or (2) any supertype of P is This-

specialized. The first condition follows from the definition of This-specialization

and can be checked by inspecting the source code of a parametric type.

The need for the second condition is demonstrated in Figure 65, which

shows why subtypes inherit This-specialization from their supertypes. Z<> ap-

pears in two hierarchies and is This-specialized. In the hierarchy with leaf class

A, This is bound to A; in the hierarchy with leaf class B, This is bound to B.

These hierarchies require different instantiations of Y<> to inherit from different

instantiations of Z<>. Since the only way to differentiate instantiations of Y<> is

to use their This-bindings, Y<> must be This-specialized.

 202

Figure 65 - Inheritance of This-Specialization

We can think of subtypes as inheriting This-specialization from their su-

pertypes because This-specialized supertypes force their subtypes to also be This-

specialized. (Of course, the lack of supertype This-specialization does not pre-

vent a subtype from being This-specialized.) JL implements the supertype condi-

tion of This-specialization by querying supertypes during instantiation.

JL currently implements a conservative approximation of This-specialized

naming. The implementation is conservative because it sometimes assumes that a

supertype is This-specialized rather than perform an extensive query. This ap-

proach is easy to implement and provides most of the benefits of a precise imple-

mentation.

class Z<>
{
 This _this;
}

class Y<> extends Z<> {}
class A extends Y<> {}
class B extends Y<> {}

Generated Hierarchies

Z_3FE4E

Y_3FE4E

A

Z_3FE5E

Y_3FE5E

B

inherited
This-specialization

This-specialized

 203

6.3.2.2 Avoiding Circular Dependencies during Name Generation

In §6.3, we noted that circular dependencies involving This-bindings are

sometimes encountered when instantiations are named. In Figure 66, we use the

classes M<T>, Z<>, and M<Z<>> to illustrate the problem.

Figure 66 - Circular Dependency in Name Generation

Using the naming algorithm from §6.3.1, the leaf class of instantiation

M<Z<>> will be named M_?, where the question mark represents a hash of M<T>’s

parameters. M<T>’s only explicit parameter is Z<>, which is an instantiation of a

This-specialized parametric type. To determine the value of the question mark in

M_?, we need to generate the name of Z<> according to the following steps:

class Z<>
{
 This _this;
}

class M<T> extends T {}

Hierarchy Generated for M<Z<>>

Z_?

M_?

M needs Z’s name
to create This-
binding.

Z needs This-
binding to create
its name.

 204

1. Determine Z<>’s This-Binding. The only type parameter binding

needed to name an instantiation of Z<> is the This-binding. The This-

binding rules for inheritance contexts (§4.3.3.2) specify that the This-

binding of Z<> is the same as the This-binding of M<Z<>>.

2. Determine M<Z<>>’s This-Binding. The This-binding of M<Z<>> is

determined by the rules for non-inheritance contexts (§4.3.3.1), which

require the name of the instantiation M<Z<>>. That is, we need to

know the value of the question mark in M_?, which the initial problem

that we are trying to solve.

The circular dependency described above occurs because the name of

M<Z<>> depends on the name of Z<> and vice versa. This circularity can only

occur when This-specialized parametric types are parameters to mixins. Non-

parametric leaf classes, such as A and B in Figure 65, bind This before instantia-

tion begins, so the circularity problem is avoided. Circularity is also avoided if

the This-specialized parameter is in a non-inheritance context (§4.3.3.1). In addi-

tion, circularity is also avoided if This is explicitly bound in the leaf type or if the

leaf type is an interface (§4.3.3).

In cases where circularity does exist, JL uses a name token algorithm that

splits name generation into two steps and breaks the circular dependency. The

first step of the algorithm constructs an instantiation-related name token. This

token is a string that is passed to supertypes as a temporary placeholder for the

leaf’s This-binding name. We construct the string token by concatenating the leaf

class name and the names of all its parametric supertypes. Each name is followed

 205

by an asterisk (*). We start concatenating at the instantiation’s leaf and proceed

towards the root until a non-parametric type is encountered. In Figure 66, for ex-

ample, the token “M*Z*” is constructed for the instantiation M<Z<>>.

The second step of the algorithm binds This in the parametric leaf class.

The leaf class first requests each actual type parameter to generate its own name.

Parametric supertypes of the leaf class use the name token as a temporary This-

binding to generate their names. This process continues recursively from leaf to

root in the instantiation hierarchy until all names are generated. At this point, the

leaf class has the information it needs to generate its own name. The leaf class

generates its name using the name token and its type parameter names. The leaf

class then binds its name to This.

From this point on, instantiation proceeds using the leaf class’s This-

binding as described in §4.3.3. Name tokens help guarantee that different instan-

tiated types are given different names by encoding the order of types in hierar-

chies. If types are added, deleted or appear in a different order in a hierarchy,

then the token will reflect the difference and cause dissimilar names to be gener-

ated.19 Thus, different compositions of parametric types generate different names.

 The name token algorithm, however, does have a side effect. In place of

a This-binding name, the algorithm hashes a name token into the names of instan-

tiated types. These instantiation names cannot be easily generated in other con-

texts because the name token is not a type name. For example, using the defini-

19 JL currently uses only the leaf class name to create name tokens, which is less discerning than
the algorithm described here.

 206

tions in Figure 66, no implicit or explicit This-binding can be specified on the

left-hand side of the assignment below that will allow compilation to succeed.

Z<:?> z = new M<Z<>>(); // Compile always fails.

The above code could compile if the string “M*Z*” were substituted for

the question mark, but this substitution is not currently allowed in JL. The prob-

lem can be avoided by using non-parametric leaf classes, but the problem still

represents a limitation in the expressiveness of the current version of JL.

6.3.2.3 Discussion

JL’s implicit This type adds a parameter to all generic types and, in doing

so, affects the generation of type names in JL’s heterogeneous implementation of

parametric polymorphism. In languages like Java, class and interface names are

of central importance because they distinguish types. The two preceding sections

describe how JL handles complications that This introduces into name generation.

The interaction between language features and name generation can be

subtle in heterogeneous implementations. In particular, we saw how the naming

limitation described at the end of the last section restricts the expressiveness of

JL. To remove this restriction, we suggested that strings could be allowed in ex-

plicit This-bindings. That solution, however, is implementation dependant and

rather ad-hoc.

Alternatively, we could increase JL’s expressiveness by giving program-

mers greater control over how instantiated types are named. For instance, the ex-

 207

tended syntax shown below could be used to explicitly designate instantiation

names:

M<“MyName”, Z<>> // Example from previous section.

The above code creates the class named M_MyName as the leaf class in the

mixin-generated hierarchy. Knowing the name of the leaf class allows us to bind

This in all generated classes without using the name-token algorithm. Thus, cir-

cular dependencies are avoided and the code that we were unable to express in the

last section we can now express:

Z<:M_MyName> z = new M<”MyName”, Z<>>(); // OK.

There are other ways to give programmers control over instantiation nam-

ing. For example, a type aliasing construct like C++’s typedef [110] or like JL1’s

type equations (§6.1) could be used to specify instantiation names. The important

point, however, is that in heterogeneous implementations, any language modifica-

tion that affects type names needs to be carefully considered. JL currently im-

plements an automatic name generation approach that is simple to use, though

clearly imperfect. We have suggested a number of refinements that can improve

JL’s expressiveness, but we leave their full consideration to future work.

 208

CHAPTER 7 EVALUATION

This chapter describes two evaluations in which we compare program-

ming with mixins and programming using conventional techniques. The proto-

type applications that we build test the efficacy of mixin programming and the JL

language features that support it. These evaluations show that the power of mix-

ins can be harnessed to build applications from reusable components, and that

mixin programming offers a number of benefits when compared to non-mixin ob-

ject-oriented programming.

In our ACE [32,96,98] evaluation, we use mixins to reengineer a library of

client/server design patterns. We compare our approach to ACE’s original im-

plementation, which uses object-oriented frameworks. We evaluate both ap-

proaches for their flexibility, usability and reusability, and we show how JL

avoids problems common to frameworks. Specifically, our comparison shows

that mixin programming using JL (1) avoids problems of framework evolution

and overfeaturing, (2) scales better than frameworks as the number of application

features increases, (3) supports a higher level of reuse than frameworks, and (4)

supports application variation with more flexibility than frameworks.

In our Fidget evaluation [31], we build a software product line of graphi-

cal user interface libraries using mixin layers. We show how mixin layers in-

crease code modularity and how this increased modularity allows libraries to be

easily configured to run on platforms with widely dissimilar capabilities. We also

define the Sibling design pattern, which coordinates the use of inheritance, nested

 209

types, and the most derived types in mixin-generated hierarchies to achieve

greater modularity.

To be sure, our experimental applications serve mainly as proof-of-

concept exercises for the JL language; neither application has supported real users

over long periods of time. Mixins need to be used in progressively more demand-

ing environments before mixin programming can move into the mainstream; the

two evaluations that we now describe are another step towards that goal.

7.1 Comparing JL and OO Frameworks

As mentioned in the Introduction, large software applications are difficult

to develop and maintain. Object-oriented frameworks [20,59,98] represent the

one of the most popular techniques used today to build large applications.

Frameworks are starter kits that use abstract classes to provide partially imple-

mented applications. Different applications are created from a single framework

by providing different implementations of these abstract classes, so frameworks

are ideal for supporting software product lines, which are families of related soft-

ware products. Thus, frameworks are fundamentally a reuse technology.

The goal of JL is also to increase reuse. To compare JL against object ori-

ented frameworks, we use JL to re-engineer the Adaptive Communication Envi-

ronment (ACE) [96], an object oriented framework developed in C++ by Schmidt

and colleagues. ACE is a well-documented, well-engineered framework that has

been used in dozens of commercial and academic applications. Thus, ACE repre-

sents proven and mature framework technology and provides a standard against

 210

which new technologies can be measured. In this evaluation, we compare appli-

cation development in ACE and in JL using the following qualitative measures:

Usability – How easy is it to develop applications?

Application Flexibility – How easy is to customize applications?

Starter Kit Flexibility – How easy is it to evolve the starter kit?

§7.1.1 introduces the ACE framework. §7.1.2 describes our methodology

and §7.1.3 describes the ACE and JL implementations. §7.1.4 compares the two

approaches using the measures listed above. §7.1.5 concludes with a discussion

of mixin programming and JL’s supporting language features.

7.1.1 ACE FRAMEWORK

Schmidt and colleagues developed the Adaptive Communication Envi-

ronment (ACE) [96,98] as a C++ framework for constructing client/server appli-

cations. ACE implements a core set of concurrency and distribution design pat-

terns that provides an infrastructure for building customized applications. In gen-

eral, C++ applications built using ACE require less effort to develop and exhibit

greater flexibility, reliability and portability than C++ applications built using ad-

hoc methods.

ACE is implemented in three broad layers [116]. The System Adaptation

layer provides operating system portability. The System Services layer provides

an object-oriented interface to the Adaptation layer. The Distributed Design Pat-

terns layer implements collaborations useful in distributed applications. We

 211

briefly describe some of the services and design patterns essential to building cli-

ent/server applications using ACE.

7.1.1.1 System Services

ACE provides a Timer interface and a set of concrete classes that allow

applications to create, schedule, cancel, and expire timers. Timers can be reoccur-

ring and can be stored in specialized data structures for efficient access. ACE

also provides Message Queues modeled after those found in UNIX System V

[108].

7.1.1.2 Task

The ACE Task (Figure 67) is a design pattern for asynchronous process-

ing. In its simplest form, an ACE Task is an object-oriented encapsulation of zero

or more threads that perform application-specific work. A Task also contains a

Message Queue to store client requests for later processing by the Task’s worker

threads.

Figure 67 - ACE Task Object

The Task interface includes methods to initialize, activate and terminate a

Task. Worker threads execute a virtual call-back method whose implementation

Worker
Threads

Message
Queue

 212

is supplied by the user through subclassing. Tasks communicate by queuing re-

quests on each other’s Message Queues.

7.1.1.3 Reactor

The ACE Reactor [99] implements a design pattern for concurrent event

dispatching among multiple clients. Clients, who implement the Event Handler

interface, register interest in particular events monitored by the Reactor. When an

event occurs, the Reactor issues a callback to the appropriate method in registered

client objects. Figure 68 shows that Reactors can monitor multiple event sources,

including timers, I/O ports, operating system signals, and application level notifi-

cations.

Figure 68 - ACE Reactor and Client Objects

The Reactor interface supports static methods that provide access to a de-

fault Reactor instance, as well as methods to create and manage multiple Reac-

tors. Other methods allow clients to register, cancel, suspend and resume interest

in events of all types.

Timers I/O Handles Signals Notifications

Event
Handler

Event
Handler

Reactor

Clients

 213

7.1.1.4 Acceptor/Connector

The ACE Acceptor/Connector [97] design pattern decouples session estab-

lishment and initialization from application processing in a distributed environ-

ment. The pattern also abstracts the underlying transport stream so that different

types of streams, such as TCP, Unix sockets, and pipes, can be substituted for one

another. Acceptors and Connectors are factory classes [44] that come in comple-

mentary pairs: Acceptors handle the passive side of session initiation and Con-

nectors handle the active side. These factory classes orchestrate a session initia-

tion protocol by creating and invoking the other classes that participate in the col-

laboration.

Collaborators in the Acceptor subpattern are the Acceptor factory itself, a

concrete stream-acceptor, a Service Handler, and a Reactor. Similarly, collabora-

tors in the Connector subpattern are the Connector factory, a concrete stream-

connector, a Service Handler, and a Reactor. Service Handlers are ACE Tasks

that implement the Event Handler interface and have a stream field. Concrete ac-

ceptors and connectors provide passive and active session initiation for specific

types of transport streams.

The three-phase Acceptor protocol is illustrated in Figure 69. Each Reac-

tor notification is preceded by an appropriate event registration (not shown). The

Acceptor factory directs the first two phases of the protocol, the connection ini-

tialization and service initialization phases. The Acceptor has no role in the third

phase in which the Service Handler communicates independently with its peer,

using the Reactor as needed. The three-phase Connector protocol is defined simi-

 214

larly. Both protocols can be customized by overriding methods that implement

each phase.

Figure 69 - Acceptor Collaboration

7.1.2 METHODOLOGY

Both JL and frameworks rely on interfaces defined during domain analysis

to guide the development process. Both approaches provide starter kits of par-

tially assembled applications, but they differ in the way in which applications are

created. Frameworks provide partially assembled applications that use interfaces

to define variation points; programmers then create applications by supplying

concrete classes at all variation points. JL uses interfaces to define groups of in-

terchangeable components that programmers then compose to build complete ap-

plications. Our goal is to compare these two approaches using the three measures

described above in §7.1: usability, application flexibility, and starter kit flexibil-

ity.

To compare JL against frameworks, we used JL to re-engineer a subset of

ACE that captures the sophistication of the original. Thus, we implemented the

primary design patterns found in ACE necessary for building ACE-style client-

Stream Acceptor

Acceptor Factory Service
Handler

Reactor

1.Connection Notification 3.I/O Notification

2.Activate

 215

server applications, but we typically did not implement all of the features in an

ACE class. The result is a few thousand lines of JL code that delivers a deep slice

through ACE's layered architecture, from the application interface down to the

network protocols. While our system does not come close to replicating all the

function of ACE's 125K lines of code, missing functionality can be added by writ-

ing additional layers that are conceptually identical to those we have already writ-

ten.

For the purpose of comparing development techniques, a complete and

exact replication of ACE is not necessary. For example, our implementation uses

the standard Java sockets library, which does not support a multiple port I/O call

like Unix select() [108]. We simulate this capability by using a thread for each

port, which is clearly undesirable in real-world applications, but sufficient for

studying the structure of JL applications built using ACE design patterns.

We also ignore differences between JL and ACE that stem from disparities

between Java and C++. For instance, many ACE classes explicitly declare syn-

chronization parameters and methods to manage concurrency. In JL, this function

is largely handled by Java’s built-in multithreading support. Similarly, small dif-

ferences in function, such as support for tracing and inspection during debugging,

are also factored out of the comparison.

All of the services and design patterns described in §7.1.1 have been im-

plemented in JL. Throughout our discussion, all ACE C++ classes are prefixed

with “ACE_.” JL classes and interfaces have unprefixed names, though all JL

interfaces carry the “Ifc” suffix.

 216

7.1.3 ACE AND JL IMPLEMENTATIONS

To provide a concrete basis for comparing JL and ACE, we now discuss

the details of the two implementations. We focus on the Timer and Task design

patterns, which are representative of how all ACE patterns are implemented in JL:

We start with an ACE interface, decompose it into several smaller JL interfaces,

and then implement these interfaces in single-feature JL layers. ACE code is de-

scribed, but not shown, due to its conventional nature.

7.1.3.1 Timer

In ACE, the C++ class ACE_Timer_Queue_T defines the complete Timer

public interface. The interface includes methods to schedule, cancel and expire

timers; to retrieve and remove the next timer; to calculate the time until the next

timer pop; to manage time skew; and to set the time-of-day source. Protected

methods are also defined. Classes that implement this interface support all meth-

ods.

By contrast, the base JL timer interface, TimerIfc, declares only four

schedule() methods. Figure 70 shows the structure of the basic JL timer class,

TimerExtensible, which implements this interface and takes two type parame-

ters. The first type parameter requires a subclass of TimerAbstract that im-

plements the TimerIfc (not shown). This type parameter is mixed-in as the su-

perclass. The second type parameter implements the TimerSortedMapIfc in-

terface, which provides a container for timer objects. Timer1 illustrates a simple

use of TimerExtensible appropriate for applications that only schedule timers.

 217

Figure 70 - Simple JL Timer

In JL, advanced timer features are encapsulated in their own parameter-

ized classes for easy composition. Figure 71 shows the TimerCancelByTime

class that supports timer cancellation. This class inherits from its type parameter,

T, which is constrained to implement TimerIfc. All instantiations of Timer-

CancelByTime implement interfaces TimerIfc and TimerCancel-

ByTimeIfc. Features that support query, expiration and other optional opera-

tions are defined in a similar way using mixins and constrained type parameters.

Timer2 illustrates a timer that supports both cancellation and query (not shown).

Figure 71 - Complex JL Timer

7.1.3.2 Task

In ACE, the C++ template class ACE_Task defines the complete Task

public interface. The interface includes public methods to activate and manage

class TimerExtensible<T extends TimerAbstract implements TimerIfc,
 U implements TimerSortedMapIfc> extends T {…}

class Timer1 extends TimerExtensible<TimerAbstract, TimerTreeMap> {}

class TimerCancelByTime<T extends TimerAbstract implements TimerIfc>
 extends T implements TimerCancelByTimeIfc {…}

class Timer2 extends
 TimerCancelByTime<
 TimerExtensible<TimerAbstract, TimerQueryId<TimerTreeMap>> > {}

 218

threads; to initialize, read, write and manage a Message Queue; and to manage

Tasks in the context of a Module. ACE Modules are bi-directional message

streams made up of pairs of Tasks.

The JL Task interface is defined in TaskIfc and declares only thread ac-

tivation methods. As with Timers, auxiliary interfaces are defined to support op-

tional features. For example, the TaskQueueIfc interface supports Message

Queue operations and the TaskInterruptIfc interface supports the interrup-

tion of threads. Again, features are mixed and matched to customize Tasks as

needed.

7.1.3.3 Interfaces

To understand the differences between JL and ACE, it is crucial to under-

stand how interfaces are used in the two approaches. JL’s TimerIfc interface is

narrow because it contains four methods and supports only the most rudimentary

features used by almost all applications that require timers. Other narrow inter-

faces are used to declare optional features whose implementations can be com-

posed.

By contrast, ACE Timers use a one-size-fits-all approach and implement

all possible features in every Timer class. Thus, the wide ACE_Timer_Queue_T

interface supports a large number of features, many of which are not needed in

most applications. For example, the interface declares 20 methods, some expos-

ing functors and iterators that are not commonly used. In the §7.1.5, we argue

that wide interfaces do not stem from poor design, but rather represent an un-

avoidable technology-based tradeoff.

 219

To summarize, ACE uses a small number of wide interfaces, while JL uses

a larger number of narrow interfaces. For each ACE interface used in our evalua-

tion, Table 5 shows the number of declared methods, the number of narrow JL

interfaces produced, and the average number of methods in the JL interfaces.20

 Timer Queue Task Reactor Acceptor Connector

ACE Width 20 24 15 66 5 5

No. of JL
Interfaces 13 13 10 27 3 4

Average
JL Width 1.5 1.8 1.5 2.4 1.7 1.3

Table 5 - Interface Width in ACE and JL

7.1.4 COMPARISON

In this section, we compare ACE and JL using the three measures de-

scribed in §7.1.

7.1.4.1 Usability

How easy and effective is software development using the two ap-

proaches? We answer this question by comparing interface usage in JL and ACE.

ACE’s wide interfaces are more complex and therefore harder to use than

JL’s narrow interfaces. Wide interfaces not only require users to learn more

methods, but the methods themselves sometimes take more parameters. For ex-

ample, the ACE_Task constructor takes a Message Queue parameter, thereby

forcing all Task users to understand something about queuing. In JL, the Message

20 Factoring out differences between C++ and Java.

 220

Queue type does not appear in Tasks that do not implement the Message Queue

feature.

The use of narrow, less complex interfaces in JL also leads to smaller ex-

ecutables. We saw how JL Timer classes could easily be constructed with the ex-

act set of features required by an application and no more. ACE Timers, on the

other hand, have uniformly large executables because of the width of the interface

that they must support.

JL’s narrow interfaces can also lead to lower execution overhead. For ex-

ample, JL Tasks that don’t implement TaskQueueIfc avoid the overhead of al-

locating and initializing a Message Queue, costs incurred by every ACE Task.

JL’s ability to precisely customize code to its application environment

leads to simpler interfaces and smaller, faster implementations. All these charac-

teristics increase the likelihood that JL code will meet the needs of application

programmers and, as a consequence, be used.

In terms of maintenance, there is a tradeoff between the number and size

of interfaces. An excessive number of small interfaces in JL could be just as un-

manageable as excessively large interfaces in frameworks. In our evaluation,

however, we found that reasonable interface design avoids the worst-case man-

agement problems in both JL and ACE.

Finally, while frameworks apparently give programmers more functional-

ity by providing partially assembled applications, JL can do the same by deliver-

ing predefined or canned layer compositions. These canned compositions can

even be packaged as frameworks.

 221

7.1.4.2 Application Flexibility

To what extent do ACE and JL allow applications to be constructed with

precisely the desired set of features?

The use of wide interfaces in ACE means that any implementation of a

service, such as the Timer service, must support all possible methods. In addition,

applications that use these services do not have the ability to pick and choose op-

tional features, though new optimization techniques may remove unused code

from the application after the fact [121].

On the other hand, the use of narrow interfaces in JL allows each optional

feature to be implemented in its own class. These optional features can then be

composed to yield a great variety of customized types for use in applications.

Table 5 on page 219, for example, shows that any of 27 separately implemented

Reactor features can be used to generate a Reactor. This yields 227 possible fea-

ture combinations, even if we assume no duplicates and a total ordering among

features. In JL, we compose optional features on demand rather than in advance,

allowing JL to avoid the feature combinatorics problem described in §2.1.

7.1.4.3 Starter Kit Flexibility

This section compares the ability of JL and frameworks to support

changes to their starter kits. We first consider how the two approaches support

evolving client needs. We then discuss the more specific issue of adding features

to the starter kit.

 222

7.1.4.3.1 Evolving Client Needs

A well-designed framework strikes a balance between what to include in

the framework and what to exclude. The framework will ideally include all code

that is common across many applications. If the framework includes too many

features, the interface becomes overly complex and the framework becomes less

usable. If the framework omits commonly needed code, multiple applications

will have to implement the missing features independently. These problems are

commonly referred to as overfeaturing and code replication, respectively [34].

As well designed as ACE is, it still exhibits overfeaturing and code repli-

cation. For instance, ACE_Reactor includes methods that support the singleton

design pattern [44], which is useful in applications that require only one Reactor,

but which is confusing in applications that use multiple Reactors. Thus, what is

appropriate for one application may appear to be overfeaturing to another. On the

other hand, ACE does not support authentication, authorization or data privacy.

Unless the ACE framework is updated, each application requiring security must

independently develop its own network security solution outside of the frame-

work.

The problems of overfeaturing and code replication are rooted in the fun-

damental and somewhat rigid distinction that all frameworks make between

framework code and application code [10]. Deciding what to include in a frame-

work is always a compromise based on domain knowledge and the requirements

of future users, both of which are likely to change over time.

 223

On the other hand, JL promotes code reuse with its ability to selectively

mix and match features. JL classes are grouped according to the interfaces they

implement. Adding a new capability to a set of starter kit classes usually has

minimal impact because of the loose coupling between classes and the orthogonal

nature of feature implementations. Adding new starter kit classes is no different

than adding application classes.

7.1.4.3.2 Adding Features to the Starter Kit

Suppose a framework needs a new feature that requires changes to its core

classes. One approach is to modify existing framework classes while maintaining

backward compatibility as much as possible. This approach is not feasible if cur-

rently supported applications are intolerant of changes in their binary representa-

tion. Applications that store objects persistently or that are conservatively man-

aged for safety reasons often fall into this category. This need to maintain com-

patibility between separately evolving framework and application code is known

as the framework evolution problem [34].

An alternate approach is to implement the new feature in new framework

classes. Unfortunately, this approach spawns a new class hierarchy that is parallel

to the existing one, creating a potentially large amount of nearly identical new

code to maintain. Figure 72 illustrates how a new subtree is created when

changes for class B are instead implemented in a new class named b. Class b is a

subclass or a copy of class B. If child C of B needs to support the new feature, it

does so through its proxy class, c, in the new subtree.

 224

Figure 72 - Framework Evolution

In JL, evolution can be implemented using the same two approaches avail-

able to frameworks. If changing an existing class is not desirable, a new class can

be created, typically using inheritance, to incorporate the changes. The loose

coupling of JL classes, however, means that the original class is typically not part

of a predefined hierarchy, so no parallel subtree is spawned. There is no compati-

bility problem because applications can be generated using either the new or old

classes.

7.1.4.3.3 Changes in Domain Analysis

If new features require the refactoring of important interfaces, then JL and

frameworks are equally susceptible to disruption because they both rely on good

domain analysis to define interfaces appropriately.

7.1.5 DISCUSSION

Mixins are the key to JL’s power and flexibility because they allow code

to be varied in a new way. In addition to the techniques that support code varia-

tion in ACE—subclassing, type parameters, and runtime initialization parame-

ters—JL allows a class’s supertype to be varied using mixins. In previous work

A

B

C D

b

c d

Original New
Subtree

 225

[10], we proposed that frameworks themselves could be implemented more flexi-

bly using a layered component technology.

Mixins also allow features to be mixed and matched so that new types can

be built in a stepwise manner. In JL, we widen interfaces to support the exact fea-

ture set that an application requires by encapsulating features in their own classes

and composing them. JL uses mixins to solve the feature combinatorics problem

without resorting to wider than necessary interfaces. In JL, unused feature com-

binations are never materialized.

Mixins work because they defer the specification of parent/child relation-

ships from definition time to composition time. This late binding promotes JL’s

stepwise refinement model that in turn encourages interfaces to be smaller, less

complex, and feature-specific. ACE, and frameworks in general, use non-

parameterized inheritance to lock in parent/child relationships and create applica-

tion skeletons. This rigidity forces the use of wide interfaces to avoid the combi-

natorial explosion in the number of classes that would result from materializing

all feature combinations in advance (§2.1).

In our reengineering effort, we used a number of JL’s new language fea-

tures to support mixin programming. For example, we used constructor propaga-

tion (§4.4) to automatically generate constructors for different Task types. When-

ever the TaskQueue mixin, which implements TaskQueueIfc (§7.1.3.2), is

used in a composition, Task constructors are automatically augmented with a

Message Queue parameter.

 226

We also used the This implicit type parameter (§4.3) in our evaluation.

Figure 73 shows how This is used to implement the singleton Reactor feature in

the ReactorSingle mixin. Singleton Reactors are useful in applications that

require only one Reactor instance. The code uses This to create and store an in-

stance of the most derived class in the mixin-generated hierarchy.

Figure 73 - The Singleton Reactor Feature

To gauge the expressiveness of JL’s semantic checking constraints (§4.5),

we applied semantic constraints to our reengineered ACE components. These

constraints could only be applied on paper since the semantic checking facility is

not currently implemented in JL. We found that the requires unique constraint

was most often used in our code. For example, we augmented the definition of

TimerCancelByTime (Figure 71 on page 217) with requires unique because

only one version of the timer cancellation code is ever needed in a composition.

In our ACE evaluation, we were able to express all the constraints we needed, but

these results can only be considered preliminary.

This concludes our discussion of the ACE evaluation; we now describe the

Fidget evaluation.

class ReactorSingle<T implements ReactorIfc> extends T
 {private static This _inst;
 public static This instance(){
 if (_inst == null) _inst = new This();
 return _inst;} }

 227

7.2 Applying Mixin Layers in Fidget

For many years, software portability meant running software on different

general-purpose computers, each with its own operating system and architecture.

Software developers minimized the cost of supporting multiple platforms by reus-

ing the same code, design, and programming tools wherever possible. Today,

miniaturization has led to a wide diversity of computing devices, including em-

bedded systems, cell phones, PDAs, set-top boxes, consumer appliances, and PCs.

Though these devices are dissimilar in hardware configuration, purpose and capa-

bility, the same economic forces that necessitated software reuse among general-

purpose computers are now encouraging reuse across these different classes of

devices.

To make it easier to reuse code across devices, a number of standardiza-

tion efforts are defining new Java runtime environments [55]. These environ-

ments are customized for various classes of devices while they still remain as

compatible as possible with the Java language, JVM, and existing libraries. For

example, Sun’s KVM [111,113] virtual machine, which is designed to run on de-

vices with as little as 128K of memory, has removed a number of Java language

features, including floating point numbers and class finalization, and a number of

JVM features, such as native methods and reflection. In addition, the runtime li-

braries and their capabilities have also been reduced to accommodate limited

memory devices. This redesign of the Java libraries leads to two questions that

directly concern code reuse:

 228

• How do we scale an API to accommodate different device capabilities?

• How do we reuse the same library code across different devices?

This section explores the above questions by designing and implementing

a graphical user interface (GUI) that works on cell phones, Palm OS™ devices

[90], and PCs. The challenge is to provide a single GUI code-base that runs on all

these devices yet accommodates the input, output, and processing capabilities of

each device. For example, a device may or may not support a color display, so in

building our libraries we would like to be able to easily include or exclude color

support.

Our solution is to use Java Layers to encapsulate features that crosscut

multiple classes, such as support for color, to a degree that is not possible using

standard programming technologies. Our evaluation tests the hypothesis that

mixins and mixin layers provide a convenient mechanism for encapsulating cross-

cutting concerns. We test this hypothesis by building Fidget, a flexible widget

library, and by showing that its design and implementation are effective: We

show that Fidget can be easily customized for various execution environments

and that Fidget libraries are easy to use. The main contributions of our Fidget

evaluation are as follows:

1. We demonstrate how mixins, supplemented by JL’s supporting language

features, are effective in customizing software for disparate platforms.

 229

2. We define the Sibling design pattern and demonstrate how it can increase

code modularity.

3. We add to the growing body of evidence that mixins, mixin layers, and the

programming model of layered refinement (§2.3.1) are effective in in-

creasing code reuse.

§7.2.1 describes Fidget’s design goals and §7.2.2 discusses the methodol-

ogy we use to evaluate our design approach. §7.2.3 presents Fidget’s design and

§7.2.4 shows how Fidget components are used. §7.2.5 discusses the issues raised

in our evaluation.

7.2.1 DESIGN GOAL

The goal of building graphics libraries that accommodate dissimilar de-

vices is to demonstrate that we can mix and match features depending on the tar-

get execution environment, where a feature is some GUI characteristic such as

color support. This goal of flexible feature selection highlights two requirements

of reusable code: (1) modularity and (2) easy composition. Specifically, the code

for a feature should be completely encapsulated in a module, and these modules

should be easy to compose with one another.

In §2.2, we described how current technology limits our ability to reuse

code and to build software from components. In this evaluation, we use JL to

build Fidget incrementally in layers (§2.3.1) and then evaluate our design ap-

proach.

 230

7.2.2 METHODOLOGY

In this section, we describe the methodology that we use to evaluate our

design approach. We describe Fidget libraries, how they are used, and the limita-

tions of our implementation.

We use mixins in JL to design and implement a number of graphics library

features. We then compose these features to generate specialized instances of

Fidget libraries for various devices. The generated graphics libraries are not

complete GUIs, but are prototypes used to validate our design approach. So, for

example, we provide some basic look-and-feel options and describe how a com-

plete platform-specific skin would be implemented using our design, but we do

not provide the complete implementation.

We demonstrate that Fidget libraries can be easily configured for cell

phones, Palm OS devices, and PCs. We use Fidget libraries to implement simple

applications, and we compare application development using Fidget against the

use of a more conventional GUI library. Since our goal is to evaluate the useful-

ness of Java Layers for library and application development, we do not write low-

level graphics code to interface directly with each device’s operating system. In-

stead, we scaffold our code on top of a small subset of the Java graphics library

present on each device.

Our target PC environment is standard edition Java 1.3.1 and its develop-

ment kit (SDK) [114]. We use the Java 2 Micro Edition (J2ME) Wireless Toolkit

1.0.3 Beta [55] for our cell phone and Palm environments. Our Palm OS tests are

run on the Palm OS Emulator version 3.2 [90].

 231

7.2.3 FIDGET DESIGN

In this section, we describe how the Sibling design pattern forms the basis

of Fidget’s design. We also describe how we use constructor propagation to

avoid defining constructors by hand. To provide context for this discussion, we

first discuss Fidget’s architecture, the way it uses mixin layers, and its component

design.

7.2.3.1 Architecture

In this section, we describe Fidget’s architecture. Fidget is structured as a

stack of the three architectural layers highlighted in Figure 74: the hardware ab-

straction layer, the kernel layer, and the user layer. On the bottom, the hardware

abstraction layer (HAL) interacts with the underlying device’s graphics system

and is the only Fidget code that is device dependent. On top, the user layer is a

thin veneer that provides a familiar, non-nested, class interface to application pro-

grammers. Our discussion focuses on the kernel layer in the middle.

Figure 74 - Fidget’s Architectural Layers

Applications

User

Kernel

HAL

Graphics System

Fidget Code

 232

The kernel layer defines all widgets and all optional widget features. The

kernel sits on top of the HAL and uses the HAL’s drawing and event handling

capabilities to create displayable widgets. Fidget widgets are modeled after those

of Java’s AWT [45,114], so widget classes such as Window, Button and

TextField serve the same purpose in Fidget as their analogs do in AWT. The ker-

nel implements nine such widgets, which is sufficient for our prototyping pur-

poses. There is only one kernel code-base, even though some optional features

cannot be used with all devices.

The Fidget kernel uses a lightweight implementation [45] to accommodate

devices with constrained memory resources. Lightweight widgets do not have

associated peer widgets in the underlying graphics system, which for Fidget is

either the SDK or J2ME. Thus, a Fidget window that displays two buttons and a

text field creates only one widget, a window, in the underlying Java system.

Fidget then draws its own buttons and text field on this underlying window.

7.2.3.2 Using Mixin Layers

In this section, we describe how we use mixin layers (§2.3.3) to build ker-

nel layer widgets. The code below shows simplified versions of the base Fidget

class and the mixin layer that adds color support:

class BaseFidget<> {
 public class Button {…}
 public class CheckBox {…} …}

class ColorFidget<T> extends T {
 public class Button extends T.Button {…}
 public class CheckBox extends T.CheckBox {…} …}

BaseFidget takes no explicit type parameters and contains all of the

widget classes; we show two widget classes, Button and CheckBox, in the code

 233

above. The ColorFidget mixin layer extends the behavior of each nested class

in BaseFidget with color display support. In this way, feature code scattered

across multiple classes is encapsulated in a single mixin layer.

We now describe how we use deep conformance (§4.2) to structure

Fidget’s mixin code. Normally, a Java class that implements an interface is not

required to implement the interface’s nested interfaces; deep conformance extends

Java’s interface constraints to include nested interfaces. In Figure 75, we use JL’s

deeply modifier to enforce the condition that for each nested interface in

FidgetTkIfc, the (revised) BaseFidget must define a public nested class with

the same name, and that nested class must implement the corresponding interface.

Thus, BaseFidget.Button implements FidgetTkIfc.Button.

Figure 75 - Deep Conformance in Fidget

In addition, when deeply is used in a mixin class’s extends clause, the su-

perclass’s public structure is preserved in the instantiated subclass. This means

that if a class nested in a mixin has the same name as a public class nested in the

mixin’s superclass, then the mixin’s nested class inherits from the superclass’s

interface FidgetTkIfc {
 interface Button {…}
 interface CheckBox {…} …}

class BaseFidget<>
 implements FidgetTkIfc deeply {
 public class Button implements FidgetTkIfc.Button {…}
 public class CheckBox implements FidgetTkIfc.CheckBox {…} …}

class ColorFidget<T implements FidgetTkIfc deeply>
 extends T deeply {
 public class Button extends T.Button {…}
 public class CheckBox extends T.CheckBox {…} …}

 234

nested class. In the ColorFidget mixin in Figure 75, Button and CheckBox

must subclass their respective superclass members because (1) ColorFidget

deeply extends its superclass and, (2) any actual superclass must contain public

Button and CheckBox classes due to the constraint on type parameter T.

7.2.3.3 Reusable Components

In the previous sections, we described Fidget’s architecture and how mixin

layers are used to build Fidget’s kernel code. In this section, we discuss Fidget’s

kernel classes in greater detail.

Fidget’s kernel classes provide the foundation and optional features for all

Fidget GUIs. Fidget design is based on the above-described BaseFidget class,

which provides the minimal implementation for each widget in a nested class.

The nested widget classes are Button, CheckBox, CheckBoxGroup, Label,

Panel, TextArea, TextComponent, TextField, and Window.

Optional features are implemented in mixin layers that deeply conform to

BaseFidget. These mixin layers can contain code for one widget class, or they

can implement crosscutting features and contain code for more than one widget

class. For example, the TextFieldSetLabel layer affects only one class by

adding the setLabel() method to TextField. Conversely, the Light-

WeightFidget layer implements lightweight widget support and contains code

for most widgets. Fidget’s mixin layers and the features they implement are listed

below.

 235

Non-Crosscutting Kernel Mixins
ButtonSetLabel – Re-settable Button label
BorderFidget – Draws container borders
CheckboxSetLabel – Re-settable Checkbox label
TextComponentSetFont – Changeable fonts
TextFieldSetLabel – Re-settable TextField Label

Crosscutting Kernel Mixins

AltLook – Alternative look and feel
ColorFidget – Color display support
EventBase – Basic event listeners
EventFidget – All event listeners/handlers
EventFocus – Focus event handling
EventKey – Key event handling
EventMouse – Mouse event handling
LightWeightFidget – Lightweight support

BaseFidget also contains two nested classes that serve as superclasses

for the nested widget classes. Component implements common widget function

and is a superclass of all widgets. Container, a subclass of Component, allows

widgets to contain other widgets. Window is an example of a container widget.

Defining these superclasses in BaseFidget has important design consequences,

which we now explore.

7.2.3.4 The Sibling Pattern

To enhance code modularity, the Sibling design pattern uses inheritance

relationships between classes that are nested in the same class. The pattern itself

can be implemented in Java, but mixin layers make it more convenient to use.

We begin our discussion of this pattern by looking at a problem that occurs when

certain crosscutting features are implemented with mixin layers. We then show

 236

how the Sibling pattern solves this problem and how JL language support simpli-

fies the solution.

The advantage of nesting Component, Container and all widget classes

inside of BaseFidget is that a single mixin layer can affect all these classes. We

re-introduce BaseFidget in Figure 76, this time showing the widget Button

and its superclass Component. In Fidget, features like support for color modify

the behavior of Component as well as its widget subclasses.

Figure 76 - Incorrect BaseFidget

There is, however, a potential pitfall when parent and child classes are

nested in the same class. To see the problem, Figure 76 also depicts the Color-

Fidget mixin and an instantiation of a Fidget GUI with color support. The in-

stantiation includes the LightWeightFidget mixin (code not shown), which is

structured the same as ColorFidget.

class BaseFidget<>
 implements FidgetTkIfc deeply {
 public abstract class Component {
 implements FidgetTkIfc.Component {…}
 public class Button
 extends Component
 implements FidgetTkIfc.Button {…}

class ColorFidget
 <T implements FidgetTkIfc deeply>
 extends T deeply {
 public class Component
 extends T.Component {…}
 public class Button
 extends T.Button {…} …}

ColorFidget<LightWeightFidget<BaseFidget>>

 237

The class hierarchies generated by the instantiation are shown in Figure

77. The enclosing classes form a class hierarchy, as do like-named nested classes.

In addition, Button inherits from Component in BaseFidget. Notice that

ColorFidget.Button does not inherit from ColorFidget.Component,

which means that the color support in the latter class is never used. As a matter of

fact, it would be useless for any mixin layer to extend Component because no

widget will ever inherit from it.

Figure 77 - Incorrect Hierarchy

The inheritance relationship we really want is shown in Figure 78, where

ColorFidget.Button inherits from all the Button classes and from all the

Component classes in the mixin-generated hierarchy. We call this the Sibling

pattern, which we define as the inheritance pattern in which a nested class inherits

from the most specialized subclass of one of its nested siblings. In Figure 78,

BaseFidget.Button inherits from the most specialized subclass (Color-

Fidget.Component) of its sibling (BaseFidget.Component).

BaseFidget

LightWeightFidget

ColorFidget

ButtonComponent

ButtonComponent

ButtonComponent

 238

Figure 78 - Sibling Pattern Hierarchy

The Sibling pattern can be implemented in Java by using a distinguished

name for the leaf class of all mixin-generated hierarchies. Once this well-known,

predetermined name is established by programming convention, it can be used in

any class or mixin in the application. This solution, however, limits flexibility

and can lead to name conflicts when different instantiations are specified in the

same package.

JL provides a better way to express the Sibling pattern using its implicit

This type parameter (§4.3). Figure 79 shows how BaseFidget, which declares

no type parameters explicitly, uses its implicit This parameter to implement the

Sibling pattern. JL binds This to the leaf class in the generated hierarchy, which

in our example is ColorFidget. The redefined Button class below now inher-

its from ColorFidget.Component.

BaseFidget

LightWeightFidget

ColorFidget

ButtonComponent

ButtonComponent

ButtonComponent

 239

Figure 79 - Correct BaseFidget

The Sibling pattern allows a Fidget layer to extend individual widget

classes and their common superclass simultaneously. In this way, established ob-

ject-oriented methods of class decomposition, in which common function is

placed in superclasses, are extended to work with mixins layers. In Fidget’s

mixin layers, refinements to Component are inherited by all widget classes in all

layers. This brings us to the last topic in our design discussion, the use of con-

structors with stepwise refinement.

7.2.3.5 Constructor Propagation

In Fidget, we use constructor propagation (§4.4) to automatically generate

constructors in mixin layers. One measure of the effectiveness of constructor

propagation is the number of constructors that do not need to be hand-coded. In

our design, all constructors available in BaseFidget also need to be available in

the most derived classes in mixin-generated hierarchies. BaseFidget defines

twenty constructors with the propagate modifier. On average, the thirteen kernel

layers that extend BaseFidget declare just over one constructor each, which in-

class BaseFidget<>
 implements FidgetTkIfc deeply {
 public abstract class Component
 implements FidgetTkIfc.Component {…}
 public class Button
 extends This.Component
 implements FidgetTkIfc.Button {…} …}

 240

dicates that constructor propagation largely relieves programmers from hand rep-

licating constructors in mixin layers.

7.2.4 USING FIDGET

In the section, we describe how to generate and use customized Fidget li-

braries. We first look at how custom Fidget libraries are specified. We then dis-

cuss how applications use a Fidget library in place of Java’s AWT library. Fi-

nally, we give details about the Converter application, which uses Fidget libraries

on three different platforms.

7.2.4.1 Building Fidget Libraries

To build a Fidget library, we first select the SDK or J2ME hardware ab-

straction layer based on the target device’s Java support. This layer, which corre-

sponds to the HAL in Figure 74 on page 231, provides a small set of line and

curve drawing primitives that is consistent across all platforms.

Next, we specify and compile the features that we need in our library. The

code implementing the different features resides in mixin layers in the kernel

package, which corresponds to the kernel layer in Figure 74. The actual Fidget

libraries are assembled in the user layer, which we implement in the in the wid-

get package. The code below shows the feature selection for two different librar-

ies.

 241

package widget;
import kernel.*;

class Fidget extends
 AltLook<EventFidget<LightWeightFidget<BaseFidget<>>>> {}

class Fidget extends
 ColorFidget<ButtonSetLabel<EventKey<EventMouse<
 EventBase<LightWeightFidget<BaseFidget<>>>>>>> {}

Both of the above libraries are lightweight implementations, the only kind

currently available in Fidget. The first library supports all events and, by overrid-

ing the drawing methods in LightWeightFidget, provides an alternative look

and feel. The second library supports color displays, re-settable labels, and key

and mouse event handling. If a library feature is not supported by the device it

runs on, then executing the feature code either has no effect or throws an excep-

tion.

In addition to the Fidget class, the user layer contains wrapper classes

for each widget. These classes allow Fidget widgets to replace AWT widgets in

application code. Below we show the definitions for the Button and Window

wrapper classes.

public class Button extends Fidget.Button {}
public class Window extends Fidget.Window {}

To use a Fidget library, application code simply imports widget.* and

uses the Fidget widgets in the same way that AWT widgets are used. The follow-

ing sample code functions in a similar way using either Fidget or AWT. The code

creates a window with a single button. The button’s label is set to “ButtonLabel”

and then the window is displayed on the screen.

 242

// import widget.* or java.awt.*
public class Sample {
 public static void main(String[] args) {
 Window win = new Window(…);
 Button b = new Button(“ButtonLabel”);
 win.add(b);
 win.setVisible(true)
 } }

7.2.4.2 The Converter Application

As part of the evaluation of Fidget, a simple application named Converter

was built on three target devices: JDK 1.3.1 on Linux, J2ME on Palm OS, and

J2ME on a cell phone emulator. Each device has its own version of Converter,

which converts between metric and US lengths.

In all versions, the Converter class drives the application by creating

two ConversionPanels, one with metric units and one with U.S. units. These

two ConversionPanels are added to the main window of the application, and

then the window is made visible.

The Converter application code is not exactly the same across devices.

This variation reflects the need for platform specific code, which adds to the port-

ing effort. The important point, however, is that the same Fidget code-base,

which is implemented in mixin layers in the kernel package, is used on all three

platforms to control screen I/O. To understand the nature of the platform depend-

encies, we now describe the three versions of Converter.

Among the three versions of the Converter application, the Converter

class varies in two ways. First, the precision of the converter is limited in J2ME

environments because floating-point numbers are not available. In the JDK ver-

 243

sion, conversion results are computed and displayed as floating point numbers. In

the J2ME versions, the results are computed and displayed as integers.

The second way in which the Converter class varies involves applica-

tion startup. In the JDK version, a main() method in Converter allows the appli-

cation to be run from the command line. In the J2ME versions, a

J2MEConverter class wraps the Converter class and implements the applica-

tion interface required by J2ME.

The ConversionPanel class also differs across platforms. Again, the

variation does not extend into the Fidget library, but is contained at the applica-

tion level. In the cell phone version of the application, text fields are made

smaller and certain input buttons are removed due to the physical limitations of

the device. These changes are localized to the ConversionPanel class.

The Converter application demonstrates that (1) GUI library support can

be easily configured for disparate devices using a single code-base, and (2) Fidget

libraries are as easy to use as conventional GUI libraries. Once the JDK-specific

version of Converter was written, porting the application to the other platforms

was not difficult.

7.2.5 DISCUSSION

In this section, we discuss the rationale, advantages and alternatives for

Fidget’s design. We begin by describing two characteristics of mixin code that

impact flexibility and usability, layer width and feature granularity.

 244

7.2.5.1 Layer Width

When a mixin layer, or a class like BaseFidget that mixin layers extend,

contains many nested classes, we say the layer is wide; otherwise, we say the

layer is narrow. In general, wide layers have a greater ability to implement cross-

cutting features. However, wide layers can lead to larger, more complex classes

because they can contain the code for many nested classes.

In Fidget, we define all widgets and their superclasses as sibling nested

classes to increase code modularity. This organization encapsulates feature im-

plementations that can refine any number of widgets, as the crosscutting mixin

layers listed in §7.2.3 illustrate. The ability to write wide layers in Fidget, how-

ever, does not require that all layers be wide: Layers that extend a single widget

only contain code for that widget. Wide layers, and the modularity they afford,

allow Fidget to achieve its compositional flexibility.

In general, deciding what classes to nest in an application’s layers requires

careful planning. Once the decision is made, only features that crosscut the cho-

sen nested classes can be encapsulated in a mixin layer. For example, an alternate

Fidget design, which is actually the first design we tried, defines two kinds of

kernel layers. The first kind is narrow and contains only the Component and

Container classes. The second kind contains all the widget classes. Using this

design, refinements to widgets and refinements to their superclasses would be ap-

plied separately using different sets of layers. The idea is to first select features

for Component and Container, generate those classes, and then use those

classes as pre-packaged superclasses for generating customized widgets.

 245

Unfortunately, features like support for color crosscut both widgets and

their superclasses. In the alternate design, color support requires that two layers,

one that refines widgets and one that refines their superclasses, be used in con-

junction. Fidget, however, nests all classes in the same layers, which allows us to

implement color in one mixin layer.

The important design point here is that when coordinated changes need to

be made to a group of classes, the classes usually should be nested in the same

layers. Applications can contain mixin layers that deeply conform to different

interfaces. Only those layers, however, that deeply conform to the same interface

are interchangeable, and only those layers that contain all of a feature’s collabo-

rating classes can implement that feature.

7.2.5.2 Feature Granularity

The choice between fine-grained and coarse-grained layers leads to a

tradeoff between incrementality and compositional complexity. In Fidget, we im-

plemented event handling using two levels of granularity to compare each ap-

proach. Fidget supports focus, key and mouse events. The EventBase, Event-

Focus, EventKey and EventMouse mixins implement the fine-grained ap-

proach, which allows incremental customization based on the type of event. For

devices that don’t support all types of input, this approach allows more precise

customization. This ability to tailor code to a platform can be used to reduce a

GUI’s memory footprint. On the other hand, the EventFidget mixin imple-

ments all event handling for all widgets, which makes adding event support a

 246

simple matter of specifying one layer for any device. Events that never occur on a

device are never handled.

The choice in mixin layer granularity is analogous to the choice in method

granularity that class designers make. For mixins, just as for methods, it is some-

times desirable to support multiple granularities at once. In such situations, code

replication can be avoided if the fine-grained implementation can be used to build

the coarse-grained implementation. For methods, coarse-grained implementations

can be built by creating new methods that bundle calls to existing fine-grained

methods. For mixins, coarse-grained implementations can be built by creating

new mixins from compositions of existing fine-grained mixins. These composi-

tions would not have all their actual type parameters specified, so they represent a

partial application of parameterized types. JL does not currently support such

compositions.

7.2.5.3 Defining the Sibling Pattern

One of the contributions of Fidget is the recognition that the inheritance

relationship between nested classes described in §7.2.3.4 is a design pattern. The

Sibling pattern is noteworthy because of the way it uses nested classes, layering,

and the most specialized type in a hierarchy. The pattern is useful because in a

deeply conforming mixin layer, changes to a nested class can be inherited by its

sibling classes.

The Sibling pattern’s inheritance relationship has been observed in other

applications [14,76], which supports the idea that the pattern should be cataloged.

The intent, motivation, use and structure of the Sibling pattern have already been

 247

described. In this section, we briefly comment on its applicability and enabling

language features. A formal description of the Sibling pattern is available [25].

The Sibling pattern is most applicable when (1) nested classes are sup-

ported and (2) class hierarchies can be changed without changing class defini-

tions. Though the pattern can be implemented in non-parametric Java, Java’s

fixed class hierarchies discourage the use of layers of nested classes for imple-

menting crosscutting features, so the pattern is rarely seen. When mixin layers or

similar constructs are available, the Sibling pattern allows a parent class and its

children classes to be refined simultaneously. This capability makes stepwise

program refinement even more powerful.

The Sibling pattern requires that the type of the leaf class in a hierarchy be

available in classes that make up the hierarchy. In §7.2.3.4, we saw that though a

simple naming convention is sufficient to meet this requirement, JL’s This type

parameter provides more flexibility. The Sibling pattern could also be imple-

mented using virtual types [120].

This concludes our discussion of the Fidget evaluation; we now summa-

rize the results of both the ACE and Fidget evaluations.

7.3 Summary

Our ACE evaluation shows that mixins provide significant advantages in

terms of flexibility, usability, and reusability when compared to object-oriented

frameworks. JL breaks the static binding among framework classes and instead

delivers a collection of composable classes. These classes can be combined in

 248

different ways to meet the needs of particular applications. Mixins provide the

required compositional flexibility, while other language features enhance usabil-

ity.

Our Fidget evaluation provides empirical evidence that an important do-

main like GUIs can be decomposed into feature-encapsulating components using

mixin layers, and that these components can be combined into custom libraries

using stepwise refinement. From a single code-base, we generated different GUI

libraries for cell phones, Palm devices and PCs. These generated GUIs present

conventional programming interfaces to applications and contain only the APIs

appropriate for their target devices.

Both of the above evaluations show that JL’s novel language support, in-

cluding deep conformance, constructor propagation and the implicit This type

parameter, increases the effectiveness of programming with mixins. This effec-

tiveness is reflected in a number of ways, including improved constraint checking

and less programmer-written code. Another measure of this effectiveness is JL’s

ability to easily implement the Sibling pattern, which we used in our Fidget de-

sign.

The Sibling pattern, which incorporates both type nesting and type inheri-

tance, may at first seem complicated, but we have shown that the pattern supports

a simple semantic: In a deeply conforming mixin layer, changes to a nested class

can be inherited by its sibling classes. This semantic extends standard OO inheri-

tance semantics to mixin layers in a useful way.

 249

CHAPTER 8 CONCLUSIONS

This chapter summarizes our primary results and contributions; it also dis-

cusses possible directions for future research.

8.1 Results

The high cost of creating and evolving large applications drives the search

for more efficient software development techniques. One way to reduce software

cost is to increase the reuse of existing code. Our approach to increasing reusabil-

ity is to provide language support for more powerful encapsulation and composi-

tion capabilities. In particular, we use mixins as the technological foundation for

Java Layers and then show how novel language and compiler support make mixin

programming more effective.

The fundamental result of our research is that mixins become a more prac-

tical reuse technology when they are coupled with specialized language and com-

piler support. Mixins provide the modularity and composition properties needed

for reuse. Mixins, however, also introduce new complexity, and it is this com-

plexity that we address in Java Layers research. We now summarize the three

primary contributions of our research.

Our first contribution is to identify support needed to manage the addi-

tional complexity of mixin programming. The challenges of mixin programming

have been previously documented by others; our contribution is the design and

implementation of features that make mixin programming easier, more expres-

 250

sive, and more efficient. We identified areas where mixin programming is more

complicated than conventional object-oriented programming. We found that ini-

tialization is less straightforward in mixin classes than in fixed-superclass classes,

so we designed and implemented constructor propagation to address initialization.

We also found that mixin-generated code contains more indirection than conven-

tional application code, so we designed the class hierarchy optimization to remove

design-time layering from runtime code.

We identified areas where mixin programming does not have an analog in

standard object-oriented programming, but where specialized support for mixins

would increase their usefulness. We found that mixin compositions sometimes

need to be restricted in ways not possible using syntactic type checking, so we

designed a simple semantic checking capability. We found that explicit support

for mixin layers keeps applications well-structured, so we designed and imple-

mented deep conformance support. Lastly, we found that the most derived class

in a mixin-hierarchy is distinguished because it contains all the features imple-

mented by a mixin composition, so we designed and implemented the implicit

This type parameter to allow symbolic references to that class.

Our second contribution is to show how mixins and their supporting fea-

tures can be integrated into an existing language. We chose to extend Java be-

cause of its widespread use and because of the good software engineering charac-

teristics that it embodies. We found that all of our language extensions except the

implicit This type parameter are orthogonal to each other and to Java, which sim-

plifies both their use and implementation. We found that This interacts with JL’s

 251

constrained parametric polymorphism, which complicates JL’s implementation

but has little effect on JL’s usage. In addition, we found that the class hierarchy

optimization interacts with Java’s package system, but our design accounts for

this interaction.

Our third contribution is to gauge the effectiveness of Java Layers in two

evaluations. Our first evaluation compares mixin programming to programming

using object-oriented frameworks. Our comparison shows that mixin program-

ming using JL (1) avoids problems of framework evolution and overfeaturing, (2)

scales better than frameworks as the number of application features increases, (3)

supports a higher level of reuse than frameworks, and (4) supports application

variation with more flexibility than frameworks. These results are significant be-

cause frameworks are commonly used to build large applications and software

product lines. Our second evaluation shows how JL’s mixin layers increase code

modularity and how this increased modularity can be used to build a software

product line from a common code-base. We also define the Sibling design pat-

tern, which coordinates the use of inheritance, nested types, and the most derived

types in mixin-generated hierarchies to achieve greater modularity.

Our results are limited in a number of ways. First, we note that mixin lay-

ers can only encapsulate features that crosscut their nested classes. If an applica-

tion designer fails to nest in a mixin layer all the classes a feature affects, then the

feature cannot be encapsulated in a layer. Second, the evaluations that we per-

formed were not extensive, real-world trials. Our evaluations contribute to a

growing body of evidence that mixins and mixin layers are effective reuse tech-

 252

nologies, but only large-scale experiments can determine their ultimate value.

Moreover, JL’s semantic checking and class hierarchy optimization have not been

implemented, so their utility has not been tested in code. On the other hand, our

evaluations do provide evidence that the language features JL has implemented

are useful and that they achieve their design objectives. Lastly, JL’s research

compiler does not implement the complete JL language. In particular, we do not

embed JL attributes into class files, so features like constructor propagation and

deep conformance have not been tested in non-parametric types.

8.2 Future Work

The success of mixin programming ultimately depends on whether it

scales to support large applications over long periods of time, so it is important

for future mixin research to include successively larger experiments. These large-

scale experiments should demonstrate (1) that mixin programming is an effective

and economical way to build real-world software and (2) that mixin tools are ma-

ture enough for mission-critical projects. These large-scale experiments should

also demonstrate that mixin code remains comprehensible and flexible after in-

tense, long-term maintenance activity. In addition, these experiments should

show that teams of programmers can efficiently work on the same mixin applica-

tion.

As mixin applications become more demanding, mixin tools need to be-

come more robust. A possible successor to JL’s source-to-source compiler is a

JL-to-bytecode compiler, which would be more production-oriented because of

 253

the output it generates. This new compiler could implement generics using the

customized class loader approach described by Agesen, Freund and Mitchell [1].

Under this approach, parametric types are instantiated at load-time, though it

would be useful to support both load-time and static instantiation in the same de-

velopment environment. The JL-to-bytecode compiler would serve as a platform

to investigate different bytecode representations for mixins and different ap-

proaches to processing them. For example, it would be interesting to investigate

whether or not class hierarchy optimization should be performed at load-time.

The most significant impact of a JL-to-bytecode compiler, however,

would probably be its effect on mixin language support. In addition to providing

an opportunity to more completely implement JL, the new compiler could incor-

porate into JL feedback from large-scale experiments. For instance, the new

compiler could implement JL’s semantic checking and then gauge its effective-

ness in applications that have hundreds or even thousands of mixins. In addition,

the compiler could also be used to explore issues like partial instantiation, user-

specified aliases for instantiations, traceability, and debugging support.

A more general topic for future research explores generative program-

ming. Czarnecki and Eisenecker [36] describe C++ as a two-level language in

which static code is evaluated at compile-time, dynamic code is evaluated at run-

time, and both types of code are written in Turing-complete languages (the C++

template language and C++, respectively). C++ templates are arguably too pow-

erful21, but the idea of splitting compilation into well-defined generative and

21 Should programmers be able to calculate Fibonacci numbers using template instantiation?

 254

computational phases is intriguing. Of course, the use of macros for many years

shows that there is nothing new about pre-processing code. What is new, how-

ever, is the idea that the generative phase language deserves as much design atten-

tion as the computational phase language. The goal of future research in this area

could be the definition of an elegant, meta-programming language for the genera-

tive phase of compilation.

 255

Appendix A – Layered Code Micro-Benchmarks

We performed two micro-benchmark tests to determine the effect of deep

class hierarchies on Java performance. These tests are not comprehensive, but

they do support the arguments made in §2.4.4 for optimizing the class hierarchies

of layered applications. The first test addresses method call overhead, and the

second test addresses class loading overhead.

All tests were performed on a dual 350 Mhz Pentium II system with 128M

of memory. The system runs Windows NT and uses the NTFS file system; hard

drive sector size is 512 bytes on an 8G partition. We used Sun’s SDK 1.2.2 for

our Java environment. The raw data generated by the tests can be found in the

optimization specification on the Java Layers web site [57]. All tests were run on

optimized class files and garbage collection was turned off.

METHOD CALL TESTS

The method call tests compare method performance in a ten-deep class hi-

erarchy with method performance in a flattened version of the same hierarchy.

We construct our deep hierarchy from ten classes that simulate daisy-chained

method calls in a moderate-sized, mixin-generated hierarchy. Each class in the

hierarchy has a calc() method and a noop() method. The calc() method adds a

number to the result of its superclass’s calc() method, if one exists. The noop()

method simply calls its superclass noop() method, if one exists.

We also construct a flattened class hierarchy that contains only one class.

This class defines a calc() method and a noop() method, which are handcoded ver-

 256

sions of the corresponding leaf class methods in the deep class hierarchy de-

scribed above. These handcoded methods simulate the inlining performed by the

class hierarchy optimization (Chapter 5): calc() adds ten numbers and noop()

does nothing.

The figures below show the execution times of ten million calls to calc()

and noop() in the leaf classes of both hierarchies. Figure 80 shows the results

with the just-in-time compiler (JIT) turned off, and Figure 81 shows the results

using the JIT. For each test, two primer runs were performed before five actual

runs. The results from the five runs were averaged, though the deviation from the

mean was never significant.

29287

24131

6845
2810

0

5000

10000

15000

20000

25000

30000

35000

calc() noop()

Methods

E
xe

cu
ti

o
n

 T
im

e
(m

s)

Deep

Flattened

Figure 80 - Method Call Run Times without JIT

 257

778

112

390

109

0

200

400

600

800

1000

calc() noop()

Methods

E
xe

cu
ti

o
n

 T
im

e
(m

s)
Deep

Flattened

Figure 81 - Method Call Run Times with JIT

With the JIT turned off, flattening speeds up the calc() test by a factor of

4.2 and it speeds up the noop() test by a factor of 8.6. With the JIT enabled, flat-

tening speeds up the calc() test by a factor of 2, but it does not appreciably affect

the noop() test. The lack of improvement in this last noop() test is probably due to

JIT optimizations that explicitly eliminate calls to empty methods. Whatever the

cause, the results of this last case do not detract from the significance of the other

results, which we now discuss.

The non-JIT noop() method speedup of 8.6 times can be viewed as the

largest possible gain because all non-leaf class processing is eliminated, which

removes all overhead. More realistically, the calc() method speedup (4.2 for non-

JIT, 2 for JIT) is probably the best case improvement that can be expected in prac-

tice, since calc() is representative of methods that do a little processing in each

layer. In general, the more processing performed by each layer, the less important

method call overhead becomes and the less dramatic the effect of inlining.

 258

CLASS LOADING TESTS

The goal of the class loading micro-benchmark is to determine how file

size affects the load times of Java class files. The micro-benchmark loads two

sizes of classes and compares their load times. The small classes contain 500-506

bytes and the large classes contain 2049-2055 bytes. On the test machine, small

classes fit into one disk sector and large classes require five sectors. All classes

are direct subclasses of Object and implement no interfaces. The experiment

consists of loading five batches of large and small classes into a Java program.

Figure 82 shows the throughput in kilobytes per second for each batch of

large and small classes. The figure indicates that code loads significantly faster

when it is packaged in larger files. In each of the five tests, the same number of

distinct large and small class files were read from disk and loaded into a Java pro-

gram. Each test consists of two primer runs and three actual runs. The results of

the actual runs were averaged, though the deviation from the mean was never sig-

nificant.

 259

Figure 82 - Load Rate of Different Size Classes

Table 6 shows detailed results for the 100 class and 800 class tests, which

represent the extremes in our results. The third and fifth columns normalize data

with respect to the small class size results. We see that the number of bytes

loaded using large classes is four times greater than the number loaded using

small classes, but the total load time for large classes is only 13% to 26% greater.

This result indicates that merging classes into larger class files can reduce load

time.

561 554 542
500 479

157 151 152 147 148

0

100

200

300

400

500

600

100 200 400 600 800

Classes Loaded

T
h

ro
u

g
h

p
u

t (
K

B
/s

ec
)

Large

Small

 260

Classes

Loaded

Bytes

Loaded

Normalized

Bytes

Loaded

Execution

Time (ms)

Normalized

Execution

Time

100 Small 50,600 1.00 323 1.00

100 Large 204,900 4.05 365 1.13

800 Small 404,800 1.00 2,728 1.00

800 Large 1,639,200 4.05 3,424 1.26

Table 6 - Detailed Results for Two Load Tests

A more comprehensive study of load times would include a greater variety

of class sizes, would use a number of different file systems, and would introduce

the effects of networks. Our micro-benchmark, however, is sufficient to validate

that loading Java class files is like reading files: In general, less overhead is in-

curred using fewer large files than using many small files [95].

 261

Appendix B – Regular Expressions in Semantic Checking

In §4.5.2, we described JL’s constraint language for semantic checking.

In this section, we briefly describe how JL adopts commonly used regular expres-

sion syntax for pattern matching whenever possible [42]. Table 7 lists the regular

expression meta-characters used in JL.

Meta-Character Name Meaning
. Dot any one attribute

[..] attribute class any attribute listed
[^..] negated attribute class any attribute not listed

^ Caret position at beginning
$ Dollar position at end
| Alternation OR

(..) Parenthesis scope delimiters
?, +, * repetition quantifiers 0 or 1, 1 or more, 0 or more

\ Escape meta-character escape
! Mismatch negate match response

Table 7 - Regular Expression Meta-Characters in JL

JL’s regular expression processing differs in one important way when

compared to most other languages. The alphabet used in JL to pattern match at-

tribute lists consists of attribute names, not individual characters as in string-based

pattern matching. This difference in alphabet means, for instance, that JL attrib-

utes must be separated by spaces when they are used in the attribute classes ([..]

and [^..]) shown in the table above.

In addition, JL supports a mismatch operator when the exclamation point

meta-character (!) appears as the first character in a regular expression. The

 262

mismatch operator causes an expression to return true if no match is found; oth-

erwise false is returned. JL’s mismatch operator is similar to the negated return

value construct (!~) in Perl [130].

 263

References

1. O. Agesen, S. Freund, and J Mitchell. Adding Type Parameterization to the
Java Language. Object-Oriented Programming, Systems, Languages and Ap-
plications (OOPSLA), pages 49-65, 1997.

2. A. V. Aho, R. Sethi and J. D. Ullman. Compilers - Principles, Techniques
and Tools. Addison-Wesley, 1988.

3. D. Ancona, G. Lagorio and E. Zucca. Jam – A Smooth Extension of Java
with Mixins. European Conference for Object-Oriented Programming
(ECOOP), pages 154-178, 2000.

4. D. Ancona and E. Zucca. A Theory of Mixin Modules: Algebraic Laws and
Reduction Semantics. Mathematical Structures in Computer Science, to ap-
pear.

5. D. Ancona and E. Zucca. A Theory of Mixin Modules: Basic and Derived
Operators. Mathematical Structures in Computer Science, 8(4):401-446,
1998.

6. ANSI and AJPO. Reference Manual for the Ada Programming Language.
ANSI/MIL-STD-1815A-1983, February 17, 1983.

7. A. Appel. Modern Compiler Implementation in Java. Cambridge University
Press, 1998.

8. K. Arnold, J. Gosling and D. Holmes. The Java Programming Language, 3rd
edition. Addison-Wesley, 2000.

9. M. Arnold, S. Fink, V. Sarkar and P. Sweeney. A Comparative Study of
Static and Profile-Based Heuristics for Inlining. ACM SIGPLAN Notices,
Proceedings of ACM SIGPLAN Workshop on Dynamic and Adaptive Compi-
lation and Optimization, 35(7):52-64, January 2000.

10. D. Batory, R. Cardone and Y. Smaragdakis. Object-Oriented Frameworks
and Product-Lines. First Software Product-Line Conference, pages 227-247,
August 2000.

 264

11. D. Batory, G. Chen, E. Robertson and T. Wang. Web-Advertised Generators
and Design Wizards. 5th International Conference on Software Reuse, Victo-
ria, Canada, June 1998.

12. D. Batory, L. Coglianese, M. Goodwill and S. Shaver. Creating Reference
Architectures: An Example from Avionics. Symposium on Software Reus-
ability, Seattle, Washington, April 1995.

13. D. Batory and B. Geraci. Validating Component Compositions and Subjectiv-
ity in GenVoca Generators. IEEE Transactions on Software Engineering,
pages 67-82, February 1997.

14. D. Batory, B. Lofaso and Y. Smaragdakis. JTS: Tools for Implementing
Domain-Specific Languages. 5th International Conference on Software Re-
use, Victoria, Canada, June 1998.

15. D. Batory and S. O’Malley. The Design and Implementation of Hierarchical
Software Systems with Reusable Components. ACM Transactions on Soft-
ware Engineering and Methodology, pages 355-398, October 1992.

16. D. Batory, V. Singhal, M. Sirkin and J. Thomas. Scalable Software Libraries.
Foundations of Software Engineering (FSE), December 1993.

17. E. Berger, B. Zorn and K. McKinley. Composing High-Performance Memory
Allocators. Programming Language Design and Implementation (PLDI),
pages 114-124, 2001.

18. A. Binstock and J. Rex. Practical Algorithms for Programmers. Addison-
Wesley, 1998.

19. B. Bokowski and M. Dalm. Poor Man’s Genericity for Java. Java Informa-
tions Tage, Nov. 12, 1998, Frankfurt, Germany.

20. K. Bohrer, A. Christ and B. Rubin. Java and the IBM San Francisco Project.
IBM Systems Journal, 37(3), 1998.

21. V. Bono, A. Patel and V. Shmatikov. A Core Calculus for Classes and Mix-
ins. European Conference for Object-Oriented Programming (ECOOP),
pages 43-66, 1999.

 265

22. J. Bosch. Product Line Architectures in Industry: A Case Study. Interna-
tional Conference on Software Engineering (ICSE), pages 544-554, 1999.

23. G. Bracha and W. Cook. Mixin-Based Inheritance. Object-Oriented Pro-
gramming, Systems, Languages and Applications / European Conference for
Object-Oriented Programming (OOPSLA-ECOOP), pages 303-311, 1990.

24. G. Bracha, M Odersky, D. Stoutamire and P. Wadler. Making the future safe
for the past: Adding Genericity to the Java Programming Language. Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA),
pages 183-200, 1998.

25. A. Brown, R. Cardone, S. McDirmid, and C. Lin. The Specification of the
Sibling Design Pattern. Technical Report CS-TR-02-11, CS Dept., University
of Texas at Austin, 2002.

26. K. Bruce. Increasing Java's expressiveness with ThisType and match-
bounded polymorphism. Technical Report, Williams College, 1997,
http://www.cs.williams.edu./~kim/README.html.

27. K. Bruce, M. Odersky and P. Wadler. A statically safe alternative to virtual
types. European Conference for Object-Oriented Programming (ECOOP),
pages 523-549, 1998.

28. P. Canning, W. Cook, W. Hill, W. Olthoff and J. Mitchell. F-Bounded Poly-
morphism for Object-Oriented Programming. Fourth International Confer-
ence on Functional Programming Languages and Computer Architecture,
pages 273-280, 1989.

29. L. Cardelli and P. Wegner. On Understanding Types, Data Abstraction and
Polymorphism. ACM Computing Surveys, 17(4):471-522, December 1985.

30. R. Cardone, D. Batory and C. Lin. Java Layers: Extending Java to Support
Component-Based Programming. Technical report CS-TR-00-11, Computer
Sciences Department, University of Texas (June 2000).

31. R. Cardone, A. Brown, S. McDirmid and C. Lin. Using Mixins to Build
Flexible Widgets. 1st International Conference on Aspect-Oriented Software
Development, Enschede, The Netherlands, April 2002.

32. R. Cardone and C. Lin. Comparing Frameworks and Layered Refinement.
International Conference on Software Engineering (ICSE), pages 285-294,

 266

May 2001.

33. C. Cartwright and G. Steel. Compatible Genericity with Run-Time Types for
the Java Programming Language. Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), 1998.

34. W. Codenie, K. De Hondt, P. Steyaert and A. Vercammel. From Custom Ap-
plications to Domain-Specific Frameworks. Communications of the ACM,
40(10), October 1997.

35. Comptroller General. Contracting for Computer Software Development.
General Accounting Office report FGMSD-80-4, 1979.

36. K. Czarnecki and U. Eisenecker. Generative Programming, Methods, Tools
and Applications. Addison-Wesely, 2000.

37. D. Duggan and C. Techaubol. Modular Mixin-Based Inheritance for Applica-
tion Frameworks. Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), pages 223-240, 2001.

38. U. Eisenecker, F. Blinn and K. Czarnecki. A Solution to the Constructor
Problem of Mixin-Based Programming in C++. Conference on Generative
and Component-Based Software Engineering, Workshop on C++ Template
Programming, Erfurt, Germany, October 2000. Also published in Dr. Dobbs
Journal, No. 320, January 2001.

39. K. Fisler, S. Krishnamurthi, D. Batory and J. Liu. A Model CheckingFrame-
work for Layered Command and Control Software. Workshop on Engineer-
ing Automation for Software Intensive System Integration, Monterrey, Cali-
fornia, June 18-22, 2001.

40. M. Flatt, S. Krishnamurthi and M. Felleisen. Classes and Mixins. Principles
of Programming Languages (POPL), pages 171-183, January 1998.

41. Free Software Foundation, Boston, USA, http://www.gnu.org.

42. J. Friedl. Mastering Regular Expressions. O’Reilly and Associates, 1997.

43. K. Futatsugi, J. Goguen, J. Meseguer and K. Okada. Parameterized Pro-
gramming in OBJ2. International Conference on Software Engineering
(ICSE), pages 51-60, 1987.

 267

44. E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns. Addison-
Wesley, 1995.

45. D. Geary. Graphic Java, Mastering the JFC, 3rd edition, Sun MicroSystems
Press, 1999.

46. W. Gibbs. Software’s Chronic Crisis. Scientific American, September, 1994.

47. J. Goguen. Abstract Errors for Abstract Data Types. IFIP Working Confer-
ence on Formal Description Programming Concepts, P. Neuhold (Ed.), MIT
Press, pages 370-376, 1979.

48. J. Goguen. Parameterized Programming. IEEE Transactions on Software en-
gineering, 10(5): 528-543, September 1984.

49. J. Gosling, B. Joy, G. Steele and G. Bracha. The Java Language Specifica-
tion, 2nd edition. Addison-Wesley, 2000.

50. M. Griss. Implementing Product-Line Features by Composing Aspects. Pro-
ceedings of the 1st Software Product Lines Conference, pages 271-288, Den-
ver, Colorado, August 2000. Kluwer Academic Publishers.

51. W. Harrison and H. Ossher. Subject-Oriented Programming (A Critique of
Pure Objects). Object-Oriented Programming, Systems, Languages and Ap-
plications (OOPSLA), pages 411-428, 1993.

52. A. Holub. Compiler Design in C. Prentice Hall, 1990.

53. Hyperspace home page at http://www.research.ibm.com/hyperspace.

54. J. Jarvi. Tuples and Multiple Return Values in C++. Turku Center for Com-
puter Science, Technical Report No. 249, Finland, 1999.
http://www.tucs.fi/Research/Series/techreports.

55. Java 2 Micro Edition, http://java.sun.com/j2me.

56. Java Community Process home page at http://jcp.org.

57. Java Layers home page at
http://www.cs.utexas.edu/user/richcar/JavaLayers.html.

 268

58. G. Jimenez-Perez and D. Batory. Memory Simulators and Software Genera-
tors. Symposium on Software Reuse, pages 136-145, 1997.

59. R. E. Johnson and B. Foote. Designing Reusable Classes. Journal of Object-
Oriented Programming, pages 22-35, June/July 1988.

60. The JOVE compiler from Instantiations, Inc., http://www.instantiations.com.

61. I. H. Kazi, H. H. Chen, B. Stanley and D. Julia. Techniques for Obtaining
High Performance in Java Programs. ACM Computing Surveys, 32(3):213-
240, September 2000.

62. S. Keene. Object-Oriented Programming in Common Lisp: A Programming
Guide in CLOS. Addison-Wesley, 1989.

63. B. Kernighan and D. Ritchie. The C Programming Language, 2nd edition.
Prentice Hall, 1988.

64. M. Kersten and G. Murphy. Atlas: A Case Study in Building a Web-Based
Learning Environment using Aspect-Oriented Programming. Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA), pages 340-
352, 1999.

65. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and W. Griswold.
An Overview of AspectJ. European Conference for Object-Oriented Pro-
gramming (ECOOP), pages 327-353, 2001.

66. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier and
J. Irwin. Aspect-Oriented Programming. European Conference for Object-
Oriented Programming (ECOOP), pages 220-242, 1997.

67. B. Kristensen, O. Madsen, B. Møller-Pedersen and K. Nygaard. Abstraction
Mechanisms in the BETA Programming Language. Principles of Program-
ming Languages (POPL), pages 285-298, 1983.

68. J. Levine. Linkers and Loaders. Morgan Kaufmann Publishers, 2000.

69. H. Lewis and C. Papadimitriou. Elements of the Theory of Computation, 2nd
edition. Prentice-Hall, 1988.

70. H. Liebermann. Using prototypical objects to implement shared behavior in
object-oriented systems. Object-Oriented Programming, Systems, Languages

 269

and Applications (OOPSLA), pages 214-223, 1986.

71. T. Lindholm and F. Yellin. The Java Virtual Machine Specification, 2nd edi-
tion. Addison-Welsey, 1999.

72. B. Liskov, A. Synder, R. Atkins and C. Schaffer. Abstraction Mechanisms in
CLU. Communications of the ACM, 20(8): 564-576, August 1977.

73. M. Lutz. Programming Python, 2nd edition. O’Reilly and Associates, 2001.

74. O. Madsen and B. Møller-Pedersen. Virtual Classes: A Powerful Mechanism
in Object-Oriented Programming. Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), pages 397-406, 1989.

75. K. Maruyama. Automated Method-Extraction Refactoring by Using Block-
Based Slicing. Symposium on Software Reusability, pages 31-40, 2001.

76. S. McDirmid, M. Flatt and W. Hsieh. Jiazzi: New Age Components for Old
Fashioned Java. Object-Oriented Programming, Systems, Languages and Ap-
plications (OOPSLA), pages 211-222, 2001.

77. A. Mendhekar, G. Kiczales and J. Lamping. RG: A Case-Study for Aspect-
Oriented Programming. Technical report SPL97-009 P9710044, Xerox Palo
Alto Research Center, February 1997.

78. R. Milner. A Proposal for Standard ML. Proceeding of the Symposium on
Lisp and Functional Programming, pages 184-197, 1984.

79. D. Moon. Object-Oriented Programming with Flavors. Object-Oriented Pro-
gramming, Systems, Languages and Applications (OOPSLA), pages 1-8, 1986.

80. I. Moore. Automatic Inheritance Hierarchy Restructuring and Method Refac-
toring. Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA), pages 235-250, 1996.

81. R. Morgan. Building an Optimizing Compiler. Butterworth-Heinemann,
1998.

82. A. Myers, J. Bank and B. Liskov. Parameterized Types for Java. Principles
of Programming Languages (POPL), pages 132-145, 1997.

 270

83. N. Myhrvold. The Next Fifty Years of Software. ACM97 Conference, March
1997. Slides at http://research.microsoft.com/acm97.

84. P. Naur and B. Randell. Software Engineering: Report on a Conference spon-
sored by the NATO Science Committee, Garmisch, Germany, October 1968.
Scientific Affairs Division, NATO, January 1969.

85. Object Management Group. OMG Unified Modeling Language Specification,
version 1.3. OMG 2000. Available at http://www.omg.org.

86. M. Odersky and E. Runne. Measuring the Cost of Parameterized Types in
Java. Research report CIS-98-004, Advanced Computing Research Centre,
University of South Australia, January 1998.

87. W. Opdyke. Refactoring Object-Oriented Frameworks. Ph.D. dissertation.
Department of Computer Science, University of Illinois at Urbana-
Champaign, 1992.

88. H. Ossher, M. Kaplan, A. Katz, W. Harrison and V. Kruskel. Specifying Sub-
ject-Oriented Composition. Theory and Practice of Object Systems, 2(3):179-
202, 1996.

89. K. Ostermann. Dynamically Composable Collaborations with Delegation
Layers. To appear in European Conference for Object-Oriented Program-
ming (ECOOP), 2002.

90. Palm Inc., http://www.palm.com.

91. D. Parnas. On the Criteria to be Used in Decomposing Systems into Modules.
Communications of the ACM, 15(12):1053-1058, December 1972.

92. D. Perry. The Inscape Environment. International Conference on Software
Engineering (ICSE), pages 2-11, May 1989.

93. R. Pressman. Software Engineering: A Practitioner’s Approach, 3rd edition.
McGraw-Hill, 1991.

94. D. Roberts, J. Brant and R. Johnson. A Refactoring Tool for SmallTalk. The-
ory and Practice of Object Systems (TOPAS), 3(4):39-42, 1997.

95. M. Rosenblum and J. Ousterhout. The Design and Implementation of a Log-
Structured File System. ACM Transactions on Computer Systems (TOCS),

 271

10(1):26-52, February 1992.

96. D. Schmidt. ACE home page: http://www.ece.uci.edu/~schmidt.

97. D. Schmidt. Acceptor and Connector—A Family of Object Creational Pat-
terns for Initializing Communication Services. Pattern Languages of Pro-
gram Design 3, edited by R. Martin, D. Riehle, F. Buschmann and J. Vlis-
sides. Addison-Wesley, 1997.

98. D. Schmidt. An Architectural Overview of the ACE Framework. USENIX
login magazine, November 1998.

99. D. Schmidt and I. Pyarali. Reactor: An Object Behavioral Pattern for Concur-
rent Event De-multiplexing and Event Handler Dispatching. Pattern Lan-
guages of Programs Conference, August 1994. A derivative work by the
same title published in Pattern Languages of Program Design, edited by J.
Coplien and D. Schmidt. Addison-Wesley, 1995

100. V. Singhal. A Programming Language for Writing Domain-Specific Soft-
ware System Generators. Ph.D. Dissertation. Department of Computer Sci-
ences, University of Texas at Austin, August 1996.

101. Y. Smaragdakis. Implementing Large-Scale Object-Oriented Compo-
nents. Ph.D. dissertation, Department of Computer Sciences, University of
Texas at Austin, December 1999.

102. Y. Smaragdakis. Interfaces for Nested Classes. The 8th International
Workshop on Object-Oriented Languages (FOOL8), London, England, Janu-
ary 20, 2001.

103. Y. Smaragdakis and D. Batory. Implementing Layered Designs with
Mixin Layers. European Conference for Object-Oriented Programming
(ECOOP), pages 550-570, 1998.

104. Y. Smaragdakis and D. Batory. Mixin-Based Programming in C++. Sec-
ond International Symposium on Generative and Component-Based Software
Engineering (GCSE 2000), Erfurt, Germany, October 9-12, 2000.

105. J. Solorzano and S. Alagic. Parametric Polymorphism of Java: A Reflec-
tive Solution. Object-Oriented Programming, Systems, Languages and Appli-
cations (OOPSLA), pages 216-225, 1998.

 272

106. The Standish Group International, West Yarmouth, Massachusetts.
CHAOS, 1995. http://www.standishgroup.com.

107. A. Stepanov and M. Lee. The Standard Template Library. Hewlett-
Packard, 1995.

108. R. Stevens. UNIX Network Programming. Prentice-Hall (1990)

109. C. Strachey. Fundamental concepts in programming languages. Lecture
notes for the International Summer School in Computer Programming, Co-
penhagen, August 1967.

110. B. Stroustrup. The C++ Programming Language, 3rd Edition. Addison-
Wesley, 1997.

111. Sun Microsystems, Inc. Connected, Limited Device Configuration, speci-
fication 1.0a, May 19, 2000.

112. Sun Microsystems, Inc. Inner Classes Specification, February, 10, 1997 at
http://java.sun.com/products/jdk/1.1/docs/index.html.

113. Sun Microsystems, Inc. Java 2 Platform Micro Edition (J2ME) Technol-
ogy for Creating Mobile Devices, white paper, May 19, 2000.

114. Sun Microsystems, Inc. Java technology, http://java.sun.com.

115. Sun Microsystems, Inc. Java technology for sealed packages,
http://java.sun.com/products/jdk/1.2/docs/guide/extensions/spec.html.

116. U. Syyid. The Adaptive Communication Environment: “ACE”. Tutorial
at http://www.cs.wustl.edu/~schmidt/ACE.html.

117. A. Taivalsaari. On the Notion of Inheritance. ACM Computing Surveys,
28(3):438-479, September. 1996.

118. P. Tarr, H. Ossher, W. Harrison and S. Stanley. N Degrees of Separation:
Multi-Dimensional Separation of Concerns. International Conference on
Software Engineering (ICSE), pages 107-119, 1999.

119. S. Thompson. Haskell, The Craft of Functional Programming. Addison
Wesley, 1996.

 273

120. K. Thorup. Genericity in Java with Virtual Types. European Conference
for Object-Oriented Programming (ECOOP), pages 444-471, 1997.

121. F. Tip, C. Laffa, P. F. Sweeny and D. Streeter. Practical Experience with
an Application Extractor for Java. Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), pages 292-305, 1999.

122. L. Tokuda. Evolving Object-Oriented Designs with Refactorings. Ph.D.
Dissertation. Department of Computer Sciences, University of Texas at Aus-
tin, December 1999.

123. The TowerJ compiler from Tower Technology, Inc., http://www.twr.com.

124. J. Ullman. Elements of ML Programming. Prentice Hall, 1998.

125. M. VanHilst and D. Notkin. Decoupling Change from Design. Founda-
tions of Software Engineering (FSE), pages 58-69, October 1996.

126. M. VanHilst and D. Notkin. Using C++ Templates to Implement Role-
Based Designs. JSSST International Symposium on Object Technologies for
Advanced Software, Kanazawa, Japan, (March 1996).

127. M. VanHilst and D. Notkin. Using Role Components to Implement Col-
laboration-Based Designs. Object-Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA), pages 359-369, 1996.

128. C. Videira Lopes and G. Kiczales. D: A Language Framework for Dis-
tributed Programming. Technical report SPL97-010 P9710047, Xerox Palo
Alto Research Center, February 1997.

129. P. Wadler, M. Odersky and Y. Smaragdakis. “Do Parametric Types Beat
Virtual Types?”, unpublished manuscript, posted on Java Genericity mailing
list (java-genericity@galileo.East.Sun.com), October 1998.

130. L. Wall, T. Christiansen and J. Orwant. Programming Perl, 3rd edition.
O’Reilly and Associates, 2000.

131. A. Zaks, V. Feldman and N. Aizikowitz. Sealed Calls in Java Packages.
Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA), pages 83-92, 2000.

 274

Vita

Richard Joseph Cardone was born in New York City on June 3, 1958, the

son of Camille and Pasquale Cardone. After completing public school education

in the usual amount of time, he began a college career that was to span twenty-

five years. He graduated from the State University of New York at Oneonta in

1983 with a Bachelor of Science degree in Mathematics and a minor in French.

He began working at IBM in 1984, a relationship that continues to this day. He

earned a Master of Science degree in Computer Sciences from Polytechnic Uni-

versity in Hawthorne, New York, in 1990. He matriculated at the University of

Texas at Austin in 1997.

Permanent address: 13533 Anarosa Loop, Austin, TX 78727.

This dissertation was typed by the author.

