
Exploiting Pointer and Loation Equivalene toOptimize Pointer AnalysisBen Hardekopf and Calvin LinThe University of Texas at Austin, Austin TX 78712, USAfbenh,ling�s.utexas.eduAbstrat. Pointer information is a prerequisite for most program anal-yses, and inlusion-based, i.e. Andersen-style, pointer analysis is widelyused to ompute suh information. However, urrent inlusion-basedanalyses an have prohibitive osts in time and spae, espeially forprograms with millions of lines of ode. We present a suite of o�ineoptimizations that exploit pointer and loation equivalene to shrink theinput to the subsequent pointer analysis without a�eting preision, dra-matially reduing both analysis time and memory onsumption. Usinga suite of six open-soure C programs ranging in size from 169K to 2.17MLOC, we demonstrate that our tehniques on average improve analysistime by 1.3{2.7� and redue memory onsumption by 3.2{6.9� over thebest urrent tehniques.1 IntrodutionMost program analyses require pointer information, from traditional ompileroptimizations to software veri�ation, seurity analysis, and program under-standing. Many of these analyses are interproedural and require a highly sal-able whole-program pointer analysis to ompute pointer information. The prei-sion of the omputed information an have a profound impat on the usefulnessof the subsequent program analysis. Inlusion-based, i.e. Andersen-style, pointeranalysis is widely-used beause of its relative preision and potential for sala-bility. Inlusion-based analysis sales to millions of lines of ode, but memoryonsumption is prohibitively high [6℄. Memory onsumption an be greatly re-dued by using BDDs to represent points-to sets, but this signi�antly inreasesanalysis time [6℄. Our goal is to break this trade-o� by reduing both mem-ory onsumption and analysis time for inlusion-based pointer analysis, withouta�eting the preision of the results.Inlusion-based analysis is the most preise ow- and ontext-insensitivepointer analysis. It extrats inlusion onstraints from the program ode to ap-proximate points-to relations between variables, representing the onstraints us-ing a onstraint graph, with nodes to represent eah program variable and edgesto represent the onstraints between variables. Indiret onstraints|those thatinvolve pointer dereferenes|an't be diretly represented in the graph, sinepoints-to information isn't available until after the analysis has ompleted. Theanalysis satis�es the onstraints by omputing the dynami transitive losure of



the graph; as new points-to information beomes available, new edges are addedto the graph to represent the indiret onstraints. The transitive losure of the�nal graph yields the points-to solution.Inlusion-based analysis has a omplexity of O(n3) time and O(n2) spae,where n is the number of variables; the key to saling the analysis is to re-due the input size|i.e. make n smaller|while ensuring that preision is nota�eted. This goal is aomplished by deteting equivalenes among the pro-gram variables and ollapsing together equivalent variables. Existing algorithmsonly reognize a single type of equivalene, whih we all pointer equivalene:program variables are pointer equivalent i� their points-to sets are idential.There are several existing methods for exploiting pointer equivalene. The pri-mary method is online yle detetion [5{7, 10, 11℄. Rountev et al. [12℄ introdueanother method alled O�ine Variable Substitution (OVS). An o�ine analysisis a stati analysis performed prior to the atual pointer analysis; in this ase,OVS identi�es and ollapses a subset of the pointer equivalent variables beforefeeding the onstraints to the pointer analysis.In this paper, we introdue a suite of new o�ine optimizations for inlusion-based pointer analysis that go far beyond OVS in �nding pointer equivalenes.We also introdue and exploit a seond notion of equivalene alled loationequivalene: program variables are loation equivalent i� they always belong tothe same points-to sets, i.e. any points-to set ontaining one must also ontainthe other. Our new optimizations are the �rst to exploit loation equivaleneto redue the size of the variables' points-to sets without a�eting preision.Together, these o�ine optimizations dramatially redue both the time andmemory onsumption of subsequent inlusion-based pointer analysis. This paperpresents the following major results:{ Using three di�erent inlusion-based pointer analysis algorithms [7, 10, 6℄,we demonstrate that our optimizations on average redue analysis time by1.3{2.7� and redue memory onsumption by 3.2{6.9�.{ We experiment with two di�erent data strutures to represent points-tosets: (1) sparse bitmaps, as urrently used in the GCC ompiler, and (2)a BDD-based representation. While past work has found that the bitmaprepresentation is 2� faster but uses 5.5� more memory than the BDD rep-resentation [6℄, we �nd that, due to our o�ine optimizations, the bitmaprepresentation is on average 1.3� faster and uses 1.7� less memory than theBDD representation.This paper makes the following oneptual ontributions:{ We present Hash-based Value Numbering (HVN), an o�ine optimizationwhih adapts a lassi ompiler optimization [3℄ to �nd and exploit pointerequivalenes.{ We present HRU (HVN with deReferene and Union), an extension of HVNthat �nds additional pointer equivalenes by interpreting both union anddereferene operators in the onstraints.



{ We present LE (Loation Equivalene), an o�ine optimization that �ndsand exploits loation equivalenes to redue variables' points-to set sizeswithout a�eting preision.2 Related WorkAndersen introdues inlusion-based pointer analysis in his Ph.D. thesis [1℄,where he formulates the problem in terms of type theory. Andersen's algorithmsolves the inlusion onstraints in a fairly naive manner by repeatedly iteratingthrough a onstraint vetor.The �rst use of pointer equivalene to optimize inlusion-based analysis omesfrom Faehndrih et al. [5℄, who represent onstraints using a graph and thenderive points-to information by omputing the dynami transitive losure ofthat graph. The key optimization is a method for partial online yle detetion.Later algorithms expand on Faehndrih et al.'s work by making online y-le detetion more omplete and eÆient [6, 7, 10, 11℄. In partiular, Heintze andTardieu [7℄ desribe a �eld-based analysis, whih is apable of analyzing over1 million lines of C ode in a matter of seonds. Field-based analysis does notalways meet the needs of the lient analysis, partiularly sine �eld-based analy-sis is unsound for C; a �eld-insensitive version of their algorithm is signi�antlyslower [6℄.Rountev et al. [12℄ introdue O�ine Variable Substitution (OVS), a linear-time stati analysis whose aim is to �nd and ollapse pointer-equivalent variables.Of all the related work, OVS is the most similar to our optimizations and servesas the baseline for our experiments in this paper.Both pointer and loation equivalene have been used in other types ofpointer analyses, although they have not been expliitly identi�ed as suh;Steensgaard's analysis [14℄, Das' One-Level Flow [4℄, and the Shapiro-Horwitzfamily of analyses [13℄ all sari�e preision to gain extra performane by in-duing arti�ial pointer and loation equivalenes. By ontrast, we detet andexploit atual equivalenes between variables without losing preision.Loation equivalene has also been used by Liang and Harrold to optimizedataow analyses [8℄, but only post-pointer analysis. We give the �rst methodfor soundly exploiting loation equivalene to optimize the pointer analysis itself.3 Pointer EquivaleneLet V be the set of all program variables; for v 2 V : pts(v) � V is v's points-toset, and pe(v) 2 N is the pointer equivalene label of v, where N is the set ofnatural numbers. Variables x and y are pointer equivalent i� pts(x) = pts(y).Our goal is to assign pointer equivalene labels suh that pe(x) = pe(y) impliesthat x and y are pointer equivalent. Pointer equivalent variables an safely beollapsed together in the onstraint graph to redue both the number of nodesand edges in the graph. The bene�ts are two-fold: (1) there are fewer points-to



sets to maintain; and (2) there are fewer propagations of points-to informationalong the edges of the onstraint graph.The analysis generates inlusion onstraints using a linear pass through theprogram ode; ontrol-ow information is disarded and only variable assign-ments are onsidered. Funtion alls and returns are treated as gotos and arebroken down into sets of parameter assignments. Table 1 illustrates the types ofonstraints and de�nes their meaning.Table 1. Inlusion Constraint Types.Program Code Constraint Meaninga = &b a � fbg b 2 pts(a)a = b a � b pts(a) � pts(b)a = �b a � �b 8v 2 pts(b) : pts(a) � pts(v)�a = b �a � b 8v 2 pts(a) : pts(v) � pts(b)Our optimizations use these onstraints to reate an o�ine onstraint graph,1with var nodes to represent eah variable, ref nodes to represent eah derefer-ened variable, and adr nodes to represent eah address-taken variable. A refnode �a stands for the unknown points-to set of variable a, while adr node &astands for the address of variable a. Edges represent the inlusion relationships:a � fbg yields edge &b ! a; a � b yields b ! a; a � �b yields �b ! a; and�a � b yields b! �a.Before desribing the optimizations, we �rst explain the onepts of diret andindiret nodes [12℄. Diret nodes have all of their points-to relations expliitlyrepresented in the onstraint graph: for diret node x and the set of nodesS = fy : y ! xg, pts(x) = Sy2Spts(y). Indiret nodes are those that may havepoints-to relations that are not represented in the onstraint graph. All refnodes are indiret beause the unknown variables that they represent may havetheir own points-to relations. var nodes are indiret if they (1) have had theiraddress taken, whih means that they an be referened indiretly via a refnode; (2) are the formal parameter of an indiret funtion all; or (3) are assignedthe return value of an indiret funtion all. All other var nodes are diret.All indiret nodes are onservatively treated as possible soures of points-to information, and therefore eah is given a distint pointer equivalene labelat the beginning of the algorithm. adr nodes are de�nite soures of points-toinformation, and they are also given distint labels. For onveniene, we willuse the term 'indiret node' to refer to both adr nodes and true indiret nodesbeause they will be treated equivalently by our optimizations.Figure 1 shows a set of onstraints and the orresponding o�ine onstraintgraph. In Figure 1 all the ref and adr nodes are marked indiret, as well asvar nodes a and d, beause they have their address taken. Beause a and d an1 The o�ine onstraint graph is akin to the subset graph desribed by Rountev etal. [12℄.



now be aessed indiretly through pointer dereferene, we an no longer assumethat they only aquire points-to information via nodes h and i, respetively.b � fag a � h h � �bb � fdg  � b i � �e � fag d � i k � �je � fag e � fe � fdg f � eg � f &a 6 b  
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Fig. 1. Example o�ine onstraint graph. Indiret nodes are grey and have already beengiven their pointer equivalene labels. Diret nodes are blak and have not been givenpointer equivalene labels.3.1 Hash-based Value Numbering (HVN)The goal of HVN is to give eah diret node a pointer equivalene label suhthat two nodes share the same label only if they are pointer equivalent. HVNan also identify non-pointers|variables that are guaranteed to never point toanything. Non-pointers an arise in languages with weak types systems, suhas C: the onstraint generator an't rely on the variables' type delarations todetermine whether a variable is a pointer or not, so it onservatively assumes thateverything is a pointer. HVN an eliminate many of these superuous variables;they are identi�ed by assigning a pointer equivalene label of 0. The algorithmproeeds as follows:1. Find and ollapse strongly-onneted omponents (SCCs) in the o�ine on-straint graph. If any node in the SCC is indiret, the entire SCC is indiret.In Figure 1, e and f are ollapsed into a single (diret) node.2. Proeeding in topologial order, for eah diret node x let L be the set ofpositive inoming pointer equivalene labels, i.e. L = fpe(y) : y ! x ^pe(y) 6= 0g. There are three ases:(a) L is empty. Then x is a non-pointer and pe(x) = 0.Explanation: in order for x to potentially be a pointer, there must exista path to x either from an adr node or some indiret node. If there isno suh path, then x must be a non-pointer.(b) L is a singleton, with p 2 L. Then pe(x) = p.Explanation: if every points-to set oming in to x is idential, then x'spoints-to set, being the union of all the inoming points-to sets, must beidential to the inoming sets.() L ontains multiple labels. The algorithm looks up L in a hashtable tosee if it has enountered the set before. If so, it assigns pe(x) the samelabel; otherwise it reates a new label, stores it in the hashtable, andassigns it to pe(x).



Explanation: x's points-to set is the union of all the inoming points-tosets; x must be equivalent to any node whose points-to set results fromunioning the same inoming points-to sets.Following these steps for Figure 1, the �nal assignment of pointer equivalenelabels for the diret nodes is shown in Figure 2. One we have assigned pointerequivalene labels, we merge nodes with idential labels and eliminate all edgesinident to nodes labeled 0.
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3Fig. 2. The assignment of pointer equivalene labels after HVN.Complexity. The omplexity of HVN is linear in the size of the graph. UsingTarjan's algorithm for deteting SCCs [15℄, step 1 is linear. The algorithm thenvisits eah diret node exatly one and examines its inoming edges. This stepis also linear.Comparison to OVS. HVN is similar to Rountev et al.'s [12℄ OVS optimization.The main di�erene lies in our insight that labeling the ondensed o�ine on-straint graph is essentially equivalent to performing value-numbering on a blokof straight-line ode, and therefore we an adapt the lassi ompiler optimiza-tion of hash-based value numbering for this purpose. The advantage lies in step2: in this ase OVS would give the diret node a new label without hekingto see if any other diret nodes have a similar set of inoming labels, potentiallymissing a pointer equivalene. In the example, OVS would not disover that band e are equivalent and would give them di�erent labels.3.2 Extending HVNHVN does not �nd all pointer equivalenes that an be deteted prior to pointeranalysis beause it does not interpret the union and dereferene operators. Reallthat the union operator is impliit in the o�ine onstraint graph: for diretnode x with inoming edges from nodes y and z, pts(x) = pts(y) [ pts(z). Byinterpreting these operators, we an inrease the number of pointer equivalenesdeteted, at the ost of additional time and spae.



HR algorithm. By interpreting the dereferene operator, we an relate a varnode v to its orresponding ref node �v. There are two relations of interest:1. 8x; y 2 V : pe(x) = pe(y)) pe(�x) = pe(�y).2. 8x 2 V : pe(x) = 0) pe(�x) = 0.The �rst relation states that if variables x and y are pointer-equivalent,then so are �x and �y. If x and y are pointer-equivalent, then by de�nition�x and �y will be idential. Whereas HVN would give them unique pointerequivalene labels, we an now assign them the same label. By doing so, wemay �nd additional pointer equivalenes that had previously been hidden by thedi�erent labels.The seond relation states that if variable x is a non-pointer, then �x is alsoa non-pointer. It may seem odd to have a onstraint that dereferenes a non-pointer, but this an happen when ode that initializes pointer values is linkedbut never alled, for example with library ode. Exposing this relationship anhelp identify additional non-pointers and pointer equivalenes.Figure 3 provides an example. HVN assigns b and e idential labels; the �rstrelation above tells us we an assign �b and �e idential labels, whih exposesthe fat that i and h are equivalent to eah other, whih HVN missed. Also,variable j is not mentioned in the onstraints, and therefore the var node jisn't shown in the graph, and it is assigned a pointer equivalene label of 0. Theseond relation above tells us that beause pe(j) = 0, pe(�j) should also be 0;therefore both �j and k are non-pointers and an be eliminated.
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f 8 g 8Fig. 3. The assignment of pointer equivalene labels after HR and HU.The simplest method for interpreting the dereferene operator is to itera-tively apply HVN to its own output until it onverges to a �xed point. Eahiteration ollapses equivalent variables and eliminates non-pointers, ful�lling thetwo relations we desribe. This method adds an additional fator of O(n) to theomplexity of the algorithm, sine in the worst ase it eliminates a single variablein eah iteration until there is only one variable left. The omplexity of HR istherefore O(n2), but in pratie we observe that this method generally exhibitslinear behavior.HU algorithm. By interpreting the union operator, we an more preisely trakthe relations among points-to sets. Figure 3 gives an example in var node . Two



di�erent pointer equivalene labels reah , one from &a and one from b. HVNtherefore gives  a new pointer equivalene label. However, pts(b) � pts(&a), sowhen they are unioned together the result is simply pts(b). By keeping trak ofthis fat, we an assign  the same pointer equivalene label as b.Let fn be a fresh number unique to n; the algorithm will use these freshvalues to represent unknown points-to information. The algorithm operates onthe ondensed o�ine onstraint graph as follows:1. Initialize points-to sets for eah node. 8v 2 V : pts(&v) = fvg; pts(�v) =ff�vg; if v is diret then pts(v) = ;, else pts(v) = ffvg.2. In topologial order: for eah node x, let S = fy : y ! xg [ fxg. Thenpts(x) = Sy2Spts(y).3. Assign labels s.t. 8x; y 2 V : pts(x) = pts(y), pe(x) = pe(y):Sine this algorithm is e�etively omputing the transitive losure of theonstraint graph, it has a omplexity of O(n3). While this is the same omplexityas the pointer analysis itself, HU is signi�antly faster beause, unlike the pointeranalysis, we do not add additional edges to the o�ine onstraint graph, makingthe o�ine graph muh smaller than the graph used by the pointer analysis.Putting It Together: HRU. The HRU algorithm ombines the HR and HUalgorithms to interpret both the dereferene and union operators. HRU modi�esHR to iteratively apply the HU algorithm to its own output until it onvergesto a �xed point. Sine the HU algorithm is O(n3) and HR adds a fator ofO(n), HRU has a omplexity of O(n4). As with HR this worst-ase omplexityis not observed in pratie; however it is advisable to �rst apply HVN to theoriginal onstraints, then apply HRU to the resulting set of onstraints. HVNsigni�antly dereases the size of the o�ine onstraint graph, whih dereasesboth the time and memory onsumption of HRU.4 Loation EquivaleneLet V be the set of all program variables; for v 2 V : pts(v) � V is v's points-toset, and le(v) 2 N is the loation equivalene label of v, where N is the set ofnatural numbers. Variables x and y are loation equivalent i� 8z 2 V : x 2pts(z), y 2 pts(z). Our goal is to assign loation equivalene labels suh thatle(x) = le(y) implies that x and y are loation equivalent. Loation equivalentvariables an safely be ollapsed together in all points-to sets, providing twobene�ts: (1) the points-to sets onsume less memory; and (2) sine the points-tosets are smaller, points-to information is propagated more eÆiently aross theedges of the onstraint graph.Without any pointer information it is impossible to ompute all loationequivalenes. However, sine points-to sets are never split during the pointeranalysis, any variables that are loation equivalent at the beginning are guar-anteed to be loation equivalent at the end. We an therefore safely ompute a



subset of the equivalenes prior to the pointer analysis. We use the same o�ineonstraint graph as we use to �nd pointer equivalene, but we will be labelingadr nodes instead of diret nodes. The algorithm assigns eah adr node a labelbased on its outgoing edges suh that two adr nodes have the same label i�they have the same set of outgoing edges. In other words, adr nodes &a and &bare assigned the same label i�, in the onstraints, 8z 2 V : z � fag , z � fbg.In Figure 1, the adr nodes &a and &d would be assigned the same loationequivalene label.While loation and pointer equivalenes an be omputed independently, itis more preise to ompute loation equivalene after we have omputed pointerequivalene. We modify the riterion to require that adr nodes &a and &b areassigned the same label i� 8y; z 2 V; (y � fag ^ z � fbg) ) pe(y) = pe(z).In other words, we don't require that the two adr nodes have the same set ofoutgoing edges, but rather that the nodes inident to the adr nodes have thesame set of pointer equivalene labels.One the algorithm has assigned loation equivalene labels, it merges alladr nodes that have idential labels. These merged adr nodes are eah givena fresh name. Points-to set elements will ome from this new set of fresh namesrather than from the original names of the merged adr nodes, thereby savingspae, sine a single fresh name orresponds to multiple adr nodes. However, wemust make a simple hange to the subsequent pointer analysis to aommodatethis new naming sheme. When adding new edges from indiret onstraints, thepointer analysis must translate from the fresh names in the points-to sets tothe original names orresponding to the var nodes in the onstraint graph. Tofailitate this translation we reate a one-to-many mapping between the freshnames and the original adr nodes that were merged together. In Figure 1, sineadr nodes &a and &d are given the same loation equivalene label, they willbe merged together and assigned a fresh name suh as &l. Any points-to setsthat formerly would have ontained a and d will instead ontain l; when addingadditional edges from an indiret onstraint that referenes l, the pointer analysiswill translate l bak to a and d to orretly plae the edges in the online onstraintgraph.Complexity. LE is linear in the size of the onstraint graph. The algorithmsans through the onstraints, and for eah onstraint a � fbg it inserts pe(a)into adr node &b's set of pointer equivalene labels. This step is linear in thenumber of onstraints (i.e. graph edges). It then visits eah adr node, and ituses a hash table to map from that node's set of pointer equivalene labels to asingle loation equivalene label. This step is also linear.5 Evaluation5.1 MethodologyUsing a suite of six open-soure C programs, whih range in size from 169K to2.17M LOC, we ompare the analysis times and memory onsumption of OVS,



HVN, HRU, and HRU+LE (HRU oupled with LE). We then use three di�er-ent state-of-the-art inlusion-based pointer analyses|Peare et al. [10℄ (PKH),Heintze and Tardieu [7℄ (HT), and Hardekopf and Lin [6℄ (HL)|to omparethe optimizations' e�ets on the pointer analyses' analysis time and memoryonsumption. These pointer analyses are all �eld-insensitive and implementedin a ommon framework, re-using as muh ode as possible to provide a fairomparison. The soure ode is available from the authors upon request.The o�ine optimizations and the pointer analyses are written in C++ andhandle all aspets of the C language exept for varargs. We use sparse bitmapstaken from GCC 4.1.1 to represent the onstraint graph and points-to sets.The onstraint generator is separate from the onstraint solvers; we generateonstraints from the benhmarks using the CIL C front-end [9℄, ignoring anyassignments involving types too small to hold a pointer. External library allsare summarized using hand-rafted funtion stubs.The benhmarks for our experiments are desribed in Table 2. We run theexperiments on an Intel Core Duo 1.83 GHz proessor with 2 GB of memory,using the Ubuntu 6.10 Linux distribution. Though the proessor is dual-ore, theexeutables themselves are single-threaded. All exeutables are ompiled withGCC 4.1.1 and the '{O3' optimization ag. We repeat eah experiment threetimes and report the smallest time; all the experiments have very low varianein performane. Times inlude everything from reading the onstraint �le fromdisk to omputing the �nal solution.Table 2. Benhmarks: For eah benhmark we show the number of lines of ode (om-puted as the number of non-blank, non-omment lines in the soure �les), a desriptionof the benhmark, and the number of onstraints generated by the CIL front-end.Name Desription LOC ConstraintsEmas-21.4a text editor 169K 83,213Ghostsript-8.15 postsript viewer 242K 169,312Gimp-2.2.8 image manipulation 554K 411,783Insight-6.5 graphial debugger 603K 243,404Wine-0.9.21 windows emulator 1,338K 713,065Linux-2.4.26 linux kernel 2,172K 574,7885.2 Cost of OptimizationsTables 3 and 4 show the analysis time and memory onsumption, respetively, ofthe o�ine optimizations on the six benhmarks. OVS and HVN have roughly thesame times, with HVN using 1.17� more memory than OVS. On average, HRUand HRU+LE are 3.1� slower and 3.4� slower than OVS, respetively. BothHRU and HRU+LE have the same memory onsumption as HVN. As statedearlier, these algorithms are run on the output of HVN in order to improveanalysis time and onserve memory; their times are the sum of their running time



and the HVN running time, while their memory onsumption is the maximum oftheir memory usage and the HVN memory usage. In all ases, the HVN memoryusage is greater. Table 3. O�ine analysis times (se).Emas Ghostsript Gimp Insight Wine LinuxOVS 0.29 0.60 1.74 0.96 3.57 2.34HVN 0.29 0.61 1.66 0.95 3.39 2.36HRU 0.49 2.29 4.31 4.28 9.46 7.70HRU+LE 0.53 2.54 4.75 4.64 10.41 8.47Table 4. O�ine analysis memory (MB).Emas Ghostsript Gimp Insight Wine LinuxOVS 13.1 28.1 61.1 39.1 110.4 96.2HVN 14.8 32.5 71.5 44.7 134.8 114.8HRU 14.8 32.5 71.5 44.7 134.8 114.8HRU+LE 14.8 32.5 71.5 44.7 134.8 114.8Figure 4 shows the e�et of eah optimization on the number of onstraints foreah benhmark. On average OVS redues the number of onstraints by 63.4%,HVN by 69.4%, HRU by 77.4%, and HRU+LE by 79.9%. HRU+LE, our mostaggressive optimization, takes 3.4� longer than OVS, while it only redues thenumber of onstraints by an additional 16.5%. However, inlusion-based analysisis O(n3) time and O(n2) spae, so even a relatively small redution in the inputsize an have a signi�ant e�et, as we'll see in the next setion.5.3 Bene�t of OptimizationsTables 5{10 give the analysis times and memory onsumption for three pointeranalyses|PKH, HT, and HL|as run on the results of eah o�ine optimization;OOM indiates the analysis ran out of memory. The data is summarized inFigure 5, whih gives the average performane and memory improvement forthe three pointer analyses for eah o�ine algorithm as ompared to OVS. Theo�ine analysis times are added to the pointer analysis times to make the overallanalysis time omparison.Analysis Time. For all three pointer analyses, HVN only moderately improvesanalysis time over OVS, by 1.03{1.18�. HRU has a greater e�et despite itsmuh higher o�ine analysis times; it improves analysis time by 1.28{1.88�.HRU+LE has the greatest e�et; it improves analysis time by 1.28{2.68�. An
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Fig. 4. Perent of the original number of onstraints that is generated by eah opti-mization. Table 5. Online analysis times for the PKH algorithm (se).Emas Ghostsript Gimp Insight Wine LinuxOVS 1.99 19.15 99.22 121.53 1,980.04 1,202.78HVN 1.60 17.08 87.03 111.81 1,793.17 1,126.90HRU 0.74 13.31 38.54 57.94 1,072.18 598.01HRU+LE 0.74 9.50 21.03 33.72 731.49 410.23Table 6. Online analysis memory for the PKH algorithm (MB).Emas Ghostsript Gimp Insight Wine LinuxOVS 23.1 102.7 418.1 251.4 1,779.7 1,016.5HVN 17.7 83.9 269.5 194.8 1,448.5 840.8HRU 12.8 68.0 171.6 165.4 1,193.7 590.4HRU+LE 6.9 23.8 56.1 58.6 295.9 212.4Table 7. Online analysis times for the HT algorithm (se).Emas Ghostsript Gimp Insight Wine LinuxOVS 1.63 13.58 64.45 46.32 OOM 410.52HVN 1.84 12.84 59.68 42.70 OOM 393.00HRU 0.70 9.95 37.27 37.03 1,087.84 464.51HRU+LE 0.54 8.82 18.71 23.35 656.65 332.36



Table 8. Online analysis memory for the HT algorithm (MB).Emas Ghostsript Gimp Insight Wine LinuxOVS 22.5 97.2 359.7 266.9 OOM 1,006.8HVN 17.7 85.0 279.0 231.5 OOM 901.3HRU 10.8 70.3 205.3 156.7 1,533.0 700.7HRU+LE 6.4 34.9 86.0 69.4 820.9 372.2Table 9. Online analysis times for the HL algorithm (se).Emas Ghostsript Gimp Insight Wine LinuxOVS 1.07 9.15 17.55 20.45 534.81 103.37HVN 0.68 8.14 13.69 17.23 525.31 91.76HRU 0.32 7.25 10.04 12.70 457.49 75.21HRU+LE 0.51 6.67 8.39 13.71 345.56 79.99Table 10. Online analysis memory for the HL algorithm (MB).Emas Ghostsript Gimp Insight Wine LinuxOVS 21.0 93.9 415.4 239.7 1,746.3 987.8HVN 13.9 73.5 263.9 183.7 1,463.5 807.9HRU 9.2 63.3 170.7 121.9 1,185.3 566.6HRU+LE 4.5 22.2 33.4 27.6 333.1 162.6
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(b)Fig. 5. (a) Average performane improvement over OVS; (b) Average memory im-provement over OVS. For eah graph, and for eah o�ine optimization X 2 fHVN,HRU, HRU+LEg, we ompute OV Stime=memoryXtime=memory .



important fator in the analysis time of these algorithms is the number of timesthey propagate points-to information aross onstraint edges. PKH is the leasteÆient of the algorithms in this respet, propagating muh more informationthan the other two; hene it bene�ts more from the o�ine optimizations. HLpropagates the least amount of information and therefore bene�ts the least.Memory. For all three pointer analyses HVN only moderately improves memoryonsumption over OVS, by 1.2{1.35�. All the algorithms bene�t signi�antlyfromHRU, using 1.65{1.90� less memory than for OVS. HRU's greater redutionin onstraints makes for a smaller onstraint graph and fewer points-to sets.HRU+LE has an even greater e�et: HT uses 3.2� less memory, PKH uses 5�less memory, and HL uses almost 7� less memory. HRU+LE doesn't furtherredue the onstraint graph or the number of points-to sets, but on average ituts the average points-to set size in half.Room for Improvement. Despite aggressive o�ine optimization in the form ofHRU plus the e�orts of online yle detetion, there are still a signi�ant numberof pointer equivalenes that we do not detet in the �nal onstraint graph. Thenumber of atual pointer equivalene lasses is muh smaller than the numberof deteted equivalene lasses, by almost 4� on average. In other words, weould oneivably shrink the online onstraint graph by almost 4� if we oulddo a better job of �nding pointer equivalenes. This is an interesting area forfuture work. On the other hand, we do detet a signi�ant fration of the atualloation equivalenes|we detet 90% of the atual loation equivalenes in the�ve largest benhmarks, though for the smallest (Emas) we only detet 41%.Thus there is not muh room to improve on the LE optimization.Bitmaps vs. BDDs. The data struture used to represent points-to sets forthe pointer analysis an have a great e�et on the analysis time and mem-ory onsumption of the analysis. Hardekopf and Lin [6℄ ompare the use ofsparse bitmaps versus BDDs to represent points-to sets and �nd that on av-erage the BDD implementation is 2� slower but uses 5.5� less memory thanthe bitmap implementation. To make a similar omparison testing the e�etsof our optimizations, we implement two versions of eah pointer analysis: oneusing sparse bitmaps to represent points-to sets, the other using BDDs for thesame purpose. Unlike BDD-based pointer analyses [2, 16℄ whih store the en-tire points-to solution in a single BDD, we give eah variable its own BDD tostore its individual points-to set. For example, if v ! fw; xg and y ! fx; zg,the BDD-based analyses would have a single BDD that represents the set oftuples f(v; w); (v; x); (y; x); (y; z)g. Instead, we give v a BDD that representsthe set fw; xg and we give y a BDD that represents the set fw; zg. The twoBDD representations take equivalent memory, but our representation is a simplemodi�ation that requires minimal hanges to the existing ode.The results of our omparison are shown in Figure 6. We �nd that for HVNand HRU, the bitmap implementations on average are 1.4{1.5� faster than the
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(b)Fig. 6. (a) Average performane improvement over BDDs;(b) Average memory im-provement over BDDs. Let BDD be the BDD implementation and BIT be the bitmapimplementation; for eah graph we ompute BDDtime=memoryBITtime=memory .BDD implementations but use 3.5{4.4� more memory. However, for HRU+LEthe bitmap implementations are on average 1.3� faster and use 1.7� less mem-ory than the BDD implementations, beause the LE optimization signi�antlyshrinks the points-to sets of the variables.6 ConlusionIn this paper we have shown that it is possible to redue both the memory on-sumption and analysis time of inlusion-based pointer analysis without a�etingpreision. We have empirially shown that for three well-known inlusion-basedanalyses with highly tuned implementations, our o�ine optimizations improveaverage analysis time by 1.3{2.7� and redue average memory onsumption by3.2{6.9�. For the fastest known inlusion-based analysis [6℄, the optimizationsimprove analysis time by 1.3� and redue memory onsumption by 6.9�. Wehave also found the somewhat surprising result that with our optimizations asparse bitmap representation of points-to sets is both faster and requires lessmemory than a BDD representation.In addition, we have provided a roadmap for further investigations into theoptimization of inlusion-based analysis. Our optimization that exploits loationequivalene omes lose to the limit of what an be aomplished, but our otheroptimizations identify only a small fration of the pointer equivalenes. Thus,the exploration of new methods for �nding and exploiting pointer equivalenesshould be a fruitful area for future work.Aknowledgments. We thank Brandon Strei� and Luke Robison for their help inonduting experiments and Dan Berlin for his help with the GCC ompiler inter-nals. Kathryn MKinley, Ben Wiedermann, and Adam Brown provided valuableomments on earlier drafts. This work was supported by NSF grant ACI-0313263and a grant from the Intel Researh Counil.
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