
\paper"2000/12/4page iiii i ii

i i ii

List of Contributors
Emergy BergerDepartment of Computer SienesThe University of Texas at AustinSamuel Z. GuyerDepartment of Computer SienesThe University of Texas at Austin

Calvin LinDepartment of Computer SienesThe University of Texas at Austin

iii



\paper"2000/12/4page 1i i ii

i i ii

Chapter 1Customizing SoftwareLibraries for PerformanePortability
1.1 IntrodutionSoftware libraries are widely used, partiularly in sienti� omputing, beause theyprovide a onvenient method of enapsulating and reusing olletions of domain-spei� ode. Thus, for example, sienti� programmers an use linear algebralibraries [7, 8, 18℄ to leverage the expertise of others. The problem with librariesis that they are typially designed to be general so that they an be reused in asmany situations as possible. This generality represents a performane penalty, asthere is great bene�t to speializing a program for its spei� alling ontexts. Theperformane bene�t of speialization might seem unimportant sine most sienti�libraries are designed by experts and arefully oded to be as eÆient as possible,but Setion 1.2 will show that speialization an improve by several hundred perentthe performane of programs written with a high performane parallel dense linearalgebra library.In previous work, we have desribed the Broadway ompiler system, whihoptimizes the use of software libraries by exploiting library-spei� information thatis expressed in the form of an annotation language [11, 13℄. This paper desribeshow the Broadway system an be augmented to provide improved performaneportability by exploiting a simple form of dynami optimization that was introduedby Diniz and Rinard [6℄. We begin by reviewing the Broadway system and itsbene�ts. We then explain how performane portability an be diÆult to ahievefor ertain parallel library routines. We then briey desribe our proposed approah.Finally, we onlude by ontrasting our work with previous researh and providingonluding remarks.1.2 The Broadway CompilerFigure 1.1 shows our system arhiteture for performing library-level optimiza-tions [11℄. In this approah, annotations apture semanti information about li-brary routines. These annotations are provided by a library expert and plaed in1



\paper"2000/12/4page 2i i ii

i i ii

2 Chapter 1. Customizing Software Libraries for Performane Portabilitya separate �le from the soure ode. This information is read by our ompiler,dubbed the Broadway ompiler, whih performs soure-to-soure optimizations ofboth the library and appliation ode. The resulting integrated system of libraryand appliation ode is then ompiled and linked using onventional tools. Our ur-rent implementation of the Broadway ompiler takes ANSI C as input and produesANSI C as output.In addition to supporting the development of new libraries, this arhitetureis spei�ally designed to support existing libraries. In partiular, by separating theannotations from the library soure, our approah applies to existing libraries andexisting library appliations.
Integrated and optimized

source codeBroadway Compiler

AnnotationsHeader Files + Source Code + 
Library:

Application
source code

Figure 1.1. Arhiteture of the Broadway Compiler systemThe annotations desribe the library only, and not the appliation. Whileinformation about the appliation would ertainly be useful, this restrition makesthe system more usable, as appliations programmers do not need to learn theannotation language. In fat, the annotations an be ompletely hidden from thelibrary user, who only needs to ompile with the Broadway ompiler instead of astandard C ompiler.Moreover, there are several reasons why it is more bene�ial to desribe li-brary information rather than appliation information. First, as mentioned in theIntrodution, libraries are built to be general, but there is great bene�t to speializ-ing them for spei� ontexts. Appliations, on the other hand, are typially not asonerned with generality. Seond, libraries are mehanisms for reuse, so the ostof reating annotations for libraries an be amortized over many uses of the library.Third, libraries typially enapsulate a oherent set of domain-spei� abstrations,whih inreases the likelihood that a small set of annotations an desribe a usefulset of information. Finally, libraries typially embody a rih amount of domain-spei� knowledge, and these annotations enapsulate and exploit information thatlibrary writers already know and that is otherwise wasted.Philosophially, our arhiteture attempts to provide a lean separation ofonerns among the ompiler writer, the library writer, and the appliations pro-grammer. The ompiler enapsulates all ompiler analysis and optimization ma-hinery, but does not inlude any library-spei� information or library-spei�optimizations. Thus, the ompiler is built to be as general as possible and is onlyon�gured for spei� libraries through the annotation language. By ontrast, theannotations desribe library knowledge and domain expertise, but do not requiredeep ompiler expertise to reate. This separation of ompiler expertise and libraryexpertise is ritial, beause it is unreasonable to expet anyone to possess both



\paper"2000/12/4page 3i i ii

i i ii

1.2. The Broadway Compiler 3types of expertise. Finally, the annotations and ompiler together free the applia-tions programmer to fous on appliation design rather than on performing manuallibrary-level optimizations [12℄.

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000

%
 
i
m
p
r
o
v
e
m
e
n
t
 
o
v
e
r
 
b
a
s
e
 
v
e
r
s
i
o
n

Problem size

Triangular solve
Cholesky factorization

Lyuponov solver
Rank-K update

Figure 1.2. Annotation-based optimizations improve PLAPACK parallelprograms from 10% to 180% for large problems, and from 36% to 622% for smallproblems.Figure 1.2 shows the results of applying our tehniques manually to four pro-grams written with the PLAPACK parallel dense linear algebra library [18℄. Wesee that signi�ant performane improvements were obtained. For example, thelowest urve (rank-k update) indiates a performane improvement of 10% for largeproblem sizes and 180% for small problem sizes. The highest urve (triangular solvewith multiple right hand sides) shows a performane improvement of 36% for largeproblem sizes and 622% for small problem sizes. In these ases, small problem sizesbene�t more beause the speializations tend to remove overhead. This overhead,suh as ommuniation, is signi�ant beause it limits, for a �xed problem size,salability to large numbers of proessors. In summary, these results illustrate thebene�t of speializing library routines for spei� alling ontexts, even for librarieslike PLAPACK that have been arefully designed to provide high performane.1.2.1 Library-Level OptimizationsWe now desribe an example of the type of optimization that was used to produethe results shown in Figure 1.2. To understand the optimizations, we need to �rstunderstand that PLAPACK programs manipulate matries through objets knownas views, whih represent the indies of a submatrix. PLAPACK thus providesroutines for reating and manipulating views. During the ourse of a program'sexeution, these views an assume di�erent properties. In the most general ase,a view represents a matrix that is distributed aross multiple proessors. In someases a view resides wholly on a single proessor, in whih ase the view is said to



\paper"2000/12/4page 4i i ii

i i ii

4 Chapter 1. Customizing Software Libraries for Performane Portabilitybe loal, and in other ases the view represents the empty matrix, in whih asewe say the view is empty.These properties of views are signi�ant beause they an be used to improveperformane. Appliation programs typially invoke PLAPACK routines that workon any matrix view, as this greatly simpli�es the programming, but routines areavailable that operate on spei� types of views. For example, PLA Gemm() performsmatrix multipliation and makes no assumptions about the input matries' views,but PLA Loal Gemm() works only if the views are loal. PLA Loal Gemm() is themore eÆient of the two routines, beause it does not inlude any of the overheadsrequired to deal with parallel objets. When a view is known to be empty evengreater savings an be obtained, as many PLAPACK alls on empty views simplybeome no-ops.One optimization, then, is to determine at eah all site whether a view hasone of the speial properties, and if so to substitute the invoation of the gen-eral PLAPACK routine for an invoation of the appropriate speialized routine.This optimization requires a dataow analysis that traks the properties of viewsthroughout the exeution of the program. Our annotation language supports thistype of library-spei� analysis by allowing a library expert to de�ne properties onviews as follows:property Distribution : map_of< objet, {general, loal, empty} >;This annotation delares a property of matries (a ow value in dataow analysisterms [16℄) that has three values: general, loal, and empty. Other annotationsthen desribe transfer funtions [16℄ that desribe how the various PLAPACK rou-tines a�et the properties of views. That is, the transfer funtions indiate whihroutines reate views, whih ones shrink them, and so forth. Colletively, these an-notations on�gure the Broadway ompiler to perform a dataow analysis on views.One the analysis is performed, a third type of annotation indiates how the libraryinvoations an be speialized by through pattern mathing:pattern PLA_Gemm(...){ when ((Distribution[viewA℄ == Loal) &&(Distribution[viewB℄ == Loal) &&(Distribution[viewC℄ == Loal))replae { PLA_Loal_Gemm(...)...}In these examples we elide details due to spae limitations, but the full annotationlanguage is desribed elsewhere [13℄.The key points from this example are that library-spei� analyses are neededto exploit library-spei� abstrations suh as views, and that our annotation lan-guage provides a mehanism for desribing suh analyses and abstrations.



\paper"2000/12/4page 5i i ii

i i ii

1.3. Optimizing for Performane Portability 51.3 Optimizing for Performane PortabilityThis setion desribes how the Broadway system an be extended to provide im-proved performane portability. We �rst argue that many optimizations on parallelprograms require information that is diÆult to obtain statially. We then explainthe notion of dynami feedbak [6℄ and show how we an support this notion withannotations.1.3.1 Classes of OptimizationsBroadway optimizations an be lassi�ed into three ategories: (1) optimizationsthat the ompiler assumes will always improve performane; (2) otimizations thatapply to partiular target mahines but not to others; and (3) optimizations whosebene�t depends on interations between the appliation and the target mahine,possibly requiring run-time information. Broadway's annotation language urrentlysupports the �rst two types of annotations. In partiular, lass (2) mahine-spei�optimization an be turned on or o� by manually inluding or exluding the relevantannotations for a partiular target mahine. New mehanisms are needed, however,to support lass (3) optimizations and to provide an added degree of performaneportability.Many optimizations fall into lass (3), inluding two types of optimizationsthat are fundamental to parallelism: optimizations that deal with granularity ofparallelism, and optimizations that deal with the degree of parallelism.Most parallel programs must be tuned for their granularity of parallelism. Forexample, the granularity of PLAPACK programs is guided by the onept of a bloksize. Larger blok sizes provide larger units of ommuniation, whih redues theoverhead of ommuniation. Smaller blok sizes, however, tend to produe betterload balane. Thus, there is a mahine-spei� tradeo�. Moreover, the hoie ofblok size an interat with the algorithm, so the issue of granularity is sensitive tothe ommuniation harateristis of the target mahine, as well as to appliation-spei� and algorithmi harateristis.The degree of parallelism is also mahine-spei�. For any given omputation,there is a tradeo� between omputing it sequentially or omputing it in parallel.The parallel approah has the bene�t of splitting the task aross multiple proessors,whih will ideally derease the omputation time. However, the parallel approahtypially requires ommuniation that is not required for a sequential omputation,so parallelism is not always a win. With PLAPACK, an appliation programmeran often hoose to distribute a omputation aross all proessors at the expenseof added ommuniation, or to perform the omputation on a subset of proessorsat the ost of inreased load imbalane. This tradeo� is tightly oupled to theprogram's granularity. For example, it is probably better to hoose full parallelismwhen there is a large amount of work to do, while it is better to ompute on thesubset of proessors if the amount of work is small ompared to the overhead ofre-distributing the work. This tradeo� an be omplex. Worse, this tradeo� anhange dynamially as the amount of work to perform often varies as the algorithmprogresses.



\paper"2000/12/4page 6i i ii

i i ii

6 Chapter 1. Customizing Software Libraries for Performane Portability1.3.2 Dynami FeedbakThe idea of dynami feedbak is simple. When optimization deisions annot bemade statially due to lak of information, the ompiler reates multiple versions ofthe ode and uses dynami sampling to determine whih is best. The best ode isthen exeuted for some duration, known as the prodution phase, whih is typiallymuh longer than the sampling period. To support situations where the relativeperformane of the di�erent versions an vary dynamially, this yle is repeateduntil the program ompletes.Minor modi�ations to our annotation language an be made to support dy-nami feedbak. In partiular, the selet keyword an be introdued to instrutthe ompiler that multiple optimizations are possible for di�erent situations. In thefollowing example, selet is used to indiate that there are three ways to speializea Broadast operation in MPI [10℄.pattern {MPI_Bast(...);}{ when (Distribution[A℄ == ColumnPanel)selet { { /* Buket implementation */ ...}{ /* MST implementation */ ...}{ /* Satter-gather */ ...}}} Annotations an also be used to guide poliy deisions, suh as how longthe sample periods should be and how long the prodution period should be. Forexample, the following annotation fragment indiates that samples should be takenevery 20 times that the routine is alled.selet every 20 { ...}Annotations an be used to ustomize the feedbak proess in more sophis-tiated ways by indiating how the adaptivity depends upon various aspets ofthe library implementation. For example, the following annotation states that theadaptivity depends on the value of the program variable bloksize, whih tellsthe ompiler that adaptivity is not needed in areas where the value of bloksizedoes not hange.selet on bloksize { ...}The Broadway ompiler system greatly simpli�es the prodution of dynami-ally adaptive library routines. The library implementation need not hange. In-stead, the annotations that desribe them hange, and these hanges only expressa few key bits of information. The remaining details are hidden in the Broadway



\paper"2000/12/4page 7i i ii

i i ii

1.4. Related Work 7ompiler, whih reates and optimizes the various ode versions, and whih insertsode into the appliation to sample the di�erent versions and to selet the mosteÆient version.1.4 Related WorkOur researh extends to libraries a onsiderable body of previous work in dynamioptimizations [6℄, partial evaluation [2, 4℄, abstrat interpretation [5, 14℄, and pat-tern mathing [17℄. This setion relates our work to other e�orts that provideon�gurable ompilation tehnology.The Genesis optimizer generator produes a ompiler optimization pass froma delarative spei�ation of the optimization [20℄. Like Broadway, the spei�ationuses patterns, onditions and ations. However, Genesis targets lassial loop opti-mizations for parallelization, so it provides no way to de�ne new program analyses.Conversely, the PAG system is a ompletely on�gurable program analyzer [15℄ thatuses an ML-like language to speify the ow value latties and transfer funtions.While powerful, the spei�ation is low-level and requires an intimate knowledge ofthe underlying mathematis. It does not inlude support for atual optimizations.Some ompilers provide speial support for spei� libraries. For example,semanti expansion has been used to optimize omplex number and array libraries,essentially extending the language to inlude these libraries [1℄. Similarly, some Compilers reognize alls to mallo() when performing pointer analysis. Our goalis to provide on�gurable ompiler support that an apply to many libraries, notjust a favored few.Meta-programming systems suh as meta-objet protools [3℄, programmablesyntax maros [19℄, and the Magik ompiler [9℄, an be used to reate ustomizedlibrary implementations, as well as to extend language semantis and syntax. Whilethese tehniques an be quite powerful, they require users to manipulate AST's andother ompiler internals diretly and with little dataow information.1.5 ConlusionsSoftware libraries are designed for semanti reuse and semanti portability, but notfor performane portability. This paper has explained how the Broadway ompilerframework an be extended to use dynami optimizations to provide improved per-formane portability. In partiular, a simple mehanism of dynami feedbak [6℄allows multiple versions of optimized ode to be dynamially seleted. We have ex-plained why this approah is an ideal extension of annotation-based optimization.Furthermore, the neessary extensions to our annotation language are minimal. Weare urrently onduting experiments to quantify the bene�ts of our proposed idea,and we are in the proess of ompleting our ompiler implementation so that wean obtain fully automated results.Aknowledgments. This work was supported in part by NSF CAREER GrantACI-9984660, DARPA Contrat #F30602-97-1-0150 from the US Air Fore Re-



\paper"2000/12/4page 8i i ii

i i ii

8 Chapter 1. Customizing Software Libraries for Performane Portabilitysearh Labs, and an Intel Fellowship



\paper"2000/12/4page 9i i ii

i i ii

Bibliography[1℄ P. Artigas, M. Gupta, S. Midki�, and J. Moreira. High performane numerialomputing in Java: language and ompiler issues. In Workshop on Languagesand Compilers for Parallel Computing, 1999.[2℄ A. Berlin and D. Weise. Compiling sienti� programs using partial evaluation.IEEE Computer, 23(12):23{37, Deember 1990.[3℄ S. Chiba. A metaobjet protool for C++. In Proeedings of the Confereneon Objet Oriented Programming Systems, Languages and Appliations, pages285{299, Otober 1995.[4℄ C. Consel and O. Danvy. Tutorial notes on partial evaluation. In Proeedingsof the 1993 ACM Symposium on Priniples of Programming Languages, pages493{501, Charleston, South Carolina, 1993.[5℄ P. Cousot and R. Cousot. Abstrat interpretation frameworks. Journal of Logiand Computation, 2(4):511{547, August 1992.[6℄ P. Diniz and M. Rinard. Dynami feedbak: An e�etive tehnique for adaptiveomputing. In SIGPLAN Conferene on Programming Language Design andImplementation, pages 71{84, 1997.[7℄ J. Dongarra, I. Du�, J. DuCroz, and S. Hammarling. A set of level 3 basilinear algebra subprograms. ACM Transations on Mathematial Software,16(1):1{28, 1990.[8℄ J. J. Dongarra and D. W. Walker. Software libraries for linear algebra om-putations on high performane omputers. SIAM Review, 37(2):151{180, June1995.[9℄ D. R. Engler. Inorporating appliation semantis and ontrol into ompila-tion. In Proeedings of the Conferene on Domain-Spei� Languages (DSL-97), pages 103{118, Otober 1997.[10℄ M. P. I. Forum. MPI: A message passing interfae standard. InternationalJournal of Superomputing Appliations, 8(3/4), 1994.9



\paper"2000/12/4page 10i i ii

i i ii

10 Bibliography[11℄ S. Z. Guyer and C. Lin. An annotation language for optimizing software li-braries. In Seond Conferene on Domain Spei� Languages, pages 39{52,Otober 1999.[12℄ S. Z. Guyer and C. Lin. Broadway: A software arhiteture for sienti�omputing. In IFIPS Working Group 2.5: Working Conferene on SoftwareArhitetures for Sienti� Computing Appliations, Otober 2000.[13℄ S. Z. Guyer and C. Lin. Optimizing the use of high performane softwarelibraries. In Languages and Compilers for Parallel Computing, August 2000.[14℄ N. D. Jones and F. Nielson. Abstrat interpretation: a semantis-based toolfor program analysis. In Handbook of Logi in Computer Siene. Oxford Uni-versity Press, 1994. 527{629.[15℄ F. Martin. PAG { an eÆient program analyzer generator. International Jour-nal on Software Tools for Tehnology Transfer, 2(1):46{67, 1998.[16℄ S. S. Muhnik. Advaned Compiler Design and Implementation. MorganKau�man, San Franio, CA, 1997.[17℄ S. Paul and A. Prakash. A framework for soure ode searh using programpatterns. IEEE Transations on Software Engineering, 20(6):463{475, 1994.[18℄ R. van de Geijn. Using PLAPACK { Parallel Linear Algebra Pakage. TheMIT Press, 1997.[19℄ D. Weise and R. Crew. Programmable syntax maros. In Proeedings of theConferene on Programming Language Design and Implementation, pages 156{165, June 1993.[20℄ D. Whit�eld and M. L. So�a. Automati generation of global optimizers. ACMSIGPLAN Noties, 26(6):120{129, June 1991.


