CHAPTER 81

Portable Parallel Programming: Cross Machine
Comparisons for SIMPLE*

Calvin Lint
Lawrence Snydert

Abstract. Portability is essential if parallel programs are to amortize their costs over a long lifetime.
But because parallel machines are so diverse, it is difficult to create parallel programs which are both portable
and efficient. Recent advances in parallel programming abstractions promise a solution.

We present the first supporting evidence using Livermore’s SIMPLE computation. Using the Phase
Abstractions, a single program was written. This was then hand translated (compilers remain unavailable)
for the Sequent Symmetry, the BBN Butterfly, the Intel iPSC/2, the NCUBE/7, and a transputer based
nonshared memory machine.

Our results show similar speedups for the various machines, indicating that the abstractions properly
structure the program for effective compilation.

1. Introduction. Because parallel machines are so diverse, it is difficult to create
parallel programs which are both portable and efficient: A program written to exploit the
capabilities of one machine may perform poorly on another machine. Portahility is im-
portant because while hardware costs continue to decrease, the expense of writing parallel
programs remains high. If such software can be made to execute across multiple machines
with minimal effort, the high cost of software can be amortized over a long lifetime. Porta-
bility can further reduce software costs by encouraging sharing.

The Phase Abstractions [6, 7, 16] present a nonshared memory model of programming
which aims to support portable, scalable code for all classes of MIMD multiprocessors. In
this paper we compare the performance of a single program — written using Phase Ab-
stractions — on several different machines. The program is a version of the SIMPLE fluid
dynamics benchmark produced by Lawrence Livermore Labs [3], and the machines include
the Intel iPSC/2, the NCUBE/7, the BBN Butterfly, and the Sequent Symmetry. Our
results show that portability has been achieved for this program.

The next two sections give background concerning the SIMPLE program and the Phase
Abstractions. Section 4 discusses issues of methodology and is followed by a description of
our experimental setup. After presenting results in section 6, we evaluate the role of the
Phase Abstractions in achieving portability, then give some concluding remarks.

2. The SIMPLE computation. The SIMPLE program represents a typical compu-
tational fluid dynamics application. We use the Gannon and Panetta version of SIMPLE (4]
as revised by Gates [5] and Lee [10]. Logically, the state of the computation is represented

* This research was supported in part by Office of Naval Research Contract N00014-89-]-1368.
{Department of Computer Science and Engineering, FR-35, University of Washington, Seattle, WA 98195.

564

i

by a
coung
are a

of a
a prc
oper:
each
Figuw
edges

struc
follov
that

tively
Beca
as an

of th
progr:
a con
logic
phase
in Fig

partit

1g lifetime,
:h portable

the Phase
1available)
iter based

5 properly

0 create
Jloit the
y is im-
parallel
1achines

Porta-

unming
sors. In
se Ab-
E fluid
include
. Our

Phase
tion of
of the

ympu-
LE [4]
ented

PERFORMANCE EVALUATION AND SOFTWARE TOOLS 565

by arrays containing real values for physical quantities such as pressure and density. The
comnputation is divided into 5 phases — Delta, Hydro, Heat, Energy1, and Energy2 - which
are applied iteratively. The overall logic is illustrated in Figure 1.

Each phase is logically applied to the entire state of the computation and is composed
of a set of processes operating on separate rectangular subregions of the data arrays, ie.

&

a process “owns” the corresponding elements of each array. A process performs the local

Figure 2 shows the patterns for the phases, where the squares Tepresent processes and the
edges indicate interprocess communication.

data := Load();
while (error > §)

Delta(data);
Hydro(data);
Heat(data);
Energy1(data);

error := Energy2(data);

Figure 1: Z Level for SIMPLE

3. Background. Phase Abstractions were introduced [6, 7] to provide a means of
structuring a parallel program to simplify scalability and portability. The reasoning is as
follows: If a program has the “right form” the compiler can easily control those features
that affect performance on different machines. There are two sets of abstractions collec-
tively referred to as Phase Abstractions [16]: the XYZ Programming Levels and Ensembles,
Because the ahave description of SIMPLE implicitly uses Phase Abstractions, it can serve
as an example.

Phase Abstractions recognize that the instructions of a parallel program serve in one
of three roles: There are processes (X level) that are the building blocks of the paralle]
program, there are phases (Y level) that are formed by the composition of processes into

phases themselves are composed of processes having the communication structures shown
in Figure 2.

Delta and Energy2 Phases Hydro and Energy1 Phases Heat Phase

Figure 2: Communication Graphs for SIMPLE

Ensembles are used to define phases. An ensemble is a set with a partitioning; the
partitions are called sections. Three types of ensembles are needed to define a phase: data

566 LiN AND SNYDER

Po2 P03 P04 POS5 PO0 PO1| |P02 PO3| |P0O4 P05

P11 P12 P13 P14 P15 P10 _Pi1] |P12__P13] |P14_ P15

P20 P21 P22 P23 P24 P25 P20 P21| |P22 P23

P31 P32 P32 P33

P40 P41 P42 P43 P44 P45 P40 Pat1| [Pa2 P43

P51

P52

P53

P52 P53

Data Structure Data Ensemble

Figure 3: Data Ensemble for Pressure Array on 9 Processors

ensemble, code ensemble and port ensemble. A data ensemble is a data structure with a
partitioning. For example, Figure 3 illustrates the data ensemble for the 2D Pressure array.
Notice that the rectangular blocking of the data mentioned in the SIMPLE description is
reflected in the partitioning. A code ensemble is a partitioning of a set of process instances,
where each process is defined by an X level program written in some sequential language
such as C or FORTRAN. A port ensemble is a set of port name pairs with a partitioning. In
the Phase Abstraction model, messages are passed through named ports, so a port ensemble
defines a phase’s communication structure. A phase is constructed by composing data, code,
and port ensembles with the same partitioning (See Figure 4). The semantics are that each
section represents logical concurrency: A process assigned to a given section operates on
the data in the corresponding section of the data ensembles, and communicates through
the ports of the corresponding section of the port ensemble. Each section can be assigned
to a processor which executes the process, stores the data of the section locally, and refers
to its neighboring processors via the port names.

it o it oo 2 2 ‘
: N | Poo PO N | P02 PO3 |,
' | W E P10 P11 w E| P12 P13 .
: S rho00 rhoO1 S rho02 rho03 1
i rhol0 rholl rhol2 rhol3 .
A Heat () Heat () : "
! Heat Phase
1 1
]
1
: N | P20 P2 N | P2 P2 __:
: W E 1313:020 i3 1 W E P32 P33 : =
: S rho rho21 S rho22 rho23 J
: rho30 rho31 tho32 rho33 .
| Heat () Heat () :
T i . e
Port Names Code

Figure 4: Data, Code, and Port Ensemble combine to form a Phase.

After presenting the experimental results, the role of the Phase Abstractions in porta-
bility will be discussed.

i

QUIESAR

* ‘
S R ,‘iﬂ"n,g = W

b

.

ray.
n is
ces,
age

In
ible
de
ach

on

1ed
‘ers

1S€

PERFORMANCE EVALUATION AND SOFTWARE TOOLS 967

4. Methodology. To see whether portability is achieved, we observe the performance
of a single program across a number of different machines. Where possible, we compare
the results of the portable program with those published by others. We use speedup curves
to compare performance because they help remove some machine differences such as clock
speed and compiler quality.

Since no Phase Abstraction compilers yet exist,! we hand translated our single program
to run on the four multiprocessors and one simulator. Only rudimentary source level changes
were necessary, most involving the low level message passing interface. Our program used C
to implement each of the X, Y and Z levels. All of the nonshared memory machines provide
message passing primitives, while for the shared memory machines, Poker-style message
passing [15] was simulated through shared memory.

5. Hardware Setting. The first of our machines is a Sequent Symmetry Model A,
which has 20 Intel 80386 processors connected by a shared bus to a 32 MB memory module.
Each processor has a 64K cache (for both data and instructions) and an 80387 floating point
accelerator [12].

A second machine is a 24 node BBN Butterfly GP1000. In addition to a Motorola
68020 processor, each node has 4 MB of local memory and a processor node controller
which interacts with an omega network to make remote references when needed. Together,
the 24 memory modules, the process node controllers, and the network form a single shared
memory which all processors may access. Local memory access is about 12 times faster
than remote access [1].

We also used two hypercubes. On the 32 node Intel iPSC/2 each node contains an
80386 processor, an iPSC SX floating point accelerator, and 8 MB of memory. All inter-
processor communication is through message passing [9]. On the 64 node NCUBE/7 each
node has a custom main processor and 512 KB of memory. Like the iPSC/2, the NCUBE/7
is a nonshared memory machine [13].

Finally, we have a detailed Transputer-based nonshared memory simulator. Using de-
tailed information about arithmetic, logical and communication operators, this simulator
executes a Poker C program and produces time estimates for the program execution.

6. Results. Our results (see Figure 5) show similar shaped speedup curves? for all
machines and support the claim that our program is portable. Figure 5 also shows the
Hiromoto et al. results for the Denelcor HEP [8]. We include these results to show that
our program is competitive with machine-specific code, but because of the many differences
between the two experiments (different architectures, different problem sizes, and perhaps
even different problem specifications) we caution the reader against drawing stronger con-
clusions.

Figure 6 compares our results with those of Pingali and Rogers [14]. Although both
experiments were run on iPSC/2’s, there may still be machine differences — such as different
floating point coprocessors and different memory sizes — which can influence speedup. On
the other hand, our problem sizes are identical, as are most, if not all, of the machine
characteristics. We note that Pingali and Rogers wrote their program based on an Id
program.

! A Phase Abstraction compiler is under construction at the University of Washington.

? Speedup was computed based on a sequential version of SIMPLE. The NCUBE nodes have so little
memory that in order to keep the problem size constant for all machines we approximated the sequential
execution time on the NCUBE by solving a smaller problem size and then extrapolating for the desired
problem size. This gives a conservative estimate of speedup since it underestimates the sequential execution
time.

568 LIN AND SNYDER

O = = - -0 1680 points on the Symmetry

¢=~-=- 1680 points on the NCUBE/7
...... -4 1680 points on the Butterfly

¢-—--—- 1680 points on the Intel iPSC/2

O----=1a 1680 points on a Transputer (s EEETT -0 4096 points Pingali&Rogers B
B———& 4096 points on the Denelcor HEP @ - - - -0 4096 points Lin&Snyder i
16 22 -
14 2 HEwN ¢
12 5 24
L4
rd
10 =" -~ 20 SR
= 7 i) :’_ = £
2 s - =4 < 16 F,.nr_r
2 AR 0 & 8 Lo~
“ g 2t w12 o
i , L
4 i 8 ,?" -
2 4 <
. N |
0 2 4 6 8 10 12 14 16 0 4 8 12 16 20 24 28 132
Number of Processors Number of Processors
Figure 5: SIMPLE on Various Machines Figure 6: SIMPLE on the iPSC/2

7. The Role of the Phase Abstractions. With the experience of only one appli-
cation running on five machines, it is premature to generalize the claim that Phase Ab-
stractions support portability. Nevertheless, some advantages of the Phase Abstractions
are clear.

It is obvious that the partitioning of the data ensembles provides critical information
nccded 1oi adocating SIMPLE's arrays to the memory of nonshared memory machines such
as the iPSC/2 and NCUBE/7. Since the data of a section will be local to the process
instance of that section, it can be stored in the memory of one processor, minimizing the
need for expensive message passing.

What is perhaps less obvious is the value of this partitioning information in the shared
memory case. Forexample, the BBN Butterfly transparently provides both local and remote
memory access to form a single global address space. Though the data ensembles could be
referenced through remote accesses, the section structure — a process operating on local
data — provides an alternative which exploits locality. Since local access is much faster than
remote access, there is a performance advantage in using local data references. The result is
that the program based on Phase Abstractions runs well on the Butterfly. Though we have
N0 measurements to prove it, this same benefit of locality is almost certainly improving the
use of the cache for the Sequent Symmetry [11].

Another property of the Phase Abstractions is the explicit availability of communication
patterns. This information can aid process allocation for distributed memory machines. For
machines like the NCUBE/7 where communication time depends on the number of “hops”
a message must travel, there are performance advantages to minimizing the number of hops
per message by finding good embeddings of the port ensemble graph in the hypercube. (The
benefits of knowing the communication graph are more extensive than illustrated in thfﬁe
few experiments [2] and will likely become more significant as the “mesh” machines, with
their more limited communication capabilities, become dmilable.)

&Rogers
lyder

°5C/2

e appli-
ase Ab-
‘actions

mation
es such
Drocess
ng the

shared
‘emote
uld be
t local
r than
sult is
2 have
1g the

:ation
i. For
10ps”
hops
(The
shese
with

S

B

PERFORMANCE EVALUATION AND SOFTWARE TOOLS 569

8. Conclusions,. Using recently developed program abstractions we have demonstrated
the portability of a single program across a variety of different machines. This is the first

sults are preliminary, we believe the data, supports the following assertion: New application
programs should be developed using these abstractions if portability is desired,

Acknowledgments. Tt is a pleasure to thank Hans Mandt, Stu Stern, and the Advanced
Systems Laboratory of Boeing Computing Services for their help in providing access to a
Butterfly multiprocessor; Walter Rudd, Michael Young, Michael Quinn and others at the
Oregon Advanced Computing Institute for providing access to their iPSC/2 and NCUBE/7;
and Tom Holman for producing the detailed Transputer simulator. We wish to thank Kevin
Gates for creating the first Poker C version of SIMPLE, and most importantly, we thank
Jinling Lee for rewriting SIMPLE according to the Phase Abstraction model.

REFERENCES

[1] G. Alverson, Abstractions for Effectively Portable Shared Memory Parallel Programs, Ph.D. Thesis,
University of Washington (1990).
[2] G. Alverson, W, Griswold, D. Notkin,
shared Memory Parallel Computin
November 1990.

[3] W. Crowley, C. P. Hendrickson and T. I. Rudy,
Lawrence Livermore Laboratory (1978).

[4] D. Gannon and 7J. Panetta, Restructuring SIMPLE for the CHip Architecture,
(1986) 3:305-326.

[5] K. Gates, Simple, An Ezercise in Programming Poker, Technical Report 88-2, Dept. of Applied Mathe-

matics, University of Washington (1989).

[6] W. Griswold, G. Harrison, D. Notkin, and L. Snyder
of Reduction Algorithms, Proceedings of the Internation
Charles, Illinois, (1990) pp. II 286-287.

[w. Griswold, G. Harrison, D. Notkin, and L. Snyder, Scalable
Proceedings of the Fifth Distributed Memory Computing C
(1990).

(8] R. E. Hiromoto, 0. M. Lub
(1984) 1:197-206.

[9] Intel Corporation, iPSC/2 User’s Guide, October, 1989.

[10] J. Lee, Eztending the SIMPLE Program in Poker Technical Report 89-
and Engineering, University of Washington (1989).

[11] C. Lin and L. Snyder, A Comparison of Programming Models for Shared Me
Proceedings of the International Conference on Parallel Processing,
IT 163-170.

[12] T. Lovett and S. Thakkar. The Symmetry Multiprocessor Sy.
Conference on Paralle] Processing, (1988) pp. 303-310.

[13] NCUBE Corporation. NCUBE Product Report, Beaverton OR, 1986,

[14] K. Pingali and A. Rogers, Compiler Parallelization of SIMPLE for a Distributed Memory Machine,

Technical Report 90-1084, Cornell University (1990),

[15] L. Snyder, Parallel Programmin

27-36.
[16] L. Snyder, Applications of the “Phase Abstractions”
to appear in Proceedings of the ICASE Workshop

and L. Snyder, 4 Flezible Communication Abstraction for Non-
, Proceedings of Supercomputing '90, New York, New York,

The Simple Code, Technical Report UCD-17715,

Parallel Computing,

Abstractions for Parallel Programming,
onference, Charleston, South Carolina,

eck ang J. hioore, Ezperiences with the Denelcor HEP, Paralle] Computing,

11-07, Dept. of Computer Science

mory Mm’tiprocesxora,
St. Charles, Illinois, (1990) pp.

stem, Proceedings of the International

g and the Poker Programming Environment, Computer, (July 1984) pp.

for Portable and Scalable Parallel Programming,
on Programming Distributed Memory Machines.

