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CAREFUL MEMORY SCHEDULING CAN INCREASE MEMORY BANDWIDTH AND

OVERALL SYSTEM PERFORMANCE. WE PRESENT A NEW MEMORY SCHEDULER

THAT MAKES DECISIONS BASED ON THE HISTORY OF RECENTLY SCHEDULED

OPERATIONS, PROVIDING TWO ADVANTAGES: IT CAN BETTER REASON ABOUT

THE DELAYS ASSOCIATED WITH COMPLEX DRAM STRUCTURE, AND IT CAN

ADAPT TO DIFFERENT OBSERVED WORKLOAD.

eeeeee The gap between processor and
memory speeds has led to aggressive use of
techniques such as prefetching, speculation,
and multithreading, which consume band-
width to hide or reduce memory latency.
Architectural trends toward multicore chips
and application trends toward multimedia
workloads further increase the demands on
memory systems, which make memory band-
width an increasingly important resource.

To increase bandwidth, modern DRAMs
have hierarchical structures that allow multi-
ple memory commands to concurrently access
different substructures. However, if two com-
mands are scheduled for the same substructure,
the second command might need to stall for a
certain number of cycles. Rixner et al." have
shown that simple schemes for reordering
memory commands can avoid such hardware
conflicts and significantly improve memory
bandwidth. However, modern DRAMs with
5D structure and many different types of inter-
nal latencies make more sophisticated memo-
ry scheduling schemes necessary.
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To complicate matters, as DRAMs have
become more complex, so have their accom-
panying memory controllers, which use inter-
nal buffering and parallelism to increase
bandwidth. For example, Figure 1 shows the
structure of the IBM Power5’s memory con-
troller. Memory commands from the L2 and
L3 cache are placed in the two reorder queues.
The memory arbiter moves commands from
these queues to the central arbiter queue
(CAQ), from which they go to memory in
first-in, first-out order. If the memory arbiter
is not careful, bottlenecks in the various
queues can limit bandwidth. For example, if
the application requests commands in a ratio
of two reads for every write, and if the arbiter
selects commands in the ratio of one read for
one write, the read queue will quickly become
full, preventing the memory controller from
accepting any more reads. Thus, a second goal
of amemory scheduler is to avoid bottlenecks
within the memory controller itself.

This article describes a new memory sched-
uling approach that makes decisions based on
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Figure 1. Power5 memory controller.

the history of recently scheduled operations.
When compared with an in-order scheduler,
our solution improves instruction per cycle
(IPC) on the NASA Advanced Supercomputing
(NAS) benchmarks by a geometric mean of
10.9 percent, and it improves IPC on the
Stream benchmarks by more than 63 percent.
Compared to one of Rixner et al.’s solutions?,
our approach sees improvements of 5.1 percent
for the NAS benchmarks and more than 18 per-
cent for the Stream benchmarks. Our solution
also has minimal hardware cost. We observe that
a history length of two is effective for the Power5
system, which increases the chip’s transistor
count by approximately 0.04 percent.

Related work

Most previous work on memory schedul-
ing comes from work on streaming proces-
sors. Such systems do not exhibit the same
complexity as today’s memory hierarchies, and
none of the previous work uses a history-based
approach to scheduling.

Rixner et al.! explore several simple policies
for reordering accesses on the Imagine stream
processor.” These policies reorder memory
operations by considering the characteristics
of modern DRAM systems. For example, one
policy gives row accesses priority over column
accesses, and another gives column accesses
priority over row accesses. None of these sim-
ple policies prove best in all situations. Fur-
thermore, these policies do not easily extend
to more complex memory systems with many
different types of hardware constraints.

Moyer avoids bank conflicts by using com-
piler transformations to change the order of the
memory requests that the processor generates.?

DRAM

Moyer’s technique applies specifically to stream-
oriented workloads in cacheless systems. McKee
etal. use a runtime approach to order the access-
es to streams in a stream memory controller.*
This approach uses a simple ordering mecha-
nism: The memory controller considers each
stream buffer in round-robin fashion, streaming
as much data as possible to the current buffer
before going to the next buffer. This approach
can reduce conflicts among streams, but it does
not reorder references within a single stream.

Valero et al. reduce bank conflicts on vec-
tor processors by reordering memory com-
mands so that memory banks are accessed
strictly in round robin order.® The Impulse
memory system by Carter et al. improves
memory system performance by dynamical-
ly remapping physical addresses.” This
approach requires modifications to the appli-
cations and operating system.

A modem architecture: The IBM Powerb

The Power5%? is IBM’s successor to the
Power4.!% The Power5 has two processors per
chip, where each processor has split L1 data and
instruction caches. Each chip has a unified L2
cache that the two processors share, along with
an optional L3 cache. The Power5 has hard-
ware data prefetching units that prefetch from
memory to L2, and from L2 to L1.

Each Power5 chip contains a single memory
controller—shown schematically in Figure 1—
that the two processors share. Each reorder
queue can hold eight memory commands,
where each memory reference is an entire L2
cache line or a portion of an L3 cache line. The
CAQ can hold four commands.

The Power5 does not allow dependent mem-
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ory operations to enter the memory controller
at the same time, so the arbiter can arbitrarily
reorder memory operations. Furthermore, the
Power5 gives priority to demand misses over
prefetches, so from the processor’s point of
view, all commands in the reorder queues are
equally important. Both of these features great-
ly simplify the task of the memory scheduler.

Powerb memory system

The Power5 systems that we consider use
DDR2-266 (double data rate 2, 266 MHz)
SDRAM chips, which have a 5D structure.
Two ports connect the memory controller to
the DRAM, which has four ranks, where each
rank is an organizational unit consisting of four
banks. Each bank, in turn, is organized as a set
of rows and columns. This structure imposes
many different constraints. For example, port,
rank, and bank conflicts each incur their own
delay, and the costs of these delays depend on
whether the operations are reads or writes. In
this system, bank conflict delays are an order
of magnitude longer than the delays intro-
duced by rank or port conflicts.

Our solution

A history-based scheduler selects the next
memory command using the history of
recently scheduled memory commands and
the set of available commands from the
reorder queues. Thus, the scheduler’s goal is
to prioritize the set of available commands
using some optimization criterion. In our
work, we use two optimization criteria. The
first criterion is to minimize the latency of the
scheduled command. The second is to match
some desired balance of reads and writes to
avoid bottlenecks in the reorder queues.
Because both goals are important, we proba-
bilistically combine two arbiters FSMs to pro-
duce a scheduler that encodes both goals. The
result is a history-based scheduler optimized
for one particular command pattern. To
accommodate a wide range of command pat-
terns, we introduce adaptivity by using three
history-based schedulers, one tuned for a
heavy mix of reads, one tuned for a heavy mix
of writes, and one tuned for a balanced mix
of reads and writes. Our adaptive scheduler
then observes the recent command pattern
and periodically chooses the most appropri-
ate history-based scheduler.

History-hased arhiters

We can implement a history-based arbiter
as a finite-state machine (FSM), where each
state represents a possible history string. For
example, to maintain a history of length two,
where the only information maintained is
whether an operation is a read or a write, there
are four possible history strings—read-read,
read-write, write-read, and write-write—lead-
ing to four possible FSM states. Here, histo-
ry string x-y means that the last command
transmitted to memory was y and the one
before that was x.

Each state of the FSM encodes the history of
recent commands, and the FSM checks for pos-
sible next commands in some particular order,
effectively prioritizing the desired next com-
mand. When the arbiter selects a new com-
mand, it changes state to represent the new
history string. If the reorder queues are empty,
there is no state change in the FSM.

An FSM for an arbiter that uses a history
length of three illustrates this process. Assume
that each command is either a read or a write
operation to either port number 0 or 1.
Therefore, there are four possible commands:
read port 0 (R0), read port 1 (R1), write to
port 0 (W0), and write to port 1 (W1). The
number of states in the FSM depends on the
history length and the command types. In
this example, since the arbiter keeps the his-
tory of the last three commands and there are
four possible command types, the total num-
ber of states in the FSM is 4 X 4 x 4 = 64. Fig-
ure 2 shows transitions from one particular
state in this sample FSM. In this hypotheti-
cal example, the FSM will first see if a W1 is
available, and if so, it will schedule that event
and transition into a new state. If this type of
command is not available, the FSM will look
for an RO command as the second choice, and
so on.

Design details of history-hased arhiters

We have identified two optimization crite-
ria for prioritization: the amount of deviation
from the command pattern and the expected
latency of the scheduled command. The first
criterion allows an arbiter to schedule com-
mands to match some expected mixture of
reads and writes. The second criterion repre-
sents the mandatory delay between the new
memory command and the commands that



are currently being processed by the DRAM.
We have developed algorithms to generate
ESMs for each optimization criteria.'"!?

The first algorithm generates state transi-
tions for an arbiter that schedules com-
mands to match a certain ratio of reads and
writes. In situations where multiple avail-
able commands have the same effect on the
deviation from the read-write ratio of the
arbiter, the algorithm uses some secondary
criterion, such as expected latency, to make
final decisions.

The second algorithm minimizes the
expected latency of its scheduled operations,
using a cost model for the mandatory delays
between various memory operations. The
model captures the delay caused by sending a

particular command, ¢, to memory. This

new?>
delay is necessary because of the constraints
between c,,, and the previous 7 commands
that were sent to memory. We define cost
functions to represent the mandatory delays
between any two memory commands that
cause a hardware hazard. For our system, we
have many cost functions, each representing

delays such as the following:

e awrite to a different rank after a read,

¢ aread to the same port after a write,

¢ aread to the same port but to a different
rank after a read.

As with the first algorithm, if multiple avail-
able commands have the same expected laten-
cy, we use the secondary criterion—in this
case, the deviation from the command pat-
tern—to break ties.

To combine the two optimization criteri-
on, our approach weights each criterion and
probabilistically chooses between the two.
This technique essentially interleaves two state
machines into one, periodically switching
between the two. We currently give equal
weight to each criterion, but future work will
study whether some other weighting produces
better results.

Adaptive selection of arhiters

Figure 3 shows a schematic of our adaptive
history-based arbiter. The memory controller
tracks the command pattern that it receives
from the processors and periodically switches
among the arbiters depending on this pattern.

Receive available commands
from reorder queues

First choice: W1

Next state

»( W1ROWA1

Current state

R1W1R0

Second choice: RO

0

»( W1RORO

Third choice: R1

J

Nothing
available

Fourth choice: WO

»>{ W1ROR1

»>{ W1ROWO

0i6

Send the most appropriate
command to memory

Figure 2. Transition diagram for the current state, R1W1RO0. Each available

command type has a different selection priority.

Evaluation

We evaluate the performance of our mem-
ory scheduler using the Stream (http://www.
cs.virginia.edu/stream/) and NAS bench-
marks.'? The Stream benchmarks, which have
been used to measure the sustainable memo-
ry bandwidth of systems,' consist of four sim-
ple vector kernels: Copy, Scale, Sum, and
Triad. The NAS benchmarks are well-known,

fairly data-intensive, scientific benchmarks.

Schedulers studied

We compare three memory arbiters. The
first, in-order, implements the simple FIFO
policy that most general-purpose memory con-
trollers use. In a Power5 system, this arbiter
would transmit memory commands from the
reorder queues to the CAQ in the order in
which they arrive from the processors.

The second arbiter implements one of the
policies that Rixner et al.! propose. We refer to
this as the memoryless arbiter because it does
not use command history information. This
arbiter avoids long bank conflict delays by
selecting commands from the reorder queues

that do not conflict with commands in
DRAM. When there are multiple eligible
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Arbiter
selection logic

Read
queue

Writes

reads, the second, 1R1W, for
streams with equal numbers
of reads and writes, and the
third, 2R1W, for streams

with twice as many reads as

writes. These arbiters use his-

Select n

Reordered reads/writes

o

tory lengths of two and con-
sider commands that read or
write from either of two
ports, so each arbiter uses a
16-state FSM.

The adaptive history-
based arbiter combines these
three history-based arbiters
by using the 2R1'W arbiter

Y
Memory

Figure 3. Overview of dynamic selection of arbiters in memory controller.
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commands, it chooses the oldest command.

The third arbiter is our adaptive history-
based scheduler. Because bank conflicts cause
much longer delays than rank or port conflicts,
our scheduler avoids bank conflicts using a sim-
ple approach similar to the memoryless arbiter.
To select the most appropriate command from
among the remaining commands in the reorder
queues, our scheduler then implements our
adaptive history-based technique. Thus, our
adaptive history-based approach handles rank
and port conflicts, but not bank conflicts. Our
history-based approach could also be used to
prioritize bank conflicts, at the cost of increased
hardware complexity.

Simulation methodology

To evaluate performance, we use a cycle-
accurate simulator for the IBM Power5S, one
verifiable to within 1 percent of the actual
hardware’s performance. This simulator, one
of several simulators used by the Power5 design
team, uses trace-based simulation to simulate
both the processor and the memory system.

Simulation parameters
We use three types of history-based
arbiters. The first, IR2W, is optimized for

data streams with twice as many writes as

when the read-write ratio is
greater than 1.2, the IRTW
arbiter when the read-write
ratio is between 0.8 and 1.2,
and the 1R2W arbiter, oth-
erwise. The adaptive sched-
uler performs this arbiter
10,000

(Our

results are not very sensitive to this period,

selection  every

processor  cycles.
as long as it is greater than about 100 cycles.)

Results

Figure 4 shows results for the Stream bench-
marks. We see that the adaptive history-based
arbiter improves execution time by 65 to 70
percent over the in-order arbiter and 18 to 20
percent over the memoryless arbiter. Since
Copy and Scale both have two reads per write,
their improvements are the same. Sum and
Triad both have three reads per write and thus
see the same improvements.

The NAS benchmarks provide a more com-
prehensive evaluation of overall performance;
they include

* embarrassingly parallel (EP),

* muldgrid (MG),

* conjugate gradient (CG),

* 3D fast Fourier transfer (FT) partial dif-
ferential equation,

e integer sort (IS),

¢ lower-upper (LU) matrix solver,

¢ pentadiagonal solver (SP), and

e block tridiagonal solver (BT).

The two graphs in Figure 5 show that

improvements over the in-order method are
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Figure 6. NAS benchmark performance of the adaptive history-based approach against the
in-order (a) and memoryless (b) arbiters running on a processor that is four times faster than

the current IBM Powerb.

between 6.6 and 21.4 percent, with a geo-
metric mean of 10.9 percent. Improvements
over the memoryless method are between 2.4
and 9.7 percent, with a geometric mean of 5.1
percent. Figure 6 presents results when the
CPU has four times the clock rate, showing
that future systems will benefit more from

these intelligent arbiters. Here, the geometric
mean improvement is 14.9 percent over the
in-order arbiter and 8.4 percent over the
memoryless arbiter.

Understanding the results
To better understand our results, we conduct
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experiments to examine various potential bot-
tlenecks within the memory controller.' Based
on those experiments, our solution improves
bandwidth by moving bottlenecks from outside
the memory controller, where the arbiters can-
not help, to inside the memory controller. More
specifically, the bottlenecks tend to appear at
the end of the pipeline—at the CAQ—where
there is no more ability to reorder memory com-
mands. By shifting the bottleneck, our solution
tends to increase the occupancy of the reorder
queues, which gives the arbiter more memory
operations to choose from. The result is fewer
hardware conflicts and increased bandwidth.

To see how much room there is for further
improvement, we compare the performance
of our new arbiter against a perfect DRAM
that has no hardware hazards. We find that
for our benchmarks, our solution achieves 95
to 98 percent of the performance of the per-
fect DRAM.

Other benefits of our solution'? include a
reduced sensitivity to data alignment. With a
poor scheduler, data alignment can cause sig-
nificant performance differences. The largest
effect occurs when a data structure fits into one
cache line when aligned fortuitously but strad-
dles two cache lines when aligned differently.
In such cases, the poor alignment doubles the
number of memory commands. By improv-
ing bandwidth, our adaptive history-based
solution reduces this sensitivity to alignment.

To quantify the cost of our solution in terms
of transistors, we use the Power5 implemen-
tation to provide detailed transistor count esti-
mates. We find that the memory controller
consumes 1.58 percent of the Power5’s total
transistors. The size of one memoryless arbiter
is in turn 1.19 percent of the memory con-
troller. Our adaptive history-based arbiter
increases the size of the memory controller by
2.38 percent, which increases the overall chip’s
transistor count by 0.038 percent.

To satisfy the increasing demand on mem-
ory bandwidth for general-purpose
processors, our new arbiter incorporates sev-
eral techniques. We use the command histo-
ry—in conjunction with a cost model—to
select commands that will have low latency.
We also use the command history to schedule
commands that match some expected com-
mand pattern, because this tends to avoid bot-

tlenecks in our memory controller’s reorder
queues. Both of these techniques can be imple-
mented using FSMs, but because the goals of
the two techniques might conflict, we proba-
bilistically combine these FSMs to produce a
single history-based arbiter that partially sat-
isfies both goals. Finally, because we cannot
know the actual command-pattern before-
hand, we implement three history-based
arbiters—each tailored to a different command
pattern—and our adaptive scheduler dynam-
ically selects from among these three arbiters
based on the observed ratio of reads and writes.

As future work, we plan to evaluate the
effectiveness of our techniques in a broader
variety of contexts. First, we plan to under-
stand the sensitivity of our results to various
microarchitectural features. In the memory
controller itself, we will study the effect of
varying the reorder queue and CAQ sizes. In
the DRAM system, we will vary the number
of ranks, the number of banks, and the mem-
ory address and the data bus widths. In the
larger system, we will explore the impact of
higher clock rates in both the processor and
the memory system. Second, we plan to
explore the robustness of our approach in the
face of multiple threads running on the same
processor. Our intuition is that multiple
threads will require a finer period of adaptiv-
ity. Finally, we plan to explore the applicabil-
ity of our work to power management. In
particular, we believe that our scheduler can
simultaneously manage both performance
and power in memory systems. MICAD
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