
Hierarchical Cache Consistency in a WAN
Extended Abstract

Jian Yin, Lorenzo Alvisi, Mike Dahlin, Calvin Lin
Department of Computer Sciences

University of Texas at Austin

Abstract
This paper explores ways to provide strong consistency for
Internet applications scaling to millions of clients. We make
four contributions. First, we identify the ways in which spe-
cific characteristics of data-access workloads affect the scala-
bility of cache consistency algorithms. Second, we define two
primitive mechanisms,split andjoin for growing and shrink-
ing hierarchies. We show how these primitives can be imple-
mented with a simple mechanism already present in a proto-
col for strong consistency that we have previously proposed.
Third, we describe and evaluate policies for using split and
join to address the fault tolerance and performance challenges
of hierarchies. Finally, we compare various algorithms for
maintaining strong consistency in a range of hierarchy con-
figurations. We evaluate our algorithms using simulations.

1 Introduction
To prevent the rapid growth of Web traffic from degrading
Internet performance, caching has become a ubiquitous Inter-
net technology. However, web caching introduces the prob-
lem of maintaining consistency. With weak notions of consis-
tency, innovative web services and new classes of program-
driven applications—such as agents, robots, and distributed
databases—will likely produce incorrect results. Thus, strong
consistency—which guarantees that a client’s read of an ob-
ject returns the latest completed write of that object—willbe-
come increasingly desirable. Even in human-driven browsers,
consistency polling can increase latency and reduce the effec-
tiveness of large scale caches [3]. Thus, strong consistency
can also be advantageous for current applications.

Strong consistency can be provided using callbacks, but
simple callback algorithms are unacceptable for a WAN be-
cause servers may be forced to delay their writes indefinitely
when there are client failures or network partitions. In pre-
vious work, we have shown how to combine strong consis-
tency with timely server writes by using the notion ofVolume
Leases[12], a generalization ofleases, which were first in-
troduced for file systems [5]. Our results used trace-driven
simulations to show that Volume Leases perform well.

The key questions that this paper answers are (1) how large
a system can Volume Leases accommodate, and (2) what

techniques can be used to scale to even larger systems. To
answer these questions, this paper explores ways to combine
volume leases with hierarchies for systems with millions of
clients.

Adding hierarchy to a server-driven cache consistency
scheme can yield three benefits. First, latency can be reduced
if clients can register callbacks or renew leases by going to
a nearby node in the consistency hierarchy rather than to the
server. Second, it can improve network efficiency by form-
ing a multicast tree and a reduction tree for sending invalida-
tion messages to caches and gathering their replies. Third,it
improves server scalability by distributing load and callback
state across a collection of nodes.

However, using hierarchies for scalable consistency intro-
duces its own challenges. Availability may suffer because hi-
erarchical structures consist of multiple nodes that can fail in-
dependently. Also, latency can increase if the hierarchy must
be traversed to satisfy requests. Finally, it unclear how the
hierarchy should be configured.

This paper develops solutions for hierarchical consistency
and addresses the three issues mentioned above. We make
four contributions. First, we identify the ways in which spe-
cific characteristics of data-access workloads affect the scala-
bility of cache consistency algorithms. Second, we define two
primitive mechanisms,split andjoin for growing and shrink-
ing hierarchies, and we show how these primitives can be im-
plemented with a simple mechanism already present in the
Volume Lease algorithms. Third, we describe and evaluate
policies for using split and join to address the fault tolerance
and performance challenges of hierarchies. Fourth, we exam-
ine and compare various algorithms for maintaining strong
consistency in a range of hierarchy configurations.

We evaluate our algorithms using simulation. To study
scalability and to evaluate how it is affected by different
workload characteristics, we first use a series of synthetic
workloads. To calibrate these results with realistic workloads,
we also examine some smaller trace-based workloads. Over-
all, we find that even without hierarchies, volume leases can
scale to large services with tens of thousands or hundreds of
thousands of clients; with hierarchies, scalability beyond mil-
lions of clients appears feasible.

1



The thesis of this paper is not that all servers should pro-
vide strong consistency, but rather, that for Internet-scale sys-
tems, strong consistency is feasible for a wide range of appli-
cations. The rest of this paper proceeds as follows. Section2
discuss a few ideas that are needed to understand this work.
Section 3 describes our new algorithm whose performance
we evaluate in Section 4. We close by discussing related work
and drawing conclusions.

2 Background
This section describes four concepts necessary to under-
stand hierarchical consistency: callbacks, leases, the Volume
Leases algorithm, and reconnection under Volume Leases.

In server-driven consistency, a client registerscallbacks
with a server for objects that it caches [7, 9]. Before modify-
ing an object, a server first sends invalidation messages to all
clients that have registered interest in that object. The advan-
tage of this approach is that servers have enough information
to know exactly when cache objects must be invalidated. In
contrast, in client-driven consistency schemes, such as those
currently used in NFS and HTTP, clients periodically ask the
server if objects have been modified. This creates a dilemma
for the client. A short polling period increases both server
load and client latency, while a long polling period increases
the risk of reading stale cache data.

There are two challenges for server-driven consistency in
large distributed systems. First, scalability is an issue,as large
numbers of clients lead to large server state and large bursts
of load when popular objects are modified. Second, perfor-
mance in the face of failures is an issue. Servers cannot mod-
ify an object until clients have been notified that their cached
object is no longer valid, so server writes can be delayed in-
definitely while the server waits for acknowledgments from
unreachable clients.

These issues can be addressed by introducing the notion
of leases[5]. When a client registers a lease with a server,
the lease specifies some time T during which the server will
notify clients of updates. This improves scalability because
servers only need to track active clients, and it improves fault
tolerance because even if a client is unreachable, writes are
only delayed until the client’s lease expires. The lease length
T represents a trade-off. Longer leases minimize the overhead
of renewing leases, while short leases reduce server state and
improve failure-mode write performance.

Leases do not perform well for web workloads because
the interval between a client’s reads is typically long, so ob-
ject leases must be long to amortize the cost of lease renewals
across many reads. The Volume Leases algorithm introduces
the notion of a volume, which is a collection of objects that re-
side on the same server, and associates a lease with each vol-
ume. A client’s cached object is valid only if both its object
lease and corresponding volume lease are valid. The Volume
Leases algorithm uses a combination of long object leases and
short volume leases to break the tradeoff with lease lengths.

Short volume leases allow servers to write quickly in the face
of client and network failures: since clients can’t read an ob-
ject when its corresponding volume lease is invalid, in the
worst case the server waits only for the the short volume lease
to expire before modifying an object. The long object lease
minimizes the overhead of renewing object leases, while the
cost of renewing volume leases is amortized across the num-
ber of objects that reside in the same volume.

In the Volume Leases algorithm, a server maintains a list
of unreachableclients whose volume leases expired while the
server was attempting to invalidate an object lease. When a
client on the unreachable list recovers and tries to renew its
volume lease, the algorithm uses a reconnection protocol to
restore consistency between the client’s and server’s lists of
current object leases.

Because the reconnection protocol is a key building block
for hierarchical caching, we describe it in detail. Each server
maintains an epoch number. Whenever a server recovers from
a crash, the epoch number is incremented and logged to a sta-
ble storage device before the server proceeds with normal op-
erations. All messages from the server to the clients include
the epoch number. When a client receives a message, the
epoch number is recorded by the client and associated with
this connection. The epoch number is also included when a
client sends a volume lease request to a server. Upon receiv-
ing volume lease requests, the server grants a volume lease
only if the epoch number in the message matches its own and
if the client hasn’t been moved to the unreachable list. Oth-
erwise, the server sends the client a reconnect request. In re-
sponse to a reconnect request, a client sends to the server the
list of objects it currently caches and the version numbers of
these objects. The server then compares the version numbers
of the cached objects and the objects in the server. Object
leases are granted to all objects whose versions match. The
server invalidates all other cached objects. The volume lease
is then granted. Note that all these tasks can be accomplished
with one message from the server to the clients. When the
client finishes updating its object leases, it sends a connect
message back to the server, which then removes the client
from the unreachable list.

3 Algorithms
We first describe the basic static hierarchy algorithm and dis-
cuss its performance and fault tolerance properties. We then
present two primitive mechanisms, split and join, for recon-
figuring the hierarchy. These mechanisms can be constructed
with trivial additions to the basic Volume Leases algorithm.
We then describe policies that use these mechanisms to en-
hance the fault tolerance and performance of the basic static
hierarchy.

Both the static and dynamic versions of the algorithm as-
sume that nodes participating in the consistency service have
been identified and organized into an initial hierarchy. This
study does not specify a particular mechanism for doing so.

2



For some systems, manually constructing the hierarchy will
suffice; for some, such as the server-proxy-client configura-
tion that we address in Section 4.3, automatic constructionis
trivial; and, for others, more sophisticated automatic strate-
gies such as those described by Plaxton et. al [10] may be
required. This hierarchy may be embedded on current clients
and proxies, it may be coincident with a larger cache hierar-
chy [1] or it may be part of a separate data-location-metadata
hierarchy [4, 11].

3.1 Static hierarchy

Our consistency hierarchy is a tree structure of interconnected
nodes. We refer to the root as the origin server, to the leavesas
clients, and to the intermediate nodes as consistency servers.
Each node runs the standard Volume Leases algorithm, and
each node acts both as a client and as a server, treating its par-
ent as its server and its children as its clients. Each node thus
satisfies lease requests from its children by returning a valid
lease if it has one cached or—if it does not—by requesting
a lease from its parent, caching the lease, and returning the
lease to its child. Similarly, each node passes to its children
with valid leases the invalidation messages it receives from
its parent.

Such hierarchies have the potential to improve perfor-
mance by reducing both server load and by the latency of
client lease renewals. In the Internet, a popular site might
serve millions of clients, and by using a hierarchy, a server
only communicates with and tracks its immediate children.
This reduces memory state, average load for lease renewals,
and bursts of load when popular objects are modified. Es-
sentially, the consistency hierarchy forms a multicast tree for
sending invalidation messages and a reduction tree for gather-
ing replies. By the same token, if clients can renew leases by
going to nearby intermediate consistency servers rather than
to the root server, read latency and network load may be re-
duced.

However, the use of leases in the hierarchy is not guaran-
teed to reduce either server load or latency. When volumes
are popular and frequently accessed, it is likely that consis-
tency servers will hold valid leases and will respond to client
requests without consulting their parents, and it is likelythat
the hierarchical “multicast” will achieve a large fan-out and
significantly reduce server load. However, for unpopular or
infrequently accessed volumes, the time between accesses to
consistency nodes is likely to be longer than the volume lease,
so the cached leases may often have expired when they are
accessed. In these cases, many messages would traverse the
entire hierarchy, increasing the average read latency without
reducing server load.

A second problem with a static hierarchy is reliability. The
hierarchy consists of a large number of nodes that can fail in-
dependently, and one node failure can effectively disconnect
a subtree.

3.2 Join and split
The solution to both problems is to reconfigure the consis-
tency hierarchy dynamically without breaking the guarantee
of strong consistency. We propose a mechanism that uses two
primitives: join, which removes an intermediate node from
the hierarchy, andsplit, which adds an intermediate node to
the hierarchy. Both primitives work on a per-volume basis—
in our system different volumes can use different hierarchies.

Join and split can be trivially implemented using a mech-
anism already required by the Volume Leases algorithm. Re-
call that join removes a node from the hierarchy, connecting
the children of the node directly to the node’s parent. To im-
plement join we augment the volume epoch number to in-
clude the ID of the parent node. When a child decides to ini-
tiate a join for a particular volume, it simply begins using its
former grandparent as a parent. The old volume epoch num-
ber held by the child will not match its new parent, so the new
parent will initiate the standard volume reconnection protocol
to synchronize its state with its new child. Thus, going to a
new parent in the hierarchical algorithm is no different than
going to a server that has crashed and lost a client’s state in
the original Volume Leases algorithm. Similarly, to split the
hierarchy, a child chooses a descendant of its parent and starts
using the new node as its parent, again using the reconnection
protocol to synchronize the state. Note that for both split and
join, the decision to use a new parent is made by children.
Such decisions are a matter of policy. Children can thus de-
cide to find new parents to improve fault tolerance or they can
be told to use new parents to improve performance.

3.3 Fault tolerant static hierarchy
Using join and split, an intermediate node failure can be han-
dled as follows. If a node N cannot contact its parent P to
renew a lease, it sends the renewal message to one of its an-
cestors A, triggering the volume reconnection protocol be-
tween N and A. Note that if A cannot send an invalidation to
P, it does not try to contact N, but instead waits for the vol-
ume lease timeout; this means that parents only need to know
about their immediate children, not their more distant descen-
dents. Finally, when node P recovers, it can send hints to its
list of (former) children suggesting that they split from A and
join P instead.

3.4 Dynamic hierarchy configuration
For volumes where read frequency is high and there are many
active clients, a deep hierarchy can reduce read latency and
distribute load. However, for less popular objects, or for pop-
ular objects with low read frequency, intermediate hops can
increase read latency without significantly reducing server
load. Therefore, it is useful for different volumes to con-
struct different dynamic hierarchies. These hierarchies are
constructed out of the static hierarchy using the split and join
mechanisms in response to changing workloads. Hence, a

3



node can have different children in the static and dynamic hi-
erarchies: we refer to the former as static children, and to the
latter as simply children.

In the dynamic configuration algorithm a node monitors
the number of lease requests it receives from its children and
the fraction of these requests that it can satisfy locally during
time intervals of length T. Using this data, it instructs itschil-
dren to join with its parent if (1) the load from its children
would not cause the load on its parent to exceed a threshold
value, and (2) its children would receive better read latency
by skipping the node and going directly to the parent. A node
N performs the latency calculation as follows.

Let C1 be the cost for a child of N to renew a lease cached
at N, and let C2 be the cost for N to renew a lease cached at
its parent. If the fraction of renewals that N satisfies locally
is F, then the expected latency that a child of N pays to renew
a lease is C1 + (1-F) C2. Assuming that the cost of accessing
N’s parent is about the same for both N and N’s child, the ex-
pected cost after a join is C2. When C1 + (1-F) C2 is greater
than C2 by some threshold, N instructs its children to perform
a join unless doing so would raise the load of the parent to an
unacceptable level.

Similarly, to determine when to initiate a split, a node
monitors the requests from its children, and simulates the hit
statistics for any skipped static child. When these statistics
show that the expected read latency for a group of children
would decrease by connecting to a skipped static child, the
node instructs that group of children to perform a split. Sim-
ulating hit statistics is easy, because for each message it suf-
fices to check the simulated lease and increment the number
of hits or misses. A node may also initiate a split if its load
exceeds some threshold.

4 Evaluation
Our evaluation of the hierarchical consistency consists of
three parts corresponding to different deployment configura-
tions and workloads. First, we examine an aggressive de-
ployment model to characterize the factors that affect the be-
havior of the core algorithms and to determine the perfor-
mance limits of our approach. Second, we examine a simple
clustered-server configuration in which the hierarchy is used
to distribute the algorithm across a LAN cluster to improve
scalability but not latency. Third, we examine a configura-
tion embedded on the server-proxy-client infrastructure that
is common today.

Our methodology is to evaluate these algorithms using
simulations. To stress scalability and to evaluate how dif-
ferent aspects of workloads impact scalability, we first usea
series of synthetic workloads. Then, to calibrate these results,
we also examine a smaller, trace-based workload in the con-
text of the server-proxy-client configuration.

Based on these experiments, we reach the following pri-
mary conclusions:

� For the aggressive deployment scenario with flexible hi-
erarchy configurations, static hierarchies can reduce la-
tency compared to the flat Volume Lease algorithm for
high request-rate services, but they can increase latency
for low request-rate services. In contrast, the dynamic
version always performs as well as the flat algorithm for
low request rates and as well as the static hierarchy for
high request rates.� For workloads with modest request rates in the range of
many current web services, the flat Volume Leases algo-
rithm with a single server can scale to client populations
in the tens or hundreds of thousands of nodes; distribut-
ing the consistency algorithm across a group of nodes—
either in a cluster or across a WAN—via hierarchies can
provide scalability to millions of clients even under very
aggressive workloads.� In the server-proxy-client configuration, which models
a simple deployment path given current infrastructures,
the simple static hierarchy performs well for our web
trace workload; this configuration has the added benefit
that it might also provide a controlled way to traverse
firewalls to deliver consistency signals. The synthetic
workload suggests that there may be other workloads for
which the dynamic algorithm’s flexibility is desirable.

Our methodology makes several significant assumptions
and simplifications. For our latency estimates, we do not sim-
ulate network or server contention. We use a simple network
topology model (described in more detail below) to make our
analysis tractable. Our synthetic workloads simulate one ob-
ject per volume, which may understate the apparent benefit of
hierarchies because long-lived object leases are much easier
to cache in the hierarchy than short volume leases; the small
number of object per volume may also hurt the relative per-
formance of the static algorithm.

Due to space constraints for the extended abstract, we abbreviate our

results section as follows: we do provide details about our system configura-

tion to put the results in perspective, but we present the main results in bullet

form.

4.1 Generic hierarchy
Our Generic Hierarchy configuration represents a system
with relatively few constraints on deployment. We examine
this configuration to understand the basic behavior of the core
algorithms as we vary several key parameters. This configu-
ration also models an aggressive deployment strategy such as
might be employed within a large cache service or in a system
where collections of servers and cache systems coordinate to
provide consistency.

The consistency hierarchy is a tree with one server at its
root,C clients at its leaves, andl � 1 levels of intermediate
nodes. For simplicity, we assume that the degreed at all lev-
els of a tree are the same, withdl = C. We use a simple cost

4



model for accessing consistency servers. Lease renewal la-
tencies between any internal or leaf node in a subtree and the
root of that subtree are equal and increase with the number of
subtree’s leaves as follows: subtrees with 100 or fewer leaves
have a latency of 30 ms, subtrees with 10,000 or fewer leaves
have a cost of 100 ms, and subtrees with more than 100,000
leaves have a cost of 400 ms; costs for subtrees of other sizes
are estimated through interpolation. These costs are meantto
be suggestive of department-, enterprise-, and Internet-scale
delays, but do not represent any specific system.

We use a synthetic workload and examine the average read
latency and server load. We simulate the accesses of a collec-
tion of clients to a single volume. Out ofNtotal clients, we
choose a subset of sizeNactive clients that access the volume
with per-client inter-access times determined using an expo-
nential distribution around an average valuetread expressed
as a ratio of the average inter-access time to the volume lease
renewal time.

Figure 1 shows the average lease renewal latency as per-
client read frequency is varied, and Figure 2 shows lease re-
newal latency as the fraction of clients that access the volume
in question is varied. Both sets of graphs have the same gen-
eral shape because both increase the total request rate as they
move right, but they represent different dimensions of the de-
sign space.

To interpret these graphs it is helpful to consider where
different classes of services might lie or where a single ser-
vice might lie under different workloads. For example, a
weather service with a 10-second lease period and for which
an average client that uses the service visits once per day
for a minute would correspond to a read frequency of less
than 0.001 reads per volume lease period per client. Simi-
larly, a news service whose typical users visit for 5 minutes
during the 8-hour working day would correspond to a vol-
ume renewal frequency near 0.01 per volume lease period
per client. That same service’s read frequency might jump
above 0.1 or even near 1 for periods of time during news
events of widespread interest (e.g., a Ford Bronco chase) as
clients constantly monitor the news for new developments.
Similarly, emerging program-driven applications might span
a wide range of the parameter space.

With respect to lease renewal latency in the Generic Hier-
archy, the main observations are as follows:� Hierarchies can significantly reduce latency for active

and popular services.� The dynamic hierarchy succeeds in matching the latency
of the flat Volume Leases algorithm for less active or
less popular services while matching the performance of
the static hierarchy for busier services. Relative to flat
Volume Leases, the static hierarchy can hurt latency for
less active or less popular services but can help latency
for active and popular services.

� The dynamic hierarchy appears to be a good default
choice for this configuration. If a service’s access pat-
terns are known precisely and if these access patterns do
not change much, then either the flat Volume Leases or
static hierarchy may be reasonable.

Finally, note that the variations among different depths of
underlying static trees for each graph depend on interactions
between the number of clients under each level of a subtree
and our assumptions on the network distances between sub-
trees as a function of subtree size. So this experiment should
not be used for general comparisons between the number of
levels that should be used in the underlying hierarchy.

Figure 3 shows similar experiments but with 100,000 to-
tal clients (20,000 of them active) rather than 1,000,000. By
comparing these results to those with more clients, we gain
intuition about the effects of scaling the client population that
may help predict system behavior for populations larger than
the 1,000,000 that we are able to simulate.� As expected, increasing (decreasing) the total number of

clients decreases (increases) the per-client request rate
for which hierarchies begin to pay off relative to the flat
Volume Leases configuration. We also varied the num-
ber of active clients from the population (graph omitted
to save space) and found similar results.

Figure 4 shows how server load varies with client request
rate hierarchies spanning one million clients. (Results for
varying the number of active clients or simulating a universe
of 100,000 clients are omitted, but are qualitatively similar).� The flat Volume Leases algorithm scales to hundreds of

thousands of clients under workloads corresponding to a
range of reasonable web access patterns.� The addition of hierarchies supports scalability to many
millions of clients under nearly arbitrary workloads be-
cause it bounds the rate of requests at the root to one
request per volume lease period per immediate child of
the root.

4.2 Server cluster
Due to space constraints, we omit details of our server cluster
experiment. The main idea is that the hierarchical consistency
mechanisms can be used not only to distribute consistency al-
gorithms across a WAN, but also to split a consistency ser-
vice across a clustered web server. Although an algorithm
built from the ground up for splitting consistency state and
load across a cluster might marginally outperform our more
general mechanisms, such an algorithm would have to solve
the same basic problems of fault tolerance, distributing inval-
idations, gathering acknowledgments, and partitioning state
that our algorithm handles, so the simplicity of using a sin-
gle framework for both LAN and WAN distribution appears
attractive.

5



Figure 5 shows the load on the server in the server clus-
ter hierarchy where the server and all of the internal nodes
of the consistency hierarchy are located in a tightly-coupled
cluster, and the lowest internal nodes in the hierarchy commu-
nicate across a WAN with the clients. We do not show results
for latency because this configuration is not designed to im-
prove latency, just load-scalability; the latency measurements
do not vary significantly across different configurations. Sim-
ilarly, the dynamic hierarchy does not have any significant
advantage over the static one.� For the server-cluster configuration, the static hierarchy

(with split and join for fault tolerance) provides a simple
mechanism to scale the flat Volume Leases algorithm by
distributing it across a group of nodes in a cluster; dy-
namic configuration to minimize latency is not required.

4.3 Server, proxy, client
Figures 6 and 7 show the latency and load measurements
when the hierarchy algorithms are run on the server-proxy-
client underlying hierarchy. Figure 8 shows latency for sev-
eral selected volumes under a trace workload. The trace
workload is the DEC trace [2], and we configure the sys-
tem to have all clients under a single proxy and have each
volume represented by a single server that communicates di-
rectly with proxies. The 8 servers are the 4 most popular ones,
and 4 of medium popularity.� As illustrated by the synthetic workload, as was true for

the Generic Hierarchy, the dynamic hierarchy may be
needed to accommodate the full range of services.� The trace workloads include multiple objects per vol-
ume, and long object leases are easier to cache in a hi-
erarchy. As a result, the static hierarchy begins to pay
dividends even with relatively low access rates.� For many current web workloads, the simple static hi-
erarchy using the simple server-proxy-client hierarchy
may be a reasonable deployment option. This config-
uration might also provide a controlled way to traverse
firewalls to deliver consistency signals.

5 Related work
This section abbreviated for extended abstract.

Our study builds on efforts to assess the cost of strong
consistency in wide area networks. Gwertzman and Seltzer
[6] compare cache consistency approaches through simula-
tion and conclude that protocols that provide weak consis-
tency are the most suitable to a Web-like environment. In
particular, they find that an adaptive version of polling exerts
a lower server load than an invalidation protocol if the polling
algorithm is allowed to return stale data 4% of the time. We
arrive at different conclusions. In particular, much of the
apparent advantage of weak consistency over strong consis-
tency in terms of network traffic comes from clients reading

stale data [8]. Other studies have noted significant numbers
of consistency-related polling “misses” to unmodified and
cached objects under current client-polling approaches [3].

We also build on the work of Liu and Cao [8], who use a
prototype server invalidation system to evaluate the overhead
of maintaining consistency at the servers compared to client
polling.

6 Conclusions
In this paper we have shown that the Volume Leases algo-
rithm can provide strong consistency for Internet services
with tens of thousands of clients. We have also shown how
the Volume Leases can be applied to hierarchical caches to
perform well for workloads with millions of clients. The key
mechanisms, join and split, can be implemented using a triv-
ial extension of the Volume Leases algorithm. Finally, we
have evaluated a number of hierarchy configurations, and our
results show that a dynamically configurable hierarchy pro-
vides almost arbitrary amounts of scalability.

References
[1] A. Chankhunthod, P. Danzig, C. Neerdaels,

M. Schwartz, and K. Worrell. A Hierarchical In-
ternet Object Cache. InProceedings of the 1996
USENIX Technical Conference, January 1996.

[2] Digital Equipment Corpora-
tion. Digital’s Web Proxy Traces.
ftp://ftp.digital.com/pub/DEC/traces/proxy/webtraces.html,
September 1996.

[3] B. Duska, D. Marwood, and M. Feeley. The
Measured Access Characteristics of World-Wide-Web
Client Proxy Caches. InProceedings of the USENIX
Symposium on Internet Technologies and Systems, De-
cember 1997.

[4] S. Gadde, J. Chase, and M. Rabinovich. Directory
Structures for Scalable Internet Caches. Technical Re-
port CS-1997-18, Duke University Department of Com-
puter Science, November 1997.

[5] C. Gray and D. Cheriton. Leases: An Efficient Fault-
Tolerant Mechanism for Distributed File Cache Consis-
tency. InProceedings of the Twelfth ACM Symposium
on Operating Systems Principles, pages 202–210, 1989.

[6] J. Gwertzman and M. Seltzer. World-Wide Web Cache
Consistency. InProceedings of the 1996 USENIX Tech-
nical Conference, January 1996.

[7] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale and Per-
formance in a Distributed File System.ACM Transac-
tions on Computer Systems, 6(1):51–81, February 1988.

6



[8] C. Liu and P. Cao. Maintaining Strong Cache Consis-
tency in the World-Wide Web. InProceedings of the
Seventeenth International Conference on Distributed
Computing Systems, May 1997.

[9] M. Nelson, B. Welch, and J. Ousterhout. Caching in
the Sprite Network File System.ACM Transactions on
Computer Systems, 6(1), February 1988.

[10] C. Plaxton, R. Rajaram, and A. Richa. Accessing nearby
copies of replicated objects in a distributed environ-
ment. InProceedings of the Ninth Annual ACM Sym-
posium on Parallel Algorithms and Architectures, pages
311–320, June 1997.

[11] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Design Con-
siderations for Distributed Caching on the Internet. In
Proceedings of the Nineteenth International Conference
on Distributed Computing Systems, May 1999.

[12] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Volume
Leases to Support Consistency in Large-Scale Systems.
IEEE Transactions on Knowledge and Data Engineer-
ing, February 1999.

7



0

100

200

300

400

500

600

700

800

1e-05 0.0001 0.001 0.01 0.1 1 10

La
te

nc
y 

(m
s)

Read Frequency (reads per volume lease period)

Static (N total=1m, N active = 200k)

flat
two level

three level
four level

0

100

200

300

400

500

600

700

800

1e-05 0.0001 0.001 0.01 0.1 1 10

La
te

nc
y 

(m
s)

Read Frequency (reads per volume lease period)

Dynamic (N total=1m, N active = 200k)

flat
two level

three level
four level

(a) Static (b) Dynamic

Figure 1 : Average read latency as the per-client read frequency is varied for a hierarchy of one million clients, of which
200,000 access the volume in question. (a) Shows performance of the static hierarchy and (b) shows performance of the
dynamic hierarchy. For each figure, the lines show performance for the algorithms running on static trees of different maximum
depths. The falling average latency for very high request rates under the flat hierarchy is due to volume lease renewal hits at the
clients, themselves.

0

100

200

300

400

500

600

700

800

1 10 100 1000 10000 100000

La
te

nc
y 

(m
s)

Number of Clients Accessing the Volume (N active)

Static (N total=1m, T read = 0.1Tvolume)

flat
one level
two level

three level

0

100

200

300

400

500

600

700

800

1 10 100 1000 10000 100000

La
te

nc
y 

(m
s)

Number of Clients Accessing the Volume (N active)

Dynamic (N total=1m, T read = 0.1Tvolume)

flat
one level
two level

three level

(a) Static (b) Dynamic

Figure 2 : Average read latency as the number of active clients variesfor a hierarchy of one million clients, each issuing
requests to a volume at a rate of 0.1 requests per volume leaseperiod.

0

100

200

300

400

500

600

700

800

1e-05 0.0001 0.001 0.01 0.1 1 10

La
te

nc
y 

(m
s)

Read Frequency (read per volume lease period)

Static (N total=100k, N active = 20k)

flat
two level

three level
four level

0

100

200

300

400

500

600

700

800

1e-05 0.0001 0.001 0.01 0.1 1 10

La
te

nc
y 

(m
s)

Read Frequency (read per volume lease period)

Dynamic (N total=100k, N active = 20k)

flat
two level

three level
four level

(a) Static (b) Dynamic

Figure 3 : Average read latency as the per-client read frequency is varied for a hierarchy of 100,000, of which 20,000 access
the volume in question.

8



1

10

100

1000

10000

100000

1e+06

1e-05 0.0001 0.001 0.01 0.1 1 10

S
er

ve
r 

M
es

sa
ge

s 
pe

r 
V

ol
um

e 
Le

as
e 

P
er

io
d

Read Frequency (reads per volume lease period)

Static (N total=1m, N active = 200k)

flat
two level

three level
four level

1

10

100

1000

10000

100000

1e+06

1e-05 0.0001 0.001 0.01 0.1 1 10

S
er

ve
r 

M
es

sa
ge

s 
pe

r 
V

ol
um

e 
Le

as
e 

P
er

io
d

Read Frequency (reads per volume lease period)

Dynamic (N total=1m, N active = 200k)

flat
two level

three level
four level

(a) Static (b) Dynamic

Figure 4 : Average server load for handling renewal requests as the per-client read frequency is varied for a hierarchy of one
million clients, of which 200,000 access the volume in question.

1

10

100

1000

10000

100000

1e+06

1e-05 0.0001 0.001 0.01 0.1 1 10

S
er

ve
r 

M
es

sa
ge

s 
pe

r 
V

ol
um

e 
Le

as
e 

P
er

io
d

Read Frequency (reads per volume lease period)

Static (N total=1m, N active = 200k)

flat
two level

three level
four level

Figure 5 : Server lease renewal load as the per-client read frequencyis varied for a static server cluster hierarchy serving one
million clients, of which 200,000 access the volume in question.

0

100

200

300

400

500

600

700

800

1e-05 0.0001 0.001 0.01 0.1 1 10

La
te

nc
y 

(m
s)

Read Frequency (reads per volume lease period)

Static (N total=1m, N active = 200k)

flat
server-proxy-client

0

100

200

300

400

500

600

700

800

1e-05 0.0001 0.001 0.01 0.1 1 10

La
te

nc
y 

(m
s)

Read Frequency (reads per volume lease period)

Static (N total=1m, N active = 200k)

flat
server-proxy-client

(a) Static (b) Dynamic

Figure 6 : Average read latency as the per-client read frequency is varied for a server-proxy-client hierarchy of one million
clients, of which 200,000 access the volume in question. In the server-proxy-client hierarchy the internal nodes in theconsis-
tency hierarchy are all proxies serving 10,000 clients each.

9



1

10

100

1000

10000

100000

1e+06

1e-05 0.0001 0.001 0.01 0.1 1 10

S
er

ve
r 

M
es

sa
ge

s 
pe

r 
V

ol
um

e 
Le

as
e 

P
er

io
d

Read Frequency (reads per volume lease period)

Static (N total=1m, N active = 200k)

flat
server-proxy-client

1

10

100

1000

10000

100000

1e+06

1e-05 0.0001 0.001 0.01 0.1 1 10

S
er

ve
r 

M
es

sa
ge

s 
pe

r 
V

ol
um

e 
Le

as
e 

P
er

io
d

Read Frequency (reads per volume lease period)

Static (N total=1m, N active = 200k)

flat
server-proxy-client

(a) Static (b) Dynamic

Figure 7 : Server lease renewal load as the per-client read frequencyis varied for a server-proxy-client hierarchy serving one
million clients, of which 200,000 access the volume in question.

Med 1 Med 2 Med 3 Med 4
flat static dyn flat static dyn flat static dyn flat static dyn

Latency (ms) 160.5 129.4 135.4 99.0 89.5 92.1 55.6 61.2 57.3 276.3 297.0 279.7
Load (server msgs/read) 0.41 0.23 0.27 0.25 0.16 0.20 0.14 0.12 0.14 0.69 0.57 0.64

(a) Trace results for four medium-loaded volumes.

Large 1 Large 2 Large 3 Large 4
flat static dyn flat static dyn flat static dyn flat static dyn

Latency (ms) 84.1 30.8 30.7 123.2 51.1 51.2 133.0 46.7 46.7 68.9 39.3 39.6
Load (server msgs/read)0.21 0.03 0.03 0.31 0.05 0.05 0.33 0.03 0.03 0.18 0.06 0.07

(b) Trace results for four heavily-loaded volumes.

Figure 8 : Average read latency and fraction of renewal requests sentto the server for the four medium-loaded and four
heavily-loaded volumes from the DEC trace workload under a server/proxy/client hierarchy in which the internal node inthe
consistency hierarchy is the proxy serving the DEC clients.

10


