AS Interfaces

Katerina Argyraki

with

Petros Maniatis, Timothy Roscoe, Scott Shenker

Internet path control

- Route control
 - where my outgoing traffic goes
- Path identification + filtering
 - where my incoming traffic is coming from
- Accountability
 - who did what to my traffic

It's an old story

- Loose source record route IP option
 - source specifies router-level path
 - receiver learns router-level path

- Didn't go anywhere
 - forwarding overhead in routers
 - security considerations

The Internet, viewed from the edge

- No control beyond first/last hop
- No transparency = no accountability

It's a black box

Indirect path control

- Probing to reverse-engineer structure/failures
 - traceroute, network tomography
 - accountability??
- Overlays to affect outgoing/incoming path
 - Skype, Prolexic, RON, SOS
 - critical applications??
- At the mercy of ISPs

End systems are seeking better path control

The ISP viewpoint

- Probing is dangerous
 - can reveal vulnerabilities
 - business policies
- Overlay traffic is undesirable
 - does not generate revenue
 - can interfere with traffic engineering

End systems already have too much path control

The ISP viewpoint (2)

- Customers have come to expect it
 - traceroute = health monitor
 - net neutrality

...but ISPs can't just get rid of it

The right path-control balance?

- Useful visibility + control for the edge
 - monitor ISP performance
 - localize/adapt to failures, DDoS attacks

- Respecting ISP privacy + business model
 - keep internal structure opaque
 - absolute control over routing policies

ASes as first-class Internet objects

- ASes export checkpoints
 - points of explicit visibility and control

Expose Internet view as graph of ASes

A basic AS interface

- report(aggregate, attribute)
- forward(aggregate, nextHop)
- mark(aggregate, offset, attribute)
- *drop(aggregate, lastHop)*

A basic AS interface

- report(aggregate, attribute)
- forward(aggregate, nextHop)
- mark(aggregate, offset, attribute)
- *drop(aggregate, lastHop)*

Accountability interface

Accountability interface

ASes report on their own performance

But the Internet is best effort

- Best effort = no a priori guarantees
- Accountability = after-the-fact info
- Helps make the best of best-effort service
 - edges can adapt to network conditions

Accountability != QoS

Accountability interface

ASes report on their own performance

Questions + challenges

- Traffic-aggregate definition
 - packets, TCP flows...
- Statistics
 - number of packets, time-related statistics, ??
- Fault (and lie) tolerance
 - otherwise as useful as current SLAs
- Implementing statistics collection
 - reasonable hardware requirements, scalability

Threat model

- Off-path lies
 - malicious nodes pretend they are transit Ases
 - report spurious feedback to confuse source
- On-path lies
 - transit ASes exaggerate their performance
- Feedback corruption
 - transit ASes modify other AS feedback

• Statistics:

- number of packets that entered, exited each AS
- average entry and exit time
- next and previous checkpoint

Threat model

- on-path lies only
- no feedback corruption

Source learns loss + avg delay per AS

Lie tolerance

- Lie tracked down to inter-AS link
- Lying AS exposed to the peer it implicated

Lies manifest as feedback inconsistencies

Can we catch all lies?

Can we catch all lies?

Lie tolerance

- AS specifies performance bounds
- Peers can lie within bounds
- Tighter bounds = fewer lies
 - but more overhead

The more you tell, the safer you are

TCP-flow statistics collection

- Line-speed header inspection, flow-id lookup
 - NetFlow already does that

- Challenge: match entry-exit point statistics
 - loss affects delay statistics
 - multi-path flows

Conclusion

- In search of the right path-control balance
 - visibility + control for end systems
 - privacy and flexibility for ISPs
- Expose ASes as first-class Internet objects
- Define explicit AS interfaces
 - ISPs choose what visibility/control they export

Better both for end systems and ISPs