
1

Making Order in the Chaos: Self-stabilizing
Byzantine Synchronization

Danny Dolev
The Hebrew University of Jerusalem

Joint work with A. Daliot and E. Hoch

 The focus of FuDiCo III are distributed systems
that span multiple administrative domains
(MADs). The workshop brings together a
diverse group of computer scientists (in
Systems, Theory, Security, and AI) as well as
economists to discuss how to model and build
systems in which nodes may deviate from their
specification both because they are broken
(because of bugs, misconfiguration, or even
malicious attacks) and because they are selfish
and are intent on maximizing their own utility

2

MAD-ness in the design

 Most applications assume some initial
consistent state among non-faulty (honest)
nodes (players)

 Most applications assume a rather simplistic
fault model, if at all

 MAD systems are too complicated to reset
manually

 Robustness requires considering worse case
scenarios – (if cost allows)

It is not “IF” but rather
“WHEN” and “TO WHAT DEGREE”

 Transient faults occur frequently in complex software
systems
− Eisenbugs, soft-bugs, difficult-to-reproduce race conditions

(multi-core will introduce a new wave)
 Permanent faults add another dimension to the

challenge
 Both are more frequent locally

− Confine locally
− Be ready to global incidents

Can one tolerate transient and permanent faults at
once?

3

Talk outline

 models

The Fault Model

Stable System:
•There exists (n+f)/2 correct nodes that obey the protocol (n>3f)
•No assumption about the type of behavior of some f faulty nodes
•(general network with enough connectivity)

Initial state:
arbitrary – variables at a HONEST node may hold arbitrary values
The code at HONEST nodes is intact

4

Quality of a desired solution

 Complexity as a function of the actual perturbation of
the system; thus, as a function of:
− Actual number of permanent faults
− Type of permanent faults
− Fraction of the system that is in an inconsistent state
− Actual time it takes honest nodes to communicate
− Local confinement of faults

 In addition:
− Fast convergence
− Low overhead
− Applicability to general applications

Self-Stabilizing Byzantine Clock Synchronization

 Previously known best self-stabilizing Byzantine clock
synchronization algorithm converges in expected (n-
f).n6(n-f) time (S. Dolev and J. Welch, 1995, 1997, 2004)

 The difficulty resides in the fact that:
− the initial clock values can differ arbitrarily
− there is no agreed time for exchanging the values and setting

the clock according to the values received
− clocks may wrap around
− Faulty nodes can try to rush the clocks out of any relation to real-

time rate
− … … …

5

Current state of the art

 Pulse synchronization and clock synchronization
− Convergence -- linear time O(f)
− Overhead -- a function of O(nf+poly(f))
− If only a fraction of the system is disturbed the system introduces no

instability and the inconsistent parts converge fast

 These solutions can drive general translation of (many)
applications that tolerate malicious faults to become also self-
stabilized

 It is not a madness any more - MAD systems can be designed
hierarchically with larger f locally and smaller f globally

The Real Stuff

6

The target is to synchronize pulses from any state and
overcoming any fault

.....|.............|..................|.....................|...................|....

……...|.............|..................|.....................|..............|..........

.......|.............|..................|.....................|..................|..... t

……………......|.............|..................|.....................|.......................

…......|.............|..................|.....................|................|........

…………….|.............|..................|.....................|.....|...................

.……......|.............|..................|.....................|...........|.............

.....||||||........||.....|||......||......||......|.......||.||.||.....|......||.......……

…….....|.............|||.||.||.||||...............|.......|||||||||||||||||||||...||||.||||…...

cycle

Synchronized state (σ)Arbitrary state

Faulty
nodes

“Pulse Synchronization” algorithm

7

To get a sense of a solution we will present the
elements of the solution in one of the possible

(simple) models

Problem Statement – simple model

 two equivalent definitions:
 Agree on special beats, spaced Cycle beats apart
 Pulse every Cycle beats

 Pulse vs. Beat
 Beat comes from the global beat system
 Pulse is the output of the protocol

8

Simple Model

 n nodes
 Repetitive Global event (“beat” system)
 Network connectivity – for now assume full
connectivity

 Self-stabilizing
 Byzantine tolerant (f<n/3)

Stage I – Agreed Stream

 “Rotating Consensus”: Execute
simultaneously Δ Byzantine Consensus
instances, differing at their round of execution.
− At each beat:

 Execute current round of each of the Δ instances
 Output the value of the last terminated instance
 Invoke a new instance of Byzantine consensus

9

Stage I – Contd.

Beat i

.

.

Output

Execution of round 1

Execution of round 2

Execution of round 3

Execution of round Δ-1

Execution of round Δ

Beat i+1

.

.

Output

Beat i+2

.

.

Output

Intermediate Solutions

 Stage I: -Pulser

 Stage II: [Cycle]-Pulser

 Stage III: Generalize to any Cycle value

[]ö,ø

10

Quality of the solution

 Convergence is linear in Δ, and in Cycle.
 For clock synchronization, Cycle is in the order

of Δ, and hence the convergence is in
.

 If the network is not fully connected, then
 where D is the diameter of the network
graph. In this case, convergence is achieved in
.

() ()fO=ÄO

Df=Ä !

() ()fDO=ÄO !

The General Scheme

Following a pulse:
 When reaching an identified state, exchange the “state” and the

elapse time since the pulse

 Agree on the “state and time” sent by each node

 Collect agreed values and implicitly agree on which values to
consider

 Sift the values to look for a cluster of values within D of each
other or decide on a reset.

 If reset, invoke a “reset pulse”

11

Agreed set of values

Pulse
uncertainty

First “D”
uncertainty

Identify the f+1st value
in the safe region

Define the end of the
region with respect to
its “elapse time”

Different nodes invoke the pulse at different times

(Agreement) completion time
uncertainty

Safe region

Agreed set
within this
region

“It seems so easy…
when everything is in-synch”

12

Synchrony phenomena in biology

• The phenomenon of synchronization is displayed by
many biological systems
– Synchronized flashing of the male malaccae fireflies
– Oscillations of the neurons in the circadian pacemaker,

determining the day-night rhythm
– Crickets that chirp in unison
– Coordinated mass spawning in corals
– Audience clapping together after a “good” performance

Synchrony phenomena in biology

• The phenomenon of synchronization is displayed by
many biological systems
– Synchronized flashing of the male malaccae fireflies
– Oscillations of the neurons in the circadian pacemaker,

determining the day-night rhythm
– Crickets that chirp in unison
– Coordinated mass spawning in corals
– Audience clapping together after a “good” performance

13

Synchrony phenomena in biology

• The phenomenon of synchronization is displayed by
many biological systems
– Synchronized flashing of the male malaccae fireflies
– Oscillations of the neurons in the circadian pacemaker,

determining the day-night rhythm
– Crickets that chirp in unison
– Coordinated mass spawning in corals
– Audience clapping together after a “good” performance

Synchrony phenomena in biology

• The phenomenon of synchronization is displayed by
many biological systems
– Synchronized flashing of the male malaccae fireflies
– Oscillations of the neurons in the circadian pacemaker,

determining the day-night rhythm
– Crickets that chirp in unison
– Coordinated mass spawning in corals
– Audience clapping together after a “good” performance

14

Synchrony phenomena in biology

• The phenomenon of synchronization is displayed by
many biological systems
– Synchronized flashing of the male malaccae fireflies
– Oscillations of the neurons in the circadian pacemaker,

determining the day-night rhythm
– Crickets that chirp in unison
– Coordinated mass spawning in corals
– Audience clapping together after a “good” performance

Cardiac ganglion of the lobster
(Sivan, Dolev & Parnas, 2000)

• Four interneurons tightly synchronize their pulses in
order to give the heart its optimal pulse rate (though
one is enough for activation)

• Able to adjust the synchronized firing pace, up to a
certain bound (e.g. while escaping a predator)

motor

neurons

|..|.. |.|.||.

|..|.. |..|.. |..|..

15

Cardiac ganglion of the lobster
(Sivan, Dolev & Parnas, 2000)

 Must not fire out of synchrony for prolonged times in spite of
− Noise
− Single neuron death
− Inherent variations in the firing rate
− Firing frequency regulating Neurohormones
− Temperature changes

 The vitality of the cardiac ganglion suggests it has evolved to be
optimized for
− Fault tolerance
− Re-synchronization from any state (“self-stabilization”)
− Tight synchronization
− Fast re-synchronization

Questions?

16

Proposed approach

 Design the system to establish locality and prevent
instability resulting from a single or few unstable
elements

 Establish time reference (if no outside one exists)
 Produce an agreed-upon event in the flow of events
 Assign to it an agreed value
 Use it to anchor the application detection mechanism
 Add blocking mechanism
 Add correcting mechanism
 Repeatedly invoke the mechanisms in the background

Thank you!!!

17

