
Practical accountability for distributed systems

Andreas Haeberlen Petr Kouznetsov Peter Druschel

Max Planck Institute for Software Systems

1 Introduction

In a distributed system with multiple administrative do-
mains, there is generally no single entity that can monitor
and control the entire system. Instead, the domain adminis-
trators must cooperatively monitor the system’s health and
performance, diagnose problems and effect repair. Each ad-
ministrator can observe and control only the nodes in her
local domain. Worse, the domains may have different and
potentially conflicting interests (for example, they may be
business competitors). In this case, the administrators may
be reluctant to cooperate and share information.

In such an environment, a domain may not be able to as-
sert that other domains follow the protocol and meet their
contractual obligations. If something goes wrong, it may be
difficult to identify the root cause and the responsible party.
The domains may withhold information out of negligence,
to protect business secrets, or to cover up mistakes. Even
if a problem is diagnosed correctly, the responsible domain
must be convinced to fix the problem. On the other hand,
if the diagnosis is incorrect, a domain may be falsely impli-
cated but unable to defend itself.

These types of problems arise, for instance, in the Inter-
net’s inter-domain routing system [8]. Here, the domains are
competing network providers that exchange traffic based on
bilateral peering agreements. Faults in inter-domain routing
occur frequently [5]. Today, such faults are diagnosed in an
ad hoc fashion, via phone calls between the various network
administrators. This can lead to prolonged outages [2].

Accountabilityhas been suggested as an important prop-
erty of dependable distributed systems [9]. An accountable
system produces a secure audit trail that can be inspected
when a problem occurs. Accountability can be implemented
from the following three building blocks:

• Non-repudiability: Each action is irrefutably linked
to the entity that performs it. For example, nodes in
a distributed system are required to cryptographically
sign each message they send.

• Secure record:All actions are securely recorded. For
example, all nodes record the actions they perform in a
tamper-evident log [6].

• Auditing: The secure record can be inspected by other
domains or by a trusted third party.

The record can be used to diagnose problems by reconstruct-
ing causal chains of events; it enables fault detection by
checking a node’s actions for compliance with a protocol

specification; and, it allows a domain to prove that it is not
responsible for an incident.

In addition, accountability discourages certain types of
misbehavior. For instance, the threat of exclusion may dis-
courage censorship and freeloading in peer-to-peer systems,
and the threat of embarrassment may cause commercial ser-
vice providers to improve the quality and reliability of their
services.

Lastly, it is possible to balance accountability and pri-
vacy. A domain may disclose only as much information as
is needed to prove its compliance, and only to its partner do-
mains. Alternatively, domains may disclose their record to
a trusted third party that audits all domains.

Whether accountability in distributed systems is practical,
particularly at large scale, remains the subject of research.
In this paper, we propose a type of accountability that can
be achieved in practical distributed systems.

2 Practical accountability

We model a distributed system as a collection ofnodesthat
run a distributed algorithm. A node can misbehave in two
ways: by performing an action that is not allowed by the
node’s algorithm, or by failing to perform an action that the
node is expected to perform according to its algorithm.

2.1 Observable misbehavior

Ideally, an accountable system detects every instance of mis-
behavior. Such fine-grained accounting could expose, for
instance, that someone has tampered with a node’s software
long before the node misbehaves in an obvious way. Un-
fortunately, this strong form of accountability may require
either trusted hardware and software attestation, or trusted
probes that monitor each node’s inputs, outputs, and internal
memory. Neither of these requirements seem practical for
large-scale systems with multiple administrative domains.
Thus, it is impractical for an accountable system to generate
a proof of misbehavior foreveryincorrect action.

Instead, we limit ourselves toobservablemisbehavior,
that is, misbehavior that affects another correct node, di-
rectly or indirectly. In a message-passing system, there are
two ways in which a correct node can be affected: by re-
ceiving a message that is causally preceded by an incor-
rect action of some node, or by not receiving an expected
message. According to our definition of accountability, a
nodeappearscorrect to every correct node, as long as (i) it

1



does not perform incorrect actions that can be observed, di-
rectly or indirectly, by a correct node, and (ii) it eventually
responds to each message received from a correct node.

When a messagem is received by a correct node, the
message may be preceded by incorrect actions of multiple
nodes. We call these nodesfaulty accompliceswith respect
to m. Because a practical system cannot reliably observe
messages exchanged between faulty nodes, it is impossible
to identify all nodes that performed incorrect actions in this
case. However, we can ensure that an accountable system
generate a proof of misbehavior against one of the faulty
accomplices.

2.2 Proofs and verifiable evidence

To construct an irrefutable proof of misbehavior, it is neces-
sary to authenticate all actions, i.e., to link an action to the
node that performed the action. This can be accomplished,
for instance, with public-key cryptography.

However, even if all observable actions are authenticated,
it is not always possible to construct a proof. The reason
is that there can behe-said-she-saidsituations, e.g., when
a nodei claims to have sent a messagem to another node
j, who denies having received it. The possible reasons for
the disagreement could be that (i)i has never sentm, or
(ii) j has receivedm but denies it, or (iii)m was lost in
the network. Unfortunately, a third nodek cannot reliably
distinguish these three cases.

We address this issue by requiring that an accountable
system be able to produceverifiable evidenceof misbehav-
ior. Verifiable evidence against a nodei consist either of (a)
an irrefutable proof ofi’s misbehavior, or (b) achallenge
that i did not answer. While the former can be checked in-
dependently by a third party, the latter must be checked by
sending the challenge toi and by waiting for a response.

In the above example,i can use the messagem as evi-
dence againstj. Any correct nodek can check the evidence
by challengingj with m. If j is correct, it acceptsm and
acknowledges it;k can then forward the acknowledgment
back toi. On the other hand, ifj refuses to acceptm, it will
not respond tok either; thus,k can convince itself thatj is
unresponsive. We note that the reason for the lack of a re-
sponse fromj could be a network problem. We discuss this
issue next.

2.3 Suspicion and certainty

What if a misbehaving node creates a false challenge? For
example, a faulty nodei might claim that some correct node
j does not respond to a messagem. In a synchronous sys-
tem, this is not a problem, since any other node can sim-
ply challengej with m. If j responds, the challenge was
incorrect, otherwisej is misbehaving. However, assuming
synchrony is not realistic in most practical systems.

In the absence of synchrony, an unanswered challenge
does not constitute a proof of misbehavior, since the re-
sponse may simply be delayed. Hence, we can onlysuspect
misbehavior in this case, and it is possible that the suspicion
eventually turns out to be groundless.

If we make the common assumption that correct nodes
can eventually communicate [1], we can guarantee that a
correct node can eventually defend itself against a false chal-
lenge; thus, no correct node can be suspected forever. If we
additionally assume that communication and processing are
bounded [3], we can ensure that, eventually, no correct node
is suspected by a correct node.

2.4 Eventual detection

How much time is needed to generate evidence against a
node that misbehaves in an observable way? Ideally, the
evidence would be produced as soon as the first incorrect
message is received by a correct node. But a misbehav-
ing node could send two messages that both appear plau-
sible, but contradict each other. One way to detect this kind
of misbehavior is to forward all observable messages from
the misbehaving node tosomecorrect node. Since instanta-
neous message forwarding is unrealistic, we must settle for
a guarantee ofeventualdetection.

2.5 Putting it all together

Based on the above observations, we propose the following
definition. A system provides accountability if, whenever a
nodei misbehaves in an observable way, the system even-
tually generates verifiable evidence againsti. This evidence
is either a proof of misbehavior againsti (or a faulty accom-
plice of i) or a challenge thati did not answer.

We built a practical implementation of an accountable
system with this property, called PeerReview [4]. Briefly,
in PeerReview, nodes cryptographically sign all messages
and commit their actions to a tamper-evident log [6]. A set
of witnessnodes inspects a nodei’s actions, including the
set of messages thati has transmitted to correct nodes. A
witness detects misbehavior by replayingi’s actions using
a trusted reference implementation ofi’s protocol. The re-
quired number of witnesses per node depends on the sys-
tem’s fault assumptions: it must be chosen to ensure that at
least one of the witnesses is not itself faulty. PeerReview’s
bandwidth and CPU overhead scales linearly with the num-
ber of witnesses, while the message complexity scales with
the square of the number of witnesses.

To date, we have applied PeerReview to three different
systems: a distributed file system, an end-system multicast
system, and a serverless email system called ePOST [7].
Our experience suggests that the system can scale to several
thousands of nodes at reasonable cost, while guaranteeing
eventual detection of every fault. We believe that the system
can scale to even larger systems when configured to provide
probabilistic detection guarantees. In current work, we are
applying PeerReview to the problem of providing account-
ability for the Internet’s inter-domain routing system based
on BGP [8].

2



3 Conclusion

Accountability is a promising building block in the design
of dependable distributed systems. In particular, it suits
well systems that span multiple administrative domains. Ac-
countability enables automatic fault localization, identifies
the party responsible for a fault, discourages misbehavior,
and allows correct principals to prove their compliance to
third parties. Moreover, accountability can provide these
guarantees while allowing domains to run different software
and hardware, implement their own policies, and disclose
only as much information as is needed to prove their com-
pliance with existing agreements, protocols and standards.

Our experience with PeerReview shows that the type of
accountability described in this paper is practical. In current
work, we are applying PeerReview to more types of sys-
tems, and we are investigating ways to improve the system’s
scalability beyond thousands of nodes.

References
[1] M. Castro and B. Liskov. Practical Byzantine fault tolerance and

proactive recovery.ACM Trans. Comput. Syst., 20(4):398–461, 2002.

[2] J. Chandrashekar, Z.-L. Zhang, and H. Peterson. Fixing BGP, one AS
at a time. InProc. SIGCOMM workshop on Network troubleshooting
(NetT’04), 2004.

[3] C. Dwork, N. A. Lynch, and L. J. Stockmeyer. Consensus in the pres-
ence of partial synchrony.Journal of the ACM, 35(2):288 – 323, April
1988.

[4] A. Haeberlen, P. Kouznetsov, and P. Druschel. The case for Byzantine
fault detection. InProceedings of HotDep’06, Nov 2006.

[5] R. Mahajan, D. Wetherall, and T. Anderson. Understanding BGP mis-
configuration. InProceedings of ACM SIGCOMM, Sep 2002.

[6] P. Maniatis and M. Baker. Secure history preservation through time-
line entanglement. InProceedings of the 11th USENIX Security Sym-
posium, San Francisco, CA, Jan 2002.

[7] A. Mislove, A. Post, A. Haeberlen, and P. Druschel. Experiences in
building and operating ePOST, a reliable peer-to-peer application. In
Proceedings of EuroSys 2006, April 2006.

[8] Y. Rekhter and T. Li. RFC 1771: A border gateway protocol 4(BGP-
4). Mar 1995.

[9] A. R. Yumerefendi and J. S. Chase. The role of accountability in de-
pendable distributed systems. InProceedings of HotDep’05, Jun 2005.

3


