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Two Views of the World

Work on distributed computing and on cryptography has assumed

agents are either “good” or “bad”

good agents follow the protocol

bad agents do all they can to subvert it

Game theory assumes

all agents are rational

they try to maximize their utility

Both views make sense in different contexts

We want to combine them
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Secret Sharing

Agent

�

has a secret � (an integer) that she wants to share among �

other agents in such a way that any � of them can reconstruct it.

Shamir’s protocol (1977):

Agent

�

chooses a polynomial

�

of degree �� �

with

�� � � 	 �.
Agent

�

tells

��
 �

to agent




,


 	 ���   � �

��
 �

is agent




’s share of the secret

Any subset of � agents can pool their shares and reconstruct

�

,

and hence

�� � �

.

No subset of size
� � can figure out the secret.
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Rational Secret Sharing

Why do we want protocols where � agents can reconstruct the secret?

Implicit assumption: up to �� � agents may be “bad”, and may

not follow the protocol

The rest of the agents are “good”, and follow the protocol

Bad agents can’t prevent good agents from recovering the secret.

The partition into “bad” and “good” is not always appropriate.

A possibly better assumption:

agents aren’t bad or good, just rational.

they have preferences, and try to maximize their expected utility
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Preferences

Assume each agent

�

’s preferences are such that

getting the secret is better than not getting it

secondarily, the fewer of the other agents that get it, the better

These are not the only possible preferences, but they are reasonable.
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Why Secret Sharing is Important

Secret sharing is an interesting problem in it’s own right, but perhaps

more importantly

it is critical for multiparty computation

privately computing a function of inputs given to the agents

it is in a sense a complete problem for implementing mediators

If we can implement the secret sharing mediator under certain

conditions, then we can implement a mediator under the same

conditions
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An Impossibility Result

Claim: Rational agents won’t broadcast their shares.

All results in the first half of the talk are joint with Vanessa Teague.

Proof: Consider agent

�

:

If �� �

other agents send him their shares, he can compute the

secret; otherwise he can’t.

His action has no influence on this

If exactly � � �

other agents send their shares, then sending his

share enables other agents to compute the secret.

Bottom line: sending a share is weakly dominated by not sending:

it’s never better and sometimes worse
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Further Impossibility

Theorem 1: No protocol with bounded running time where some agents

learn secret survives iterated deletion of weakly dominated strategies.

Proof: In the last round, not sending a message weakly dominates

sending (just as in previous argument)

Can delete strategies where message is sent in last round

Once these are deleted, can delete strategies where messages

sent in second-last round

Continue deleting strategies by backward induction

This is iterated deletion

The actual argument is much more subtle.
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A Possibility Result

Theorem 2: There is a randomized protocol for secret sharing with

constant expected running time that

(a) is a Nash equilibrium

No agent has any incentive to deviate, even if he knows

everyone else’s strategy

(b) survives iterated deletion of weakly dominated strategies
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Multiparty Computation

Now assume that each agent has a secret input.

Goal: to compute some function of that input, without revealing any

information other than the function’s output.

Just as if a trusted mediator had computed the function

Example: secret input is salary, the function computes highest salary.

There are protocols for multiparty computation, assuming that less than

or (depending on underlying assumptions) of agents are bad

Again, the good/bad dichotomy is often inappropriate
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Results on Multiparty Computation

Theorem 3: No protocol for multiparty computation with bounded

running time survives iterated deletion of weakly dominated strategies.

Not surprising, in light of earlier result.

But all the protocols for multiparty computation in the literature

have a commonly known upper bound on the number of steps.

Theorem 4: Every function

�

that can be computed by rational agents

with a trusted mediator can be computed without one.

We use the protocol for secret sharing as a building block.

(Shoham-Tennenholtz:) Parity can’t be computed by rational

agents with a trusted mediator
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Idea of Protocol

[Goldreich-Micali-Wigderson:]

Consider a circuit for comput-

ing function

 

:

!" !# !$ !&%' ' '( ( ( ( ( () ) )
) ) )) ) ( (

) ) )
 * !"+ ' ' '+ !,% -

Want each agent to have a share of value of each node in circuit

Each agent sends a share of its input to all other agents.

At the end, each agent has a share of

Agents use rational secret sharing to learn

If agent has incentive to lie about its input, then it could have lied

the same way with the mediator
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Dealing with Collusion

Remainder of talk covers joint work with Ittai Abraham, Danny Dolev,

and Rica Gonen

Nash equilibrium tolerates one defection.

It’s perfectly consistent with Nash equilibrium that two agents can

do better by colluding

lots of examples in practice:

airline ticket pricing

unions

. . .
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:

-Resilience

A

;

-resilient equilibrium tolerates deviations by coalitions of size

< ;

.

if any coalition

=

with

> = > < ;

deviates from the equilibrium, then

not everyone in

=

is better off.

Studying coalition resistance goes back to Aumann [1959]

Other notions have also been considered

Our results apply to them too

There is always a Nash equilibrium (= 1-resilient equilibrium)

Some games do not even have 2-resilient equilibria

We provide

;
-resilient protocols for secret sharing

Then use protocol to implement any mediator using cheap talk.
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Idea of Construction

Start with a

?

-resilient protocol for rational secret sharing with a

mediator

Assume for this talk that shares are signed (we don’t need this)

This means that lies about initial shares are detected

Then remove the mediator, using ideas from multiparty

computation

The multiparty computation uses secret sharing as a

subroutine, but we show there is no circularity

Same ideas used to do

?
-resilient implementation of any mediator.
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A Solution With a Mediator

Suppose

@

of degree AB C

. Assume wolog

@DE F

(the secret) is not 0.

In stage 0, each agent

G

sends its secret share
@D G F

to mediator

The mediator computes

@

In stage , if the game is not over, the mediator

chooses ( to be determined) and

random polynomial of degree such that

computes and sends to each agent

The players then share their shares and compute .

if , then ; the game is over

if , the agents learn nothing; go to stage .
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(

WYX L RZ K N
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A Solution With a Mediator

Suppose

_

of degree `a b

. Assume wolog

_cd e

(the secret) is not 0.

In stage 0, each agent

f

sends its secret share
_c f e

to mediator

The mediator computes

_

In stage g hd

, if the game is not over, the mediator

chooses i j kd l b m

(

nYo c ip b e
to be determined) and

random polynomial q r of degree `a b

such that q r c d e p d

computes

s r p i _t q r and sends

s r c f e

to each agent

f

The players then share their shares and compute

s r

.

if

s r cd e up d
, then

s r cd e p _c d e

; the game is over

if

s r cd e p d
, the agents learn nothing; go to stage gt b

.
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Why This Works

There is no advantage to lying about the initial value.

Shares are signed, liars are caught.

There is no advantage to not revealing your share. Two reasons:

If , then you do not learn the secret, but are caught

If is small enough, it doesn’t help anyway.

Choice of depends on relation of to .

There is no advantage to lying about your share

If , , then other players (wrongly) stop playing

If is small enough the secret can be reconstructed anyway

Reed-Solomon decoding
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Removing the mediator

We replace the mediator by using multiparty computation

Protocol uses � out of � secret sharing

the choice of � depends on

the size

�

of coalitions we want to tolerate,

whether we have cryptography available

whether we know the exact utility

Rational agents do not gain during circuit evaluation phase

Agents reveal shares during secret-sharing phase because

may get caught, learn no information (depends on

�Y� �Y� � � �

)

They gain no advantage in any case (if � is small)
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Resilient Multiparty Computation

Theorem 5:

(a) If

� ��� �, there is a

�

-resilient multiparty computation protocol

with expected running time 2.

(b) If and utilities are known, there is a -resilient multiparty

computation protocol with expected running time 2.

(c) if , utilities are known, and 1-way functions exist, there is a

-resilient multiparty computation protocol with constant expected

running time (depends on utilities) and error probability.

This result uses cryptography; is the probability that the

cryptography is “broken”
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Immunity

In large systems, there are certainly some agents who won’t respond to

incentives, perhaps because they

have “unexpected” utilities

are irrational

have faulty computers

A protocol is -immune if the payoffs of “good” agents are not affected

by the actions of up to other agents.

Somewhat like Byzantine agreement in distributed computing.

Good agents reach agreement despite up to faulty agents.

A -robust protocol tolerates coalitions of size and is -immune.
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Trusted Mediators

Trusted mediators make life easier:

for multiparty computation

for negotiation

to achieve improved outcomes in many games

If we can get a good outcome with a mediator, can we get the same

outcome without the mediator?

This is the goal of the multiparty computation protocols
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Implementing A Mediator

Consider the following mediator for secret sharing/multiparty

computation: mediator in the case of secret sharing

tell the mediator the truth; the mediator sends out the secret

Our earlier results give conditions under which we can implement this

mediator in a robust and resilient way, using “cheap talk”.

Key observation: Secret sharing is essentially a complete problem—if

we can do share secrets, we can implement a mediator!

When we need to know utilities, need a “punishment strategy”

E.g., a punishment in secret sharing is to quit playing
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Upper Bounds

Theorem 6: Suppose that ® is a

¯°¬± ² ³

-robust protocol using a

mediator. There is a

¯ °¬± ²

)-robust implementation of ® using cheap talk

(a) If

´ ¯ ° µ ² ³�¶ · even if exact utilities are not known; protocol is

bounded and does not require punishment.

(b) If

¸° µ ´ ²¶ · and there is a punishment strategy; protocol is

randomized, has finite expected running time

(c) If

¸° µ ¸ ²¶ · and there is a broadcast channel, with an ¹ error

(d) If

° µ ²¶ ·, 1-way functions exist, and there is a punishment

strategy, with an ¹ error

Key idea: reduce to secret sharing

µ

multiparty computation.
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Matching Lower Bounds

Theorem 7:

(a) If

º »¼ ½ ¾ ¿À Á, Â

a

»¼¬Ã ¾ ¿

-robust strategy using a mediator that

cannot be implemented without a mediator without knowing the

utilities/without a punishment strategy/in bounded time.

(b) If

Ä¼ ½ º ¾À Á, Â

a

»¼¬Ã ¾ ¿

-robust strategy with a mediator that

cannot be simulated without a mediator, even if there is a

punishment strategy and utilities are known.

(c) If

Ä¼ ½ Ä ¾À Á . . .

(d)

¼ ½ ¾À Á . . .

Some proofs exploit techniques used in lower bound proofs for

Byzantine agreement.
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Lower Bounds on Running Time

Theorem 7: If

Å ÆÇ ÅÈ ÉËÊ , then

(a) there is a game

Ì

with a

Í Æ¬Î È Ï

-robust strategy with a mediator that

cannot be implemented by any deterministic cheap talk strategy.

(b) for all

Ð

, there is a game

ÌÒÑ with a

Í Æ¬Î È Ï
-robust strategy with a

mediator that cannot be implemented using cheap talk with

expected running time

Ó Ð

.

(c) there is a game

Ì

with a

Í Æ¬Î È Ï
-robust strategy with a mediator

such that for all Ô, there exists

ÐÖÕ such that we cannot implement

the mediator with Ô error with a cheap-talk strategy that runs inÓ Ð Õ steps.
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Related Work

Lots of related work on implementation in both CS and game theory:

work of Forges + Barany [

×

1990] gives Theorem 6(a) with

ØÚÙ Û

work on secure multiparty [BGW88,CCD88] computation gives

Theorem 6(a) for all

Ü Ø¬Ý Þ ß

!

Ben-Porath (’03): Theorem 6(b) with
ØÚÙ Û

(no crypto, known

utilities, but does sequential equilibrium)

Heller (’05): extends B-P to all
Ø
; proves matching lower bound

Theorem 7(a) shows that B-P’s strategy is incorrect (because

bounded); Heller’s has problems too

Rabin/Ben-Or’s work gives Theorem 6(c) for all

Ü Ø¬Ý Þ ß
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More Related Work

Urbano-Vila (’04) and Dodis-Halevi-Rabin (’00) get Theorem 6(d) ifàÚá â

, ãá ä

Theorem 7(a) shows UV’s strategy is incorrect

Izmalkov, Micali, Lepinski; Lepinski, Micali, Shelat (’05) prove

general implementation results assuming strong primitives

(envelopes and ballot-boxes) that cannot be implemented over

broadcast channels

Lysanskaya-Triandopoulos: Theorem 6(c) for

à á â
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Conclusions

Issues of coalitions and fault-tolerance are critical in distributed

computing, game theory, and cryptography.

By combining ideas from all three areas we can gain new insights.

Better understanding of role of cryptography in games.

Better understanding of cheap talk

Should we assume that it is common knowledge when the

cheap talk phase has ended?

Resource bounded equilibria

Synchrony vs. asynchrony

We have not considered the asynchronous case here.

Somewhat surprisingly, similar results seem to hold
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