
1

FuDiCo III, June 2007

Large-Scale Byzantine Fault
Tolerance: Safe but Not Always Live

Petr Kouznetsov, Max Planck Institute for Software Systems

Join work (in progress!) with:

Bobby Bhattacharjee, Univ. Maryland
Rodrigo Rodrigues, INESC-ID and Tech. Univ. Lisbon

2

Big picture

Choosing an adequate model to implement a
system is crucial

 Optimistic: the system is very efficient but likely
to fail

 Conservative: the system is very robust but
inefficient (or impossible to implement)

How to find a good balance?

2

3

Prepare for the worst and hope for the
best

 How good is the best and how bad is the worst?
Best case – failures are few
Worst case – almost everything can be faulty

 What do we mean by “prepare” and “hope”?
The system is very efficient in the best case
The system never produces inconsistent output (even

in the worst case), but …

May become unavailable in the (rare) “intermediate”
case

4

The context: clients and services

 A client issues a request to a service
 The service executes the request and returns a

response to the client

response

request

3

5

The fault-tolerant computing challenge

 Even if some system components (clients or
service units) fail, the correct clients still get
something useful from the service

 Failures can be Byzantine: a component can
arbitrarily deviate from its expected behavior

response

request

6

The replication approach
[Lamport, 1990; Schneider, 1990]

 Replicate the service
 Correct clients treat the distributed service as one

correct server:
Requests are totally ordered, respecting the precedence

relation (safety)
Every request issued by a correct client is served (liveness)

 Byzantine fault-tolerance (BFT) [Castro and Liskov,1999]

response

request

4

7

BFT: costs and optimistic assumptions

 A request (a batch of requests) involves a three-
phase agreement protocol to be executed

 A large fraction (more than 2/3) of the service
replicas (servers) must be correct
Ok if faults are independent (hardware failures)

Questionable for software bugs or security attacks
An obstacle for scalability (unlikely to hold for large

number of replica groups)

8

Why 2/3?
 Safety: every two requests should involve at least

one common correct server

A goes first B goes first

A B

5

9

Why 2/3?

n – number of servers
x – quorum size (number of servers involved in processing a

request)
f – upper bound on the number of faulty servers

2x-n ≥ f+1 or x ≥ (n+f+1)/2 (safety)
 => n ≥ 3f+1

n-f ≥ x (liveness)

x x

2x-n

n

10

Trading off liveness for safety

 Every request involves at least (n+f+1)/2 servers
=> safety is ensured as long as f or less servers
fail

 Liveness will be provided if not more than
n-(n+f+1)/2= (n-f-1)/2 servers fail

 n=10, f=7: liveness tolerates at most one failure

6

11

Trading off liveness for safety

 f<n/3
Both safety and liveness are ensured with quorums of

size 2/3n+1
 f=n-1

Safety: n-1 or less faulty servers
Liveness: no fault-tolerance at all

12

Unexpected benefits!

 Large quorums may make things faster!

 Very fast in the good case
 Very slow (unavailable) in the (rare) intermediate

case
 But always correct

 Holds only for the special case f=n-1?

7

13

Using the trade-off

 A “bimodal” failure model?
Few failures is the common case
Many failures is a possible (but rare) case (f >> n/3)

● Software bugs and security attacks?

 Modified BFT looks like a perfect fit!

14

Challenge: scalable BFT

 Farsite, Rosebud, OceanStore,…
All of them use multiple BFT groups
A group is responsible for a part of the system state (an

object)
Each group is supposed to be safe and live (the 2/3

assumption is not violated)
 The more groups we have - the more likely one of

them fails: the system safety is in danger

 Going beyond 2/3 per group?

8

15

Using the trade-off: scalable BFT

 The (large) bound on the number of faulty servers
per group is never exceeded

 Each group runs the modified BFT: can be seen
as a crash-fault processor

16

Addressing liveness

 Primary-backup: from p to p2

Every object is associated with a pair of groups
 Speculative executions [Nightingale et al.,2005]

Primary group produces tentative results
Backup group assist in committing them

9

17

Normal case

Client
 Run operations on the primary group tentatively
 Check whether the tentative results turned into

definitive (the state was successfully transferred
to the backup group)

Backup-primary
 Periodically transfer the system state from

primary to backup

18

Liveness checks and recovery

Takeover protocol: when the primary fails the backup takes
over the speculative execution

 Primary fails: backup takes over in speculative executions

 Backup fails: select a new backup

 Configuration changes: elect new primary and backup (at
least one of the old ones must remain live until the state is
transferred)

10

19

Properties

 Safety: always
 Liveness: as long as at least one group is

available

20

Related work
 BFT, Castro and Liskov, 1999
 “Scalable” BFT: OceanStore, 2000; Farsite, 2002;

Rosebud, 2003,…

 Safety-liveness trade-offs, Lamport, 2003

 Fork consistency, Li and Mazieres, 2007
 Singh et al., 2007

 Speculative executions, Nightingale et al., 2005

 Fault isolation, Douceur et al., 2007

11

21

Conclusions and Future

 Safety at the expense of liveness [HotDep07]
Security and tolerance to software errors
Scalability

 Safety + conditional liveness
Crash fault computing: safe algorithms + failure detectors
Software transactional memory: optimistic STMs + contention

managers

 Does this stuff work?
Fault model analysis
Multiple backups: from p2 to pk

Paxos?
 Implementation

