
MAD Ensembles Are Saner Than You Think

Petros Maniatis, Intel Research Berkeley, USA

1. INTRODUCTION
Today’s and tomorrow’s multiprocessing or distributed comput-

ing deployments comprise large ensembles of elements such as
processors in data centers, sensors in a monitoring deployment,
or even actuators in a robotic swarm. Increasingly, these ensem-
bles are federated across administrative domains: one can readily
patch his very own mini PlanetLab tothe PlanetLab and exchange
resources at a looser contractual connection than via full consor-
tium participation; more pervasively, the Internet operates thanks to
the ability of over 30000 (competing) organizations to interconnect
their router ensembles in a patchwork of autonomous forwarding
systems. In the near future, it is not implausible to imagine two
competing companies that federate their data analysis resources to
grow their aggregate network monitoring reach, or a reluctant mil-
itary alliance that combines unmanned aerial vehicle fleets over a
common staging area to increase observational accuracy.

Nevertheless, programming such ensembles typically focuses on
the individual, specifying the behavior of each as if it were an iso-
lated, lone computer. Though engineers have survived this practice
at small scales, they are likely to encounter towering hurdles when
programming larger, more heterogeneous, and less mutually trust-
ing ensembles, for several reasons.

First, an ensemble’s goals tend to beglobal, whether they involve
the task to be performed (“track the path of each packet through
Internet routers”) or any notion of quality and correctness to be
achieved (“obtain at least 90% of a path with probability at least
90%”). Translating manually global specifications to local actions
is not only complex and extremely error-prone, but also rife with
subtle opportunities for rational or Byzantine misbehavior, result-
ing in brittle systems and unenforceable service level agreements.

Second, however skilled a programmer is at mapping global goals
to individual elements’ behaviors under given expected conditions,
in practice conditions change, often requiring a different approach
from the one assumed by the programmer. For example, a loosely
coupled monitoring infrastructure that is well built for a higher jit-
ter network may be entirely ill-suited to a network that trades off
higher loss rates for lower jitter. Given the business-dictated need
for opacity across administrative boundaries, a monitoring partici-
pant would be left with two equally unsatisfactory choices: either
use a common, globally sanctioned as “correct” implementation
that handles a middle-of-the-road network suffering the inefficien-
cies involved, or build a custom, efficient implementation with the
requisite cost of convincing its peers it is not cheating.

Third, even if all convincing can be done, customized implemen-
tations of a shared task or protocol may fail, violating the agreed-
upon correctness conditions in different and interesting ways, mak-
ing it almost impossible to reason about how to recover compliance
– e.g., incrementally find an alternate computation path to complete

the task – without restarting from scratch.
Layering has been the textbook solution to such problems be-

fore: specify common interfaces for each functionality class and
leave the implementation details, including local optimizations, to
the implementers. Unfortunately, the difficulty of producing good,
standards-compliant implementations of layers usually leads to one-
size-fits-all solutions that either do more than is necessary (e.g.,
mandate communication over TLS even between directly connected,
mutually trusted parties) or less than is sufficient (e.g., forgo au-
thentication among BGP routers altogether because not everyone
belongs to a common Public Key Infrastructure). What is more,
layering usually imposes a rigid stack of functionalities (applica-
tion on top of transport on top of routing) which often conflicts with
what the system designers could optimize for (e.g., application-
controlled routing on top of transport) [3].

2. ENSEMBLE PROGRAMMING FOR MAD
SYSTEMS

The thesis of this note is that the problem lies in the venerable
habit of designing ensembles from the bottom up, from the layer, to
the stack, to the computer, to the population. We advocate instead
that to design, build, and monitor large, multiple-administrative-
domain computing ensembles we need top down programming frame-
works. In such a framework, the global task and its desirable prop-
erties are explicitly and systematically specified by the programmer
in some formalism. One approach is to treat the whole ensemble
as a single, gigantic computer made up of the ensemble’s individ-
ual components. The specification can be checked automatically
against its global conditions of quality or correctness within this
abstract environment (as per traditional theorem proving systems);
if the check fails at this highest level of abstraction, there is proba-
bly no need to start discussing transport protocols, specific crypto-
graphic primitives, or processor power levels.

Translation from the global specification to more concrete, lower-
level specifications can be done automatically, much like compila-
tion for typical programs or planning for database queries, perhaps
at multiple intermediate granularities. For example, it may be help-
ful to partition the global abstract computer to a set of administrative-
domain-specific components, since under most scenarios, what hap-
pens within an administrative domain is not only customized to fit
local needs, but may also be private. The breakdown of the high-
level functionality and required properties into domain-local func-
tionality and properties also allows a relaxation of the threat model
from a full-blown MAD environment across domains to an honest-
operator-faulty-software model within a single domain. Knowl-
edge of particular domain interrelationships such as degrees of trust
can inform this refinement on a case-by-case basis. Similarly, the
translation can move to smaller subgroups, such as network locality



groups to optimize communication patterns, single-rack groups to
optimize heat dissipation, and single processor cores to take advan-
tage of shared processing structures. At the bottommost level, the
ensemble’s individual elements are programmed, each in its own
machine language.

Along the translator, an optimizer can be invaluable in this pro-
cess, both during “compile time” and during runtime tuning. Whereas
translation occursvertically through refinement, optimization can
operatehorizontally, collapsing redundancy, rearranging computa-
tions to improve communication patterns, changing implementa-
tions of packaged functionalities (e.g., from a proactive to a reac-
tive routing protocol) to match impedance with other choices (e.g.,
reactive routing with lazy consistency enforcement).

Finally, the execution engine can take the final runtime, verify
any proofs of correctness supplied by the translator and optimizer,
and execute the system, ensuring that adaptation is triggered as con-
ditions change.

The need for explicit, portable assurances, especially within the
context of MAD ensembles, is unavoidable and challenging through
all stages of the process. At the specification stage, the language
must be expressive enough to describe access and flow control re-
strictions (e.g., “tax IDs should not flow through ISP X’s wires in
the clear”), and priorities among different optimization axes (e.g.,
“use as little memory as possible and then protect from information
leak to the extent achievable”). At the optimization stage, it must
be possible to keep track of how each program transformation –
partitioning, replication, or reordering – affects the constraints of
the specification (e.g., split a private, two-party computation with-
out leaking information across the parties). At the execution stage,
the system must enforce the semantics of the specification, e.g., en-
suring that private information is not placed in the clear on shared
memory; it must also make it possible to debug, so that a program-
mer can figure out what is going on without having to compro-
mise any guarantees made by the system (e.g., restart a deadlocked,
privacy-preserving computation without having to compromise the
privacy of inputs or partial outputs).

Deep down, this vision is founded on a simple (repeatedly redis-
covered) principle: specifications should be layered but runtimes
need not be. Structure among functionalities helps human design-
ers separate their concerns in relevant units; however, the reali-
ties of performance and fault-tolerance optimizations break layer
boundaries invalidating the benefits of abstraction. Perhaps it is
time to reconsider having the cake (of layered specifications) and
eating it too (by producing safe yet optimized, layerless runtimes).

3. MAD DECLARATIVE ENSEMBLES
We have been pursuing this agenda in the context of the P2

Declarative Networking Project [1]. In P2, a distributed applica-
tion is expressed declaratively in OverLog [5], a logic language
based on Datalog. The whole ensemble is treated as a distributed
database, its algorithm expressed as a continuous query over all
elements’ changing states. A compiler translates the logic into
event-condition-action rules performed on single elements, opti-
mizes them to minimize data movement (a la System R’s optimiza-
tions [8] with network costs included), and plans the resulting run-
time as a software dataflow graph, similar to Click [4]. Execution
interprets the dataflow graph.

Our current research in the P2 project pursues the goals of the
MAD ensemble programming agenda, along multiple paths. First,
on the language front, we are growing P2’s declarative specifica-
tion language (OverLog) to include primitives about authentication
(e.g., Binder’s “says” construct [2]), information flow (such as de-
centralized labels [6]), and consistency requirements (such as lin-

earizability or session guarantees). This allows OverLog’s expres-
sivity to capture not only algorithmic specifications but also the
security and fault-tolerance requirements of the specified applica-
tion.. Furthermore, we are strengthening OverLog’s type system to
make the language type safe.

Second, we are evolving the P2 compiler and optimizer so that,
in addition to dealing with the new language features above, they
can provide assurances on the correctness of output runtimes. We
are exploring proof-carrying code [7] as an approach to allow pro-
grams from potentially untrusted compilers (especially during run-
time adaptation) to be shared across domains. P2’s logic-based
specification language enables a straightforward connection to a
theorem prover for the generation of proofs that go beyond simple
memory safety to global properties such as resource quota com-
pliance. We are also adapting the techniques of secure program
partitioning [9] to our compiler’s existing (insecure) program parti-
tioning transformations, taking advantage of any information flow
annotations. The compiler also encapsulates parts of a program’s
specification in known fault-tolerant constructs such as Byzantine-
fault tolerant replicated state machines to ensure strict consistency
guarantees for sensitive parts of a specification.

Third, we are migrating the remaining imperative components of
the runtime (as well as the debugging and adaptation modules) to a
type-safe system language (we are currently considering OCaml);
large portions of the runtime adaptation module as well as the com-
piler and optimizer are themselves written in OverLog, simplifying
this process. The goal is to eventually make the whole P2 software
stack certifiably memory-safe.

Though exciting and promising, these early steps do not make
the scope of the MAD ensembles agenda any less ambitious (or
mad). Our path is not dictated by feasibility but, rather, by ne-
cessity. As cookbook solutions to specific problems for untrusted
environments mature, thanks in the largest part to the efforts of
the distributed systems and dependability communities, we hope
our findings will help to give programmers the tools they need to
design, program, verify, and debug large, complex, heterogeneous
deployments across administrative boundaries.

4. REFERENCES
[1] The P2 Project.

http://p2.berkeley.intel-research.net/.
[2] M. Abadi and B. T. Loo. Towards a Declarative Language and

System for Secure Networking. InNetDB.
[3] T. Condie, J. M. Hellerstein, P. Maniatis, S. Rhea, and

T. Roscoe. Finally, a use for componentized transport
protocols. InHotNets, 2005.

[4] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router.ACM TOCS, 18(3),
2000.

[5] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe,
and I. Stoica. Implementing Declarative Overlays. InSOSP,
2005.

[6] A. C. Myers and B. Liskov. Protecting privacy using the
decentralized label model.ACM Trans. on Software
Engineering and Methodology, 9(4), 2000.

[7] G. C. Necula and P. Lee. Safe Kernel Extensions Without
Run-Time Checking. InOSDI, 1996.

[8] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access path selection in a relational
database management system. InSIGMOD, 1979.

[9] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers.
Untrusted hosts and confidentiality: Secure program
partitioning. InSOSP, 2001.


