
Languages not Formats:
Tackling Network Heterogeneity Head-on

Timothy Roscoe, ETH Z̈urich, Switzerland

1 Introduction

The networking community’s response to all forms of het-
erogeneity in systems has traditionally been what might
be termedfixed abstraction:provide single static repre-
sentations that abstract away from the differences between
resources, domains, hardware, etc. At domain bound-
aries, these fixed representations (for example, an RSVP
resource description, or a BGP route advertisement) serve
as the basic units of cross-domain communication.

From the viewpoint of distributed computing (in partic-
ular federated systems) from 15 years ago, this approach
is hopelessly naive. Such a fixed schema, the argument
goes, forces different administrative domains to adopt the
same worldview, tends to encourage implementations to
all look the same or be supplied by a single vendor, and
makes it hard for any individual domain to innovate, un-
less the innovation is sufficiently incremental that it can
be represented in the existing framework.

However, in a world which has set great store by the
end-to-end argument, standardizing communication ab-
stractions has been more highly valued than decoupling
administrative domains. Arguably, this dogma is respon-
sible both for the success of the Internet, and the ossifica-
tion and stagnation it faces today.

Revisiting long-dead research into distributed federa-
tion concepts points out a different way forward: abstract
lessof the communication reality, and instead use aricher
representation to allow systems to comprehend more of
the heterogeneity they face, and handle it appropriately.

2 Example: GENI RSpecs

An excellent contemporary case of what can go wrong
with even carefully designed fixed-schema descriptions is
the Resource Specifier or RSpec in GENI [5]. The exam-
ple is significant for two reasons: it is a crucial element
of the current GENI architecture, and it aims to capture a
much richer range of resource objects than previous work
in networking.

RSpecs are specified in XML, using a schema defined
in XSD. They have three uses:advertisingthe availability
of resources,requestingresources that match a particu-

lar set of criteria, andpromisingresources, representing a
commitment of resources to a particular client.

GENI’s RSpecs are based for the most part on those
used internally in the successful Emulab testbed [7] for
describing resources. However, the Emulab environment
constitutes a single administrative domain, and indeed un-
til recently a single physical room. The format of the Em-
ulab resource description has evolved over the years as
Emulab’s functionality has expanded.

The difficulties facing the designers of GENI’s RSpec
are twofold: firstly, capturing upfront the richness of
possible GENI configurations (almost arbitrary combina-
tions of links, virtual machines, tunable radios, forward-
ing hardware, etc.) in a single XML schema, and sec-
ondly, expressing a complex request (which might be sat-
isfied by many configurations, with different levels of util-
ity to the client) in thesameformat using wildcards.

In both cases, the challenge is imagining in advance all
the possible things that must be expressible in an RSpec.
The resulting format can express these things, but little
else without explicit extensions. This circumscription of
expressivity is a property of formats, but not oflanguages.

3 Back to the Future: ANSA

In juxtaposition to GENI’s decision on a static format for
resource advertisements, requests, and commitments, it is
instructive to look at the ANSA trading model [3].

The Advanced Networked Systems Architecture or
ANSA was a synthesis of state-of-the-art techniques in
distributed computing in the late 1980s, and brought to-
gether results from a variety of previous research systems.
ANSA strongly influenced ISO RM-ODP [4], TINA, and
CORBA, and the ANSAware middleware was deployed in
a number of commercial settings.

ANSA was designed from the outset to encompass mul-
tiple, federated administrative domains, with possibly het-
erogeneous implementations, protocols, and local archi-
tectural features. Trading was the term used in ANSA for
the process by which service providers announced (orof-
feredresources like services, clients requested resources,
and offers and requests were matched together.

ANSA’s trading model may look somewhat outdated in

1



our post-XML world. For example, advertisements (“of-
fers” in ANSA terminology) only consisted of resource
type and an unstructured set of name-value pairs.

However, what is interesting is that ANSA viewed
viewed resource requests as aconstraint satisfaction prob-
lem. Instead of a simple template, ANSA clients submit-
ted a simple form of linear program over resource prop-
erties, in a declarative language. The trading service used
this to return thek best resource offers it knew about, with
the meaning of “best” being supplied by the client.

4 Languages not formats

For some reason, designers of networked systems have
always stuck to fixed formats for communication between
domains, but we argue that this position is pointlessly con-
servative today. We advocate using constraint satisfaction,
but going beyond ANSA and using rich, declarative lan-
guages to represent both resources and requests for them.

Extensible formats are in an important senseclosed:
there are clear limits on what can be expressed. Exten-
sions require agreement between domains before they can
be interpreted. In contrast, languages supporting abstrac-
tion areopen– a language is generative of an open range
of possible descriptions, and unforeseen concepts can be
expressed without extending the language itself.

Indeed, language-based representation of resources,
policies, etc. is appearing in some areas of distributed sys-
tems and networking: RDF might be viewed as a (rather
primitive) logic language, and security policies are in-
creasingly expressed in a rich, declarative form because
security researchers have realized that expressivity leads
in the bigger picture to stronger and not weaker security.

The area opened up by the realization that inter-domain
communication is more of a linguistic problem than one
of protocols or formats opens up a much more fruitful area
for progress.

Expressing state, requests, and policies in a language
entails runtimes to interpret such a language. A runtime
must ensure safety and liveness – a linguistic expression
must not cause a system compromise, nor should it tie
up resources in an uncontrolled manner. We expect such
challenges to be met with a combination of automated
analysis techniques and resource control mechanisms fa-
miliar in the field of OS design. We favor the use of
declarative logic languages because they are both concise
and amenable to both sets of techniques.

Furthermore, alingua francafor inter-domain commu-
nication and representation is not in itself a solution to
our problems. There will be a need for conventions that
allow the language to be used conveniently between do-
mains without requiring much prior exchange of informa-
tion. The key observation, however, is that a language

approach gives us far greater richness of expression and
freedom to represent complex structures or policies than
the limited formats we are used to designing.

5 Conclusion

The early designers of networks and associated proto-
cols may have considered the use of constraint satisfac-
tion techniques and rich data descriptions using logic lan-
guages (Prolog appeared as early as 1972 [2]), but either
this didn’t happen or it was ruled out as an approach, most
likely because of complexity and lack of processing re-
sources. As a result, today we have an impoverished set
of ways of describing computer networks.

It is time to reconsider this position. Today the world
is a more complex place, and the radical heterogeneity of
hardware resources, application requirements, and service
offerings cannot be handled by fixed abstractions. Pro-
cessing resources in even quite simple network elements
are now quite capable of efficiently executing the unifica-
tion algorithm on quite complex expressions. If the GENI
vision becomes a reality, either as a platform for network
architectures [1] or a way to do away with networksper
seentirely [6], a richer and more expressive representation
of the world is a basic requirement for communication be-
tween domains of all kinds.

References
[1] T. Anderson, L. Peterson, S. Shenker, and J. Turner. Overcoming

the internet impasse through virtualization.Computer, 38(4):34–41,
2005.

[2] A. Colmerauer and P. Roussel. The birth of Prolog. In T. J. Bergin
and R. G. Gibson, editors,History of Programming Languages, vol-
ume 2. ACM Press, 1996.

[3] J.-P. Deschrevel. The ANSA Model for Trading and Federation.
ANSA Architecture Report APM.1005.01, Architecture Projects
Management Limited, July 1993.http://www.ansa.co.uk/
ANSATech/93/Primary/100501.pdf.

[4] International Telecommunication Union.ITU-T Recommendation
X.901 / ISO/IEC 10746-1: Information tec hnology – Open
Distributed Processing – Reference model: Overview, 1st edition,
December 1998. Available online athttp://standards.iso.
org/ittf/PubliclyAvailableStandards/c020696_ISO_

IEC_10746-1_1998(E).zip.

[5] L. Peterson and J. Wroclawski. Overview of the GENI Architec-
ture. GENI Design Document 06-11, GENI Facility Architecture
Working Group, January 2007.

[6] T. Roscoe. The End of Internet Architecture. InProceedings of
the 5th Workshop on Hot Topics in Networking (HotNets-V), Irvine,
CA, USA, November 2006.

[7] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,M. New-
bold, M. Hibler, C. Barb, and A. Joglekar. An integrated experimen-
tal environment for distributed systems and networks. InProc. of the
Fifth Symposium on Operating Systems Design and Implementation,
pages 255–270, Boston, MA, Dec. 2002. USENIX Association.

2


