
1

Going Beyond Tit-for-Tat:
Designing Peer-to-Peer

Protocols for the Common Good

Ryan Peterson
Emin Gün Sirer

Cornell University

Introduction
• Current crop of distributed systems are designed for

an agent that is

– selfish
– operates in isolation with no concept of history
– has no concept of communal good



2

State of P2P Practice

• Tit-for-tat is the dominant design
paradigm for many distributed systems
– no client enters a transaction unless it has

something to gain
• Easy to implement

– direct transfer of resources
• Easy to reason about

– every transaction is mutually beneficial

BitTorrent

• Peers exchange blocks with other peers
that have provided them with high
bandwidth in the past

• Optimistic unchoking provides discovery
of other peers



3

Samsara

• Backup system where peers store data
for each other

• Peers store data on other peers in
exchange for claims

• Claims may be traded freely among
peers

• Additional mechanisms like spot check
enforce compliance

SHARP

• Resource management system where
peers exchange CPU cycles

• Every node issues its own tokens to
other nodes in exchange for service

• Tokens may be redeemed in the future
– tokens bind peers because they are

redeemable by a specific peer
– requires coupling with a reputation system



4

Tit-for-Tat

• Fundamental basis is barter
– binds the pair of peers that will exchange

resources
• Future claims and currency systems

loosen the binding
– exchange might be immediate or delayed
– claims may be binding or delegated

Problems with Tit-for-Tat (1/2)

• Requires synchronized demand
– A and B must have resources to offer each other

to enter into a transaction
– in BitTorrent, slow startup phase due to lack of

resources to trade
• Delayed exchange systems address this

problem, but introduce new ones
– bankruptcy, debtor might default
– inflation, claims lose value



5

Problems with Tit-for-Tat (2/2)

• Valuation is very difficult with
nonhomogeneous goods
– in BitTorrent, seeding in swarm A provides no

benefit in swarm B
• Requires discovery

– in big swarm, difficult to match peers optimally
• Requires policing

– uncoordinated actions create system-wide
vulnerabilities

– in BitTyrant and BitThief, peers exploit lack of
global knowledge

A Utopian Alternative



6

Common Good Paradigm

• Systems where peers act to uphold a
global objective function
– peers may temporarily act against their

immediate interests
– a good global objective function ensures

that in the long term every peer receives a
benefit

Tit-for-Tat vs. Common Good

• In tit-for-tat, peers are limited to
behaviors that are in line with their
immediate self-interests
– some points of operation may be

unreachable
• Instead, compute the optimal point of

operation and incentivize peers to
operate at that point



7

Operating State Space

common good

reachable by
tit-for-tat

Challenges

• Compute the common good

• Enforce behavior to uphold the common
good



8

How?

• Define a system-wide objective function
for the common good
– application-specific

• Aggregate global system state to
compute optimal point
– incentivize peers to report their state

• Police peers
– ensure peers operate for the common good

AntFarm: Content Distribution
for the Common Good

• Content distribution is a critical application
– accounts for most of Internet bandwidth usage
– many entities looking to distribute media

• A system for distributing multiple media files
– swarming downloads similar to BitTorrent
– optimal use of bandwidth for multiple swarms

• Common good objective function
– minimize average file download time



9

A Token-based Solution

• Authority issues peers spend-once
tokens

• Peers exchange tokens with other
peers in exchange for resources

• Peers are rewarded for sending spent
tokens back to the authority

• Authority receives updates from peers!

Conclusions

• Systems where every transaction needs
to be mutually beneficial are
fundamentally limited

• Designing for the common good can
move the system to an optimal point of
operation not otherwise reachable



10


