The Virtual Memory
Abstraction

Physical Memory Virtual Memory

@ Unprotected address space @ Programs are isolated

Memory MClnClg emen.'- o Limited size @ Arbitrary size

@ Shared physical frames @ All programs loaded at “0”

@ Easy to share data @ Sharing is possible

UNIPROGRAMMING MULTIPROGRAMMING
WITHOUT PROTECTION WITHOUT PROTECTION

000000 000000
Linker-loader

Application Application 1

 change addresses of loads,

BNOIdPEI@®Ses stores jump to refer to where
the program lands in memory

¢ Only one application at a ® multiple programs in s
time memory Application 2

i . ey ® no hardware support

¢ Trivially achieves illusion of _
dedicate machine © 1o protection

0S - applications can trump

each other

OS

FFFFFF

- applications can trump OS G

Implementing protection

@ Use hardware support
@ Two key ideas:
D Address Translation
> Physical vs. Virtual address spaces
D Dual Mode Operation

> Kernel mode vs. User mode

Address Translation

@ A function that maps (pid, virtual address)
into physical address

Virtual Physical

Advantages:

@ protection

@ relocation 563407
@ data sharing

@ multiplexing

Address spaces:
Physical and Virtual

@ Physical address space consists of the
collection of memory addresses supported by
the hardware

@ Virtual address space consists of the
collection of addresses that the process can
“touch”

@ Note: CPU generates virtual addresses

Protection

@ At all times, the functions used by different
processes map to disjoint ranges

Relocation

@ The range of the function used by a process
can change over time

Data Sharing

@ Map different virtual addresses of different
processes to the same physical address

Relocation

@ The range of the function used by a process
can change over time

Multiplexing

@ The domain (set of virtual addresses) that
map to a given range of physical addresses
can change over time

Multiplexing

@ The domain (set of virtual addresses) that
map to a given range of physical addresses
can change over time

Multiplexing

@ The domain (set of virtual addresses) that
map to a given range of physical addresses
can change over time

Multiplexing

® The domain (set of virtual addresses) that
map to a given range of physical addresses
can change over time

Multiplexing

@ The domain (set of virtual addresses) that
map to a given range of physical addresses
can change over time

One idea,
many implementations

@ base & limit

@ segment tfable

@ page table

@ paged segmentation
@ multi-level page table

@ inverted page table

Base

Memory

Exception

Logical po Physical 1560

addresses addresses [PS physicat

address

sbace
r

500 1000

Limit Base

Register Register

One idea,
many implementations

5 Its all just a lookup...
@ base & limit

Virtual Address | Physical Address

=] segmenf table 000000 430940
000001 56bb03
000010 240421

@ page table

@ paged segmentation

@ multi-level page table

@ inverted page table

FEFFFF

On Base & Limit

@ Contiguous Allocation: contiguous virtual
addresses are mapped to contiguous physical
addresses

@ Protection is easy, but sharing is hard

o Two copies of emacs: want to share code, but
have data and stack distinct...

@ Managing heap and stack dynamically is hard

o We want them as far as as possible in virtual
address space, but...

Contiguous allocation:
multiple variable partitions

05

@ OS keeps track of empty

blocks (“holes”)

@ Initially, one big hole!

@ Over time, a queue of

processes (with their

memory requirements) and

a list of holes

@ OS decides which process

to load in memory next

@ Once process is done, it
releases memory

Strategies for Contiguous
Memory Allocation

v First Fit

o Allocate first big-enough hole
v Best Fit

D Allocate smallest big-enough hole
® Worst Fit

D Allocate largest big-enough hole

Strategies for Contiguous
Memory Allocation

@ First Fit

o Allocate first big-enough hole
@ Best Fit

D Allocate smallest big-enough hole
® Worst Fit

D Allocate largest big-enough hole

Fragmentation

@ External fragmentation

o Unusable memory between

units of allocation

Fragmentation

@ External fragmentation

o Unusable memory between

units of allocation

@ Internal fragmentation

o Unusable memory within a

unit of allocation

Eliminating External
Fragmentation: Compaction

. 0S
P1

@ Relocate programs to
coalesce holes <

@ Problem with I/0

o Pin job in memory
while it is performing
1/0

o Do I/0 in OS buffers

Fragmentation

@ External fragmentation

o Unusable memory between
units of allocation

@ Internal fragmentation
o Unusable memory WH’N i

unit of allocation

Eliminating External
Fragmentation: Swapping

@ Preempt processes and
reclaim their memory

Suspended
queue

Semaphores/condition queues

@ Move images of
suspended processes
to backing store

swap in

swap out!

E Pluribus Unum E Pluribus Unum

@ From a user’s perspective, a process is a @ From a user's perspective, a process is a
collection of distinct logical address spaces collection of distinct logical address spaces

addresses within segment
We call these Code @ Holes in Virtual address

logical address Global vars space: a problem?

spaces segmen’rs @ Think of address as (s,0)
m o s is the segment number
o o is the offset within the
segment

Implementing Segmentation On Segmentation

Segment table Sharing a segment is easy!

. gt MAXsys
generalizes base & limit Protection bits control access
to shared segments

Memory

Exception

S

External fragmentation...

l [
i LOgiCdl PhySiCdl 1500 : %
addresses . D ddresees Each process maintains a

ps segment segment fable, which is saved
to PCB on a context switch

Fast?

3 Part of a segment in memory?
STBR How do we enlarge a segment?

Segment Table Base Register

How to avoid external
fragmentation?

@ Allocate memory in fixed-sized chunks (frames)
@ memory allocation can use a bitmap

@ Divide virtual address space in equally-sized
chunks (pages)

o typical size of page/frame: 512B to 16MB

® Contiguous pages must not map fo contiguous
frames

@ Alas, now we face internal fragmentation...

Speeding things up

Memory
Exception

no

page # frame #

TLB hit Physical

addresses

TLB miss

EAT: (1+€)a+(2+¢€)(1—c)

=2+4+e—a (a: hit ratio)

Basic Paging
Implementation

Memory

5 l o Exception

Logical no Physical
addresses N 0 addresses

yes j

P

roe]_|

Segment Table Base Register

Memory Protection

@ Used valid/invalid bit to indicate which
mappings are active

Protection
bits
=

== Caching

disabled

\ Referenced
FT—Modifed

\anid/

invalid

Memory

Page table

vl=|o|olr|w]lo|n|s|alol~]o]|m || s

O~ mwH U N

Oops... Multi-level Paging

Structure virtual
address space as a tree

Virtual address of a SPARC
@ What is the size of the page table for a PL 43 L0

machine with 32-bit addresses and a page 6 12
size of 1KB?

The Challenge of Large Page Registers
Address Spaces (a.k.a. Inverted Page Tables)

@ With large address spaces (64-bits) page @ For each frame, a @ An example
tables become cumbersome register containing D 16 MB of memory
o Residence bit o Page size: 4k

— is the frame o # of frames: 4096
@ A new approach---make tables proportional occupied? o Used by page
to the size of the physical, not the virtual, o Page # of the registers (8 bytes/
address space occupying page register): 32 KB

o virtual address space is growing faster o Protection bits o Overhead: 0.2%
than physical n Insensitive fo size
Catch? of virtual memory

o 5 levels of tables

Basic Inverted Where have all the
Page Table Architecture pages gone?

e @ Searching 32KB of registers on every
w S memory reference is not fun

__. _, @ If the number of frames is small, the page

registers can be placed in an associative
_ memory---but...
search‘ } f o it

@ Large associative memories are expensive

@ hard to access in a single cycle.

@ consume lots of power

Inverted Page Table

Speeding things up Sharing

@ Use a TLB: if lucky just as fast as regular
page tables...
@ Processes can share the information stored in
Nl R a memory frame by each having one of their

o I Indesapeld . VoD pages mapped to that frame

oxo NI IEREN oxis4fa

@ ...if unlucky, use a hash table!

@ How does this sharing compare with
segmentation?

Ox184fc

ox184fb (13 INSYSICII 0x0a921

0xaf013 i
0x0
Hash Anchor

Table 0x184fa 0x123

Paged segmentation!

@ Partition segments info fixed-size pages

@ Allocate and deallocate pages

NNNRRNNANNN 'CCRNNNRRNNAREN

e
S p1 D2 10}

@ Virtual address =
((S X pqnaw +p1) X pgzam +p2) X O’ITLal’ + o

Page-Fault Handling

@ References to a non-mapped
page (i in page table) generate
a page fault

Handling a page fault: g
Processor runs interrupt handler

OS blocks running process @

Secondary
Storage

OS finds a free frame Page Table

OS schedules read of unmapped page @
When read completes, OS changes free frame
page table

OS restarts faulting process from
instruction that caused page fault

Physical Memory

Demand Paging

@ Code pages are stored in a file on disk

D0 some are currently residing in memory-most are
not

@ Data and stack pages are also stored in a file

@ OS determines what portion of VAS is
mapped in memory

o this file is typically invisible to users
o file only exists while a program is executing

@ Creates mapping on demand

Page-Fault Handling

@ References to a non-mapped
page (i in page table) generate
a page fault

Secondary
Storage

Handling a page fault:

Processor runs interrupt handler

OS blocks running process

OS finds a free frame Page Table

OS schedules read of unmapped page @
When read completes, OS changes free frame
page table

OS restarts faulting process from
instruction that caused page fault

Physical Memory

Taking a Step Back

@ Physical and virtual memory partitioned into
equal-sized units (respectively, frames and
pages)

@ Size of VAS decoupled fo size of physical
memory

@ No external fragmentation

@ Minimizing page faults is key to good
performance

