
Memory Management

The Virtual Memory
Abstraction

Physical Memory

Unprotected address space

Limited size

Shared physical frames

Easy to share data

Virtual Memory

Programs are isolated

Arbitrary size

All programs loaded at “0”

Sharing is possible

Uniprogramming

without Protection

• Old PC OSes

• Only one application at a
time

• Trivially achieves illusion of
dedicate machine..

OS

Application

FFFFFF

000000

Multiprogramming

without Protection

Linker-loader

• change addresses of loads,

stores jump to refer to where

the program lands in memory

! multiple programs in

memory

! no hardware support

! no protection

- applications can trump

each other

- applications can trump OS

OS

Application 1

FFFFFF

000000

Application 2

Implementing protection

Use hardware support

Two key ideas:

Address Translation

Physical vs. Virtual address spaces

Dual Mode Operation

Kernel mode vs. User mode

Address spaces:
Physical and Virtual

Physical address space consists of the
collection of memory addresses supported by
the hardware

Virtual address space consists of the
collection of addresses that the process can
“touch”

Note: CPU generates virtual addresses

Address Translation

A function that maps
into

a486d9

5e3a07

Virtual Physical

Advantages:

protection
relocation
data sharing
multiplexing

〈pid, virtual address〉
physical address

pi

Protection

At all times, the functions used by different
processes map to disjoint ranges

pi

pj

Relocation

The range of the function used by a process
can change over time

pi

Relocation

The range of the function used by a process
can change over time

pi

Data Sharing

Map different virtual addresses of different
processes to the same physical address

pi

pj
5e3a07

04d26a

119af3

Multiplexing

The domain (set of virtual addresses) that
map to a given range of physical addresses
can change over time

pi

Multiplexing

The domain (set of virtual addresses) that
map to a given range of physical addresses
can change over time

pi

Multiplexing

The domain (set of virtual addresses) that
map to a given range of physical addresses
can change over time

pi

Multiplexing

The domain (set of virtual addresses) that
map to a given range of physical addresses
can change over time

pi

Multiplexing

The domain (set of virtual addresses) that
map to a given range of physical addresses
can change over time

pi

One idea,
many implementations

base & limit

segment table

page table

paged segmentation

multi-level page table

inverted page table

One idea,
many implementations

base & limit

segment table

page table

paged segmentation

multi-level page table

inverted page table

It’s all just a lookup...

Virtual Address Physical Address

000000 a30940

000001 56bb03

000010 240421

ffffff d82a04

Base & Limit

CPU ! +
p’s physical

address
space

500 1000

yes

no

Memory
Exception

Logical
addresses

Physical
addresses

Limit
Register

Base
Register

1500

1000

0

MAXsys

On Base & Limit

Contiguous Allocation: contiguous virtual
addresses are mapped to contiguous physical
addresses

Protection is easy, but sharing is hard

Two copies of emacs: want to share code, but
have data and stack distinct...

Managing heap and stack dynamically is hard

We want them as far as as possible in virtual
address space, but...

Contiguous allocation:
multiple variable partitions
OS keeps track of empty
blocks (“holes”)

Initially, one big hole!

Over time, a queue of
processes (with their
memory requirements) and
a list of holes

OS decides which process
to load in memory next

Once process is done, it
releases memory

p1

OS

p2

p6

p4

p9

p10

p11

OS queue

Strategies for Contiguous
Memory Allocation

First Fit

Allocate first big-enough hole

Best Fit

Allocate smallest big-enough hole

Worst Fit

Allocate largest big-enough hole

Strategies for Contiguous
Memory Allocation

First Fit

Allocate first big-enough hole

Best Fit

Allocate smallest big-enough hole

Worst Fit

Allocate largest big-enough hole

Fragmentation

External fragmentation

Unusable memory between
units of allocation

p1

OS

p2

p6

p4

p9

p11

OS queue

Fragmentation

External fragmentation

Unusable memory between
units of allocation

Internal fragmentation

Unusable memory within a
unit of allocation

p1

OS

p2

p4

p11

p6

Fragmentation

External fragmentation

Unusable memory between
units of allocation

Internal fragmentation

Unusable memory within a
unit of allocation

Internal Fragmentation

p1

OS

p2

p4

p11

p6

Eliminating External
Fragmentation: Compaction

Relocate programs to
coalesce holes

Problem with I/O

Pin job in memory
while it is performing
I/O

Do I/O in OS buffers

p1

OS

p2

p6

p11

Eliminating External
Fragmentation: Swapping

Preempt processes and
reclaim their memory

Move images of
suspended processes
to backing store

Ready Running

Waiting
Suspended

Semaphores/condition queues

Ready
queue

Suspended
queue

OS

p1

p2

swap out

swap in

E Pluribus Unum

From a user’s perspective, a process is a
collection of distinct logical address spaces

Code

Global vars

Stack

Heap

Librares

E Pluribus Unum

From a user’s perspective, a process is a
collection of distinct logical address spaces

Code

Global vars

Stack

Heap

Librares

We call these
logical address
spaces segments

Contiguous mapping of
addresses within segment

Holes in Virtual address
space: a problem?

Think of address as

 is the segment number

 is the offset within the
segment

s

o

(s, o)

Implementing Segmentation

CPU

! + p’s segment

500 1000

yes

no

Memory
Exception

Logical
addresses

Physical
addresses

Limit Base

1500

1000

0

MAXsys

base limit

STBR

s o

s

Segment table
generalizes base & limit

Segment Table Base Register

On Segmentation

Sharing a segment is easy!

Protection bits control access
to shared segments

External fragmentation...

Each process maintains a
segment table, which is saved
to PCB on a context switch

Fast?

Part of a segment in memory?

How do we enlarge a segment?

400

1000

1300

2300

2500

2700

2900

3100

3200

3700

base limit

400 600

2900 200

2500 200

3200 500

1300 1000

How to avoid external
fragmentation?

Allocate memory in fixed-sized chunks (frames)

memory allocation can use a bitmap

Divide virtual address space in equally-sized
chunks (pages)

typical size of page/frame: 512B to 16MB

Contiguous pages must not map to contiguous
frames

Alas, now we face internal fragmentation...

Basic Paging
Implementation

CPU

!
yes

no

Memory
Exception

Logical
addresses

Physical
addresses

f

PTBR

o

Segment Table Base Register

p

p

Frame
size

f

f
o

Speeding things up

CPU !
yes

Memory
Exception

Physical
addresses

f

PTBR

o

Segment Table Base Register

p

f

f

p o

TLB miss

TLB hit

page # frame #

TLB

no

EAT: (1+ε)α+(2+ε)(1−α)
= 2+ε−α (: hit ratio)α

Memory Protection

Used valid/invalid bit to indicate which
mappings are active

4 i

7 i
2 i

0 i

7 v
6 i

5 v

4 i

2 i
0 i

3 v

4 v
0 v

6 v

1 v
2 v

Page table

11
2
9
4
5
0
1
3

0

1

2

3

4
5
6

7
8

9
10

11

12

13

14

15

Memory

}

Protection
bits

Caching
disabled

Referenced

Modified

Valid/
invalid

Oops...

What is the size of the page table for a
machine with 32-bit addresses and a page
size of 1KB?

Multi-level Paging

Structure virtual
address space as a tree

Virtual address of a SPARC
p1 p2 op3

8 6 6 12

0

255

1

0

63 v

0

63

0

4K

8K

16K

p1

p2

p3

PTBR

The Challenge of Large
Address Spaces

With large address spaces (64-bits) page
tables become cumbersome

5 levels of tables

A new approach---make tables proportional
to the size of the physical, not the virtual,
address space

virtual address space is growing faster
than physical

Page Registers
(a.k.a. Inverted Page Tables)

For each frame, a
register containing

Residence bit
 is the frame
occupied?

Page # of the
occupying page
Protection bits

An example
16 MB of memory
Page size: 4k
of frames: 4096
Used by page
registers (8 bytes/
register): 32 KB
Overhead: 0.2%
Insensitive to size
of virtual memoryCatch?

Basic Inverted
Page Table Architecture

CPU pid p offset

pid p

} fsearch

f offset

Inverted Page Table

Physical
Memory

Where have all the
pages gone?

Searching 32KB of registers on every
memory reference is not fun

If the number of frames is small, the page
registers can be placed in an associative
memory---but...

Large associative memories are expensive

hard to access in a single cycle.

consume lots of power

Speeding things up

Use a TLB: if lucky just as fast as regular
page tables...

...if unlucky, use a hash table!

0 0x1 0x123

pid vpn offset

0x184fc

0xaf013

0x0

Hash Anchor
Table

hash

1 0xa63 0x184fa

0 0x1 ----

3 0x31ab 0x0a921

pid vpn next

0x0

0x184fa

0x184fb

0x184fa 0x123

Index

Sharing

Processes can share the information stored in
a memory frame by each having one of their
pages mapped to that frame

How does this sharing compare with
segmentation?

Paged segmentation!

Partition segments into fixed-size pages

Allocate and deallocate pages

Virtual address =

} } } }
s p1 p2 o

((s × p
max

1 + p1) × p
max

2 + p2) × o
max + o

Demand Paging

Code pages are stored in a file on disk

some are currently residing in memory–most are
not

Data and stack pages are also stored in a file

OS determines what portion of VAS is
mapped in memory

this file is typically invisible to users

file only exists while a program is executing

Creates mapping on demand

Page-Fault Handling

References to a non-mapped
page (i in page table) generate
a page fault

Handling a page fault:
Processor runs interrupt handler

OS blocks running process

OS finds a free frame

OS schedules read of unmapped page

When read completes, OS changes
page table

OS restarts faulting process from
instruction that caused page fault

free frame

CPU

i

Physical Memory

Page Table

OS

1

2

61 4

5

3

Secondary
Storage

Page-Fault Handling

References to a non-mapped
page (i in page table) generate
a page fault

Handling a page fault:
Processor runs interrupt handler

OS blocks running process

OS finds a free frame

OS schedules read of unmapped page

When read completes, OS changes
page table

OS restarts faulting process from
instruction that caused page fault

free frame

CPU

Physical Memory

61 v

Page Table

OS

1

2

3

61 4

5

6 Secondary
Storage

Taking a Step Back

Physical and virtual memory partitioned into
equal-sized units (respectively, frames and
pages)

Size of VAS decoupled to size of physical
memory

No external fragmentation

Minimizing page faults is key to good
performance

