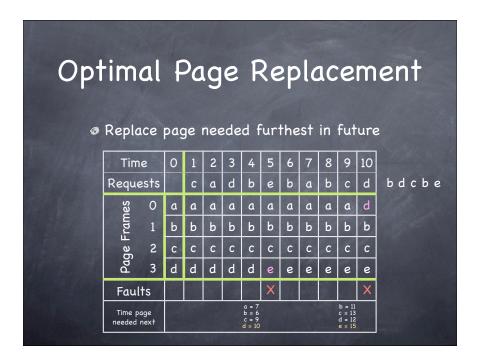
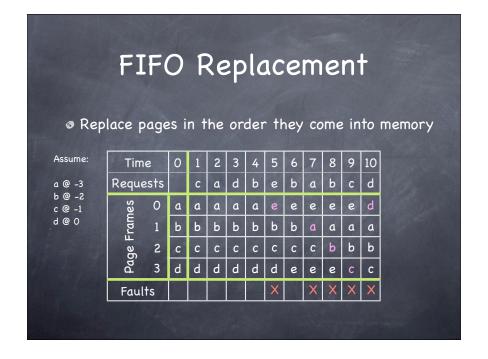
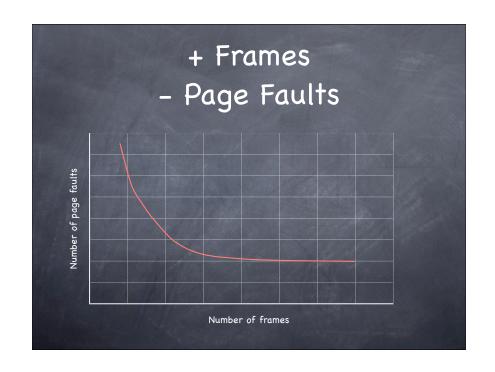
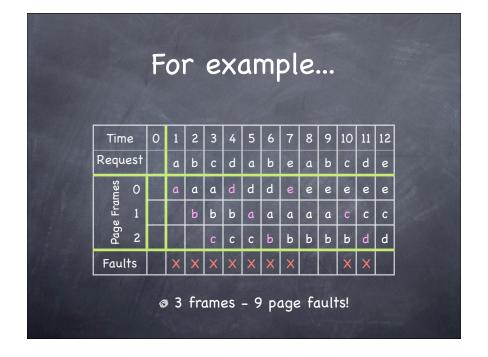
Page Replacement Algorithms

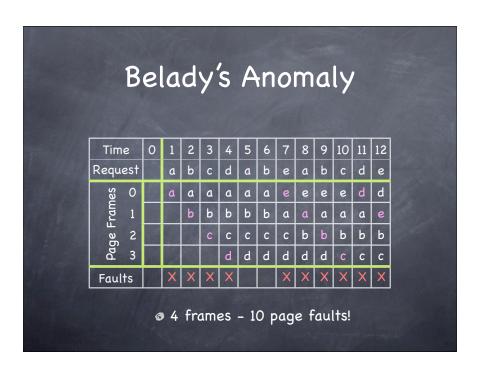
Demand Paging

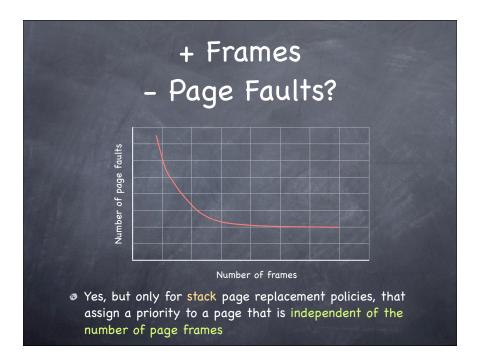

- Load pages in memory only on page fault
 - □ Find location of desired page on disk
 - □ Find a free frame
 - □ if one is available, use it
 - □ otherwise, use a page replacement algorithm
 - select a victim among active mappings
 - free corresponding frame, and load new page in it
 - <u>local</u> vs. <u>global</u> victim selection
 - □ Restart!

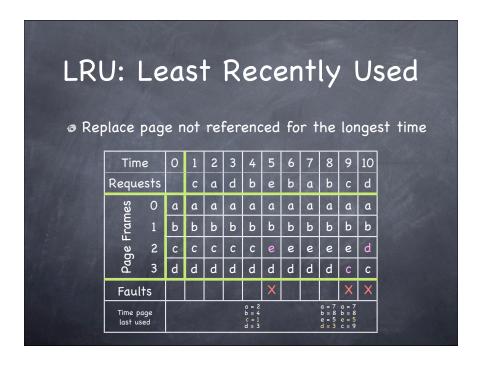

How do we pick a victim?

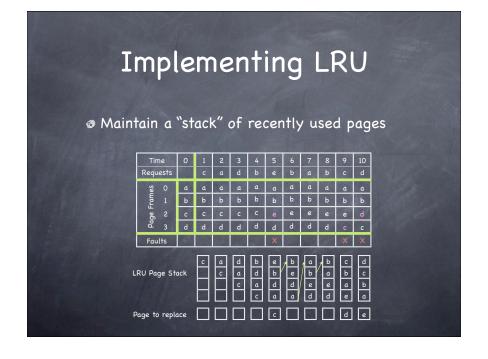

- We want:
 - □ low page fault-rate
- We need:
 - □ a way to compare the <u>relative</u> performance of different page replacement algorithms
 - □ some <u>absolute</u> notion of what a "good" page replacement algorithm should accomplish

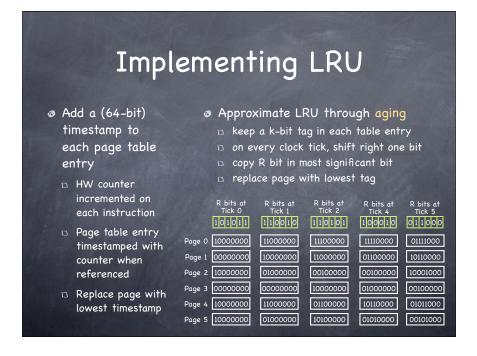

Comparing Page Replacement Algorithms

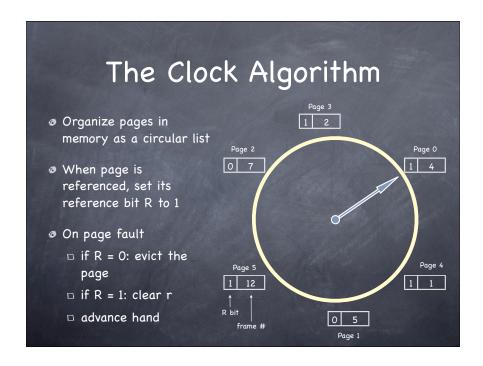

- Record a trace of the pages accessed by a process
 - □ E.g. 3,1,4,2,5,2,1,2,3,4 or c,a,d,b,e,b,a,b,c,b
- Simulate behavior of page replacement algorithm on the trace and record the number of page faults generated

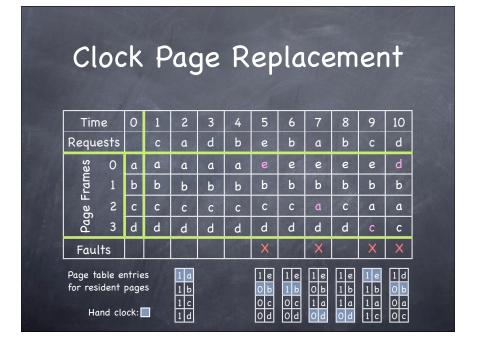


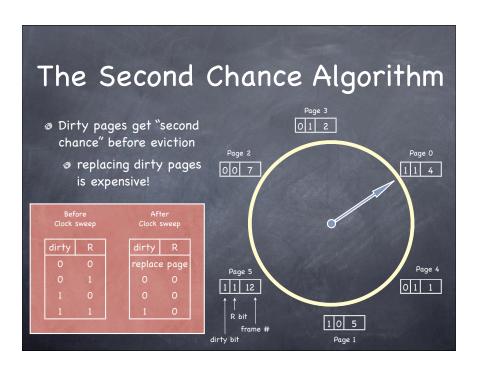


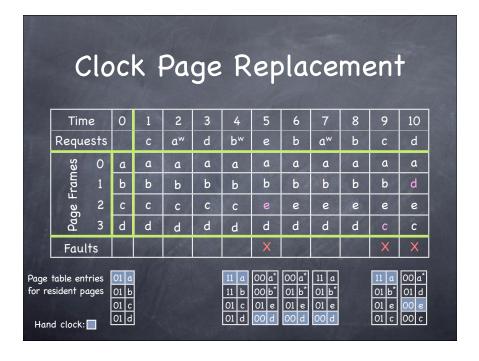


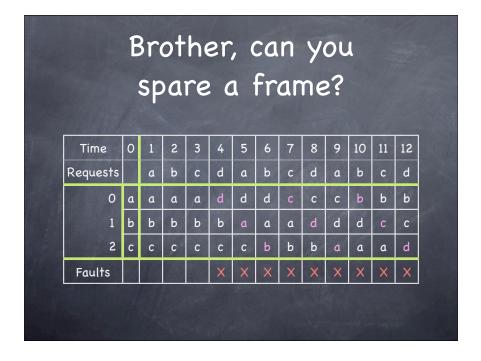









Implementing LRU Add a (64-bit) timestamp to each page table entry HW counter incremented on each instruction Page table entry timestamped with counter when referenced Replace page with lowest timestamp



A Vicious Cycle

- When not enough frames...
 - □ high page fault rate
 - □ low CPU utilization
 - □ OS may increase degree of multiprogramming!

A Vicious Cycle When not enough frames... high page fault rate low CPU utilization OS may increase degree of multiprogramming! Thrashing process spends all its time swapping pages in and out

The Principle of Locality

- 90% of the execution of a program is sequential
- Most iterative constructs consist of a relatively small number of instructions
- When processing large data structures the dominant cost is sequential processing on individual structure elements
- Locality can be both spatial and temporal

The Working Set Model

- \odot WSS_i = # of pages referenced by p_i in latest Δ
 - \square Δ too small: does not cover locality
 - \square Δ too large: covers many localities
- \odot Thrashing if Σ_i WSS_i > # frames
 - □ if so, suspend one of the processes
 - > which one?

WS Page Replacement $\Delta = 4$

Time		0	1	2	3	4	5	6	7	8	9	10
Requests			С	С	d	ь	С	е	С	е	а	d
Pages in Memory	Page a	t=0 ●										
	Page b											
	Page c											
	Page d	t=-1										
Pag	Page e	t=-2										
Faults												

WS Page Replacement $\Delta = 4$

	Time	0	1	2	3	4	5	6	7	8	9	10
Requests			С	С	d	ь	С	e	С	е	а	d
7	Page a	$\stackrel{t=0}{\bullet}$	•	•	•						•	•
emo	Page b					•	•	•	•			
N L	Page c		•	•	•	•	•	•	•	•	•	•
Pages in Memory	Page d	t=-1	•	•	•	•	•	•				•
	Page e	t=-2	•					•	•	•	•	•
Faults			X			X		X			X	X

Computing the WS

- ${\it \odot}$ Use interval timer τ , the R bit, and k extra bits per page
- $\bullet \ \Delta = \tau \times k$
- $\ \ \, \ \ \,$ When τ elapses, shift k bits right, copy R bit in MSB and reset R bit
- f o If one of the k bits is 1, the corresponding page is in WS
- Sensitivity?

Tracking Page Fault Frequency

When too high, increase WS; decrease when too low.

Keep time $\,t_{\mathrm{last}}$ of last page fault On page fault:

if $t_{\rm current}-t_{\rm last}> au^*$, then unmap all pages not referenced in [$t_{\rm last}-t_{\rm current}$]

else add faulting page to the working set

PFF Page Replacement

$$\tau^* = 2$$

Time		0	1	2	3	4	5	6	7	8	9	10
Requests			С	С	d	b	С	e	С	e	а	d
Pages in Memory	Page a	•	•	•	•						•	•
	Page b					•	•	•	•	•		
	Page c		•	•	•	•	•	•	•	•	•	•
les i	Page d	•	•	•	•	•	•	•	•	•		•
Pag	Page e	•	•	•	•			•	•	•	•	•
Faults			X			X		X			X	X
$t_{ m current} - t_{ m last}$			1			3		2			3	1

PFF Page Replacement

$$\tau^* = 2$$

Time		0	1	2	3	4	5	6	7	8	9	10
Requests			С	С	d	b	С	e	С	e	а	d
Pages in Memory	Page a	•										
	Page b											
N L	Page c											
jes i	Page d	•										
Paç	Page e	•										
Faults												
$t_{ m current} - t_{ m last}$												