Introducing Monitors

+ Separate the concerns of mutual exclusion and conditional
synchronization

+ What is a monitor?
» One lock, and

» Zero or more condition variables for managing concurrent access to
shared data

+ General approach:
» Collect related shared data into an object/module
» Define methods for accessing the shared data

+ Monitors were first introduced as a programming language construct
» Calling a method defined in the monitor automatically acquires the lock
> Examples: Mesa, Java (synchronized methods)

+ Monitors also define a programming convention
» Can be used in any language (C, C++, ...)

Coke Machine Example

Locks and Condition Variables - Recap

Class CokeMachine{

Lock lock;
int count = O;
Condition notFull, notEmpty:;
}
CokeMachine::Deposit()X CokeMachine::Remove(){
lock->acquire(); lock->acquire();
while (count == n) { while (count == 0) {
notFull.wait(&lock); } notEmpty.wait(&lock); }
Add coke to the machine; Remove coke from to the machine;
count++; count--;
notEmpty.signal(); notFull.signal();
) lock>release(); lock>release();
}

+ Locks
> Provide mutual exclusion
> Support two methods
« Lock::Acquire() - wait until lock is free, then grab it
« Lock::Release() - release the lock, waking up a waiter, if any

+ Condition variables
> Support conditional synchronization
> Three operations

+ Wait(): Release lock; wait for the condition to become true;
reacquire lock upon return

« Signal(): Wake up a waiter, if any
« Broadcast(): Wake up all the waiters
» Two semantics for the implementation of wait() and signal()
+ Hoare monitor semantics
< Hansen monitor semantics

Hoare Monitors: Semantics

¢ Hoare monitor semantics:

» Assume thread T is waiting on condition x
» Assume thread T2is in the monitor
» Assume thread T2 calls x.signal
» T2 gives up monitor, T2 blocks!
» TI takes over monitor, runs
> Tl gives up monitor
» T2 takes over monitor, resumes
+ Example
fnl(..)

'x.wai'r // T1 blocks > F4(..)

// T1 resumes «_ Xxsignal // T2 blocks

Lock=>release();

E—
T2 resumes

Hansen Monitors: Semantics

Tradeoff

+ Hansen monitor semantics:
» Assume thread TIwaiting on condition x
Assume thread T2 is in the monitor
Assume thread T2 calls x.sighal; wake up T1
T2 continues, finishes
When T1 get a chance to run, TI takes over monitor, runs
» TI finishes, gives up monitor

>
>
>
>

+ Example:

fnl(..)

xwait // T1blocks Fna()

x.signal // T2 continues
«— // T2 finishes
// T1 resumes
// T1 finishes

Summary

+ Synchronization

> Coordinating execution of multiple threads that share data
structures

+ Past lectures:
» Locks > provide mutual exclusion
» Condition variables > provide conditional synchronization

+ Today: Historical perspective
» Semaphores
« Introduced by Dijkstra in 1960s
« Two types: binary semaphores and counting semaphores
« Supports both mutual exclusion and conditional synchronization
> Monitors
« Separate mutual exclusion and conditional synchronization

Hoare

+ Claims:
» Cleaner, good for proofs
» When a condition variable is
signaled, it does not change
» Used in most textbooks

+ ..but
> Inefficient implementation

CokeMachine::Deposit(){
lock>acquire();
if (count == n) {

notFull.wait(&lock); }

Add coke to the machine;
count++;
notEmpty.signal();
lock>release();

Hansen

+ Signal is only a “hint" that the
condition may be true

> Need to check condition again
before proceeding
» Can lead to synchronization bugs

+ Used by most systems

+ Benefits:
> Efficient implementation

> Condition guaranteed to be true
once you dare out of while !

CokeMachine::Deposit(){
lock>acquire();
while (count == n) {

notFull.wait(&lock); }

Add coke to the machine;
count++;
notEmpty.signal();
lock->release();

Concurrent Programming Issues:
Summary

Programming Strategy

Summary of Our Discussions

+ Decompose the problem into objects

+ Object-oriented style of programming
> Identify shared chunk of state

> Encapsulate shared state and synchronization variables inside
objects

+ Developing and debugging concurrent programs is hard
» Non-deterministic interleaving of instructions

+ Synchronization constructs
> Locks: mutual exclusion
» Condition variables: conditional synchronization
» Other primitives:
« Semaphores

Binary vs. counting
Can be used for mutual exclusion and conditional synchronization

+ How can you use these constructs effectively?
» Develop and follow strict programming style/strategy

General Programming Strategy

+ Two step process

¢ Threads:
> Identify units of concurrency - these are your threads

» Identify chunks of shared state - make each shared “‘rhin%” an
object; identify methods for these objects (how will the fhread
access the objects?)

» Worite down the main loop for the thread

+ Shared objects:
» Identify synchronization constructs
% Mutual exclusion vs. conditional synchronization
» Create a lock/condition variable for each constraint

> Develop the methods -using locks and condition variables - for
coordination

Coding Style and Standards

+ Always do things the same way
+ Always use locks and condition variables
+ Always hold locks while operating on condition variables
+ Always acquire lock at the beginning of a procedure and release it
at the end
» If it does not make sense to do this > split your procedures further
+ Always use while to check conditions, not if
while (predicate on state variable) {
conditionVariable->wait(&lock);
¥

+ (Almost) never sleep() in your code
» Use condition variables to synchronize

Readers/ Writer: Solution Structure

Readers/ Writers: A Complete Example

+ Basic structure: two methods

Database::Read() {
Wait until no writers;
Access database;
check out - wake up waiting writers;

}

Database::Write() {
Wait until no readers/writers;
Access database;
check out - wake up waiting readers/writers;

+ State variables

AR =0; // # of active readers
AW = 0; // # of active writers
WR =0; // # of waiting readers
WW = 0: // # of waiting writers
Condition okToRead;

Condition okToWrite;

Lock lock;

+ Motivation
» Shared databases accesses
+ Examples: bank accounts, airline seats, ...

+ Two types of users
» Readers: Never modify data
» Writers: read and modify data

+ Problem constraints

» Using a single lock is too restrictive
+ Allow multiple readers at the same time
+ ..but only one writer at any time

> Specific constraints
+ Readers can access database when there are no writers
+ Weriters can access database when there are no readers/writers
+ Only one thread can manipulate shared variables at any time

Solution Details: Readers

Public Database::Read() {

StartRead():
Access database;
DoneRead():
}
Provate Database::StartRead() { Provate Database::DoneRead() {
lock.Acquire(); lock.Acquire();
while ((AW+WW) > 0) { AR--;
WR++; if (AR ==0 && WW > 0) {
okToRead.wait(&lock); okToWrite.signal();
WR--; }
} lock.Release();
AR++; }

lock.Release();

Solution Details: Writers

Database::Write() {
StartWrite();
Access database;
DoneWrite();

Provate Database::DoneWrite() {

Provate Database::StartWrite() {
lock.Acquire();

lock.Acquire();

while ((AW+AR) > 0) { AW--;
WW++; if (WW >0){
okToWrite.wait(&lock); okToWrite.signal();
WW--; }

} else if (WR>0){

AW++; okToRead.broadcast();

lock.Release();
lock.Release();

